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Background. Childhood overweight and obesity (OW/OB) is a worldwide public health problem, and its genetic risks remain
unclear. Objectives. To investigate risks of OW/OB associated with genetic variances in SEC16B rs543874 and rs10913469,
BDNF rs11030104 and rs6265, NT5C2 rs11191580, PTBP2 rs11165675, ADCY9 rs2531995, FAM120A rs7869969, KCNQ1
rs2237892, and C4orf33 rs2968990 in Chinese infants at 12-month old. Methods. We conducted a case-control study with 734
infants included at delivery and followed up to 12-month old. The classification and regression tree analysis were used to
generate the structure of the gene-gene interactions, while the unconditional multivariate logistic regression models were
applied to analyze the single SNP, gene-gene interactions, and cumulative effects of the genotypes on OW/OB, adjusted for
potential confounders. Results. There were 219 (29.84%) OW/OB infants. Rs543874 G allele and rs11030104 AA genotype
increased the risk of OW/OB in 12-month-old infants (P < 0:05). Those carrying both rs11030104 AA genotype and
rs10913469 C allele had 4.3 times greater OW/OB than those carrying rs11030104 G allele, rs11191580 C allele, rs11165675 A
allele, and rs543874 AA genotype. Meanwhile, the risk of OW/OB increased with the number of the risk genotypes individuals
harbored. Conclusions. Rs543874, rs11030104, and rs11191580 were associated with OW/OB in 12-month-old Chinese infants,
and the three SNPs together with rs10913469 and rs11165675 had a combined effect on OW/OB.

1. Introduction

Over the past three decades, the prevalence of childhood
overweight and obesity (OW/OB) has dramatically increased
worldwide, especially in China [1]. A meta-analysis found
that the prevalence of overweight and obesity in Chinese
children and adolescents increased from 5.0% and 1.7% in
1991-1995 to 11.7% and 6.8% in 2011-2015, respectively
[2]. It is well established that obesity occurred in childhood
is a strong predictor of later life obesity and related illnesses

such as cardiovascular diseases [3, 4]. The early stage of life,
especially the first 1000 days from conception through the
age of two years, is increasingly recognized as a critical
period for the development of childhood obesity and its
adverse consequences [5].

Although social and environmental factors encountered
in early life contribute to the development of obesity, the role
of genetic influences in the pathogenesis of obesity should
not be overlooked [6]. The results from twin studies have
reported that around 40-70% of interindividual variability
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in body mass index (BMI), an indicator commonly used to
assess obesity, is attributable to genetic factors [7].
Genome-wide association analysis (GWAS) and meta-
analysis have identified more than 100 obesity-related
genetic variations in adults [6–8]. However, the found
genetic variations could only explain a tiny proportion of
obesity heritability (about 2.7% of adult obesity) [9]. The
so-called missing heritability may be due to the fact, among
many others, that the majority of the investigations have
been focusing on a single SNP’s effect [10–12], leaving the
interactive effect of SNPs overlooked. Some studies have
reported that SNPs may influence one another in the devel-
opment of obesity, generating combined effects. For
instance, Liu et al. reported the combinations of SCAP
rs12487736 G allele, INSIG2 rs9308762 T allele, and SREBP2
rs1883205 T allele had an 80% increased risk of obesity com-
pared to those harboring low-risk alleles. At the same time,
the single association analyses of the same study only found
a significant association between SCAP rs12487736 and obe-
sity [13].

Further, the results from studies on genetic variants and
obesity have been inconsistent across ages and ethnic groups
[14–17]. For instance, Lv et al. reported that among the 19
SNPs previously identified from GWAS of obesity, only
SEC16B rs543874, MC4R rs17782313, MAP2K5 rs2231323,
and KCTD15 rs11084753 were significantly associated with
the risk of obesity in school-aged children [15]. However,
the results from Zandona et al. indicated that among the
10 analyzed gene variants, the BDNF, TMEM18, and NEGR1
gene variants were associated with BMI z-score (BMI_Z),
with the BDNF variants’ effect emerging at the age of one
year, and TMEM18 and NEGR1 gene variants taking effect
at 3.5 years of age [18]. It is unclear whether the gene expres-
sions vary with age, resulting in inconsistency. Furthermore,
previous studies have been primarily focused on European
ethnic, little is known of the Asian child population [19]. It
would be interesting to understand whether the same
obesity-associated loci contribute to obesity risk across a
range of ancestries or if there are obesity susceptibility genes
unique to specific ancestries [20].

As a treasure trove of fundamental insights into the
genetic basis of obesity, we reviewed GWAS and meta-
analysis studies for BMI in both Asian and European adults
and chilren [21]. Finally, based on the selecting strategies
(details in Method Strategies for Candidate Gene Selection),
we focused on SEC16B, BDNF, NT5C2, PTBP2, ADCY9,
FAM120A, KCNQ1, and C4orf33 [8, 22, 23]. The eight genes
were reported in GWAS to be associated with obesity in the
Asian adults or European children. However, the association
between these genes and obesity was seldom reported in Asian
children, along with the gene-gene interactions. Therefore,
based on the prospective birth cohort study in Zhuhai, China,
we set up a case-control study firstly to investigate the impact
of genetic variance in SEC16B rs543874 and rs10913469,
BDNF rs11030104 and rs6265, NT5C2 rs11191580, PTBP2
rs11165675, ADCY9 rs2531995, FAM120A rs7869969,
KCNQ1 rs2237892 and C4orf33 rs2968990 on OW/OB of
12-month-old infants and to examine the interactive and
cumulative effects of the risk alleles.

2. Materials and Method

2.1. Study Population and Design. We conducted a case-
control study with 12-month-old infants selected from a
prospective birth cohort conducted during 2014 and 2017
in Zhuhai, China [23, 24]. The inclusion criteria of 12-
month-old infant participants were: (1) single born with
no obvious congenital diseases, had Apgar scores ≥7 in both
one and five minutes immediately after birth; (2) had umbil-
ical cord blood collected at birth; (3) followed up at 1, 3, and
12-month old. Infants were divided into OW/OB and
normal-weight groups according to their BMI, calculated
as body weight (kg)/length(m) [2]. Signed informed consent
was obtained from parents of the eligible infants prior to the
recruitment. In addition, ethical approval was obtained from
the Ethics Committees of the Tongji Medical College, Huaz-
hong University of Science and Technology (Ethical
approval number: IORG0003571).

2.2. Data Collection. Information on some critical variables
that are commonly reported to be associated with childhood
obesity, such as maternal prepregnancy and paternal height
and weight, age, educational level, monthly household
income, and smoking behavior prior to pregnancy [24, 25],
was collected at recruitment using a structured question-
naire. Information on maternal gestational weight gain, ges-
tational week, delivery mode, and child sex were obtained
from hospital medical records. Birth weight and length were
collected at delivery by centrally trained nurses. Umbilical
cord blood was collected at delivery by trained nurses, cen-
trifugated, and stored at -80°C within two hours after being
collected. Infants’ weight and length at the 1-, 3-, and 12-
month-old were measured by trained research assistants in
the study hospitals, and feeding practice was collected dur-
ing face-to-face follow-ups at infants’ one-month old.

2.3. Strategies for Candidate Gene Selection. The screening
strategies used to identify candidate SNPs began with a
search of genetic variants related to obesity of the Asian
adults or European children identified by GWAS from
2013 to 2016 in Web of Science and PubMed, resulting in
a pool of 77 candidate SNPs. Next, as previous studies dem-
onstrated rare genotypes are more likely to result in spurious
findings, we included SNPs withMAF > 10% in the HapMap
CHB (Han Chinese in Beijing) population (http://hapmap
.ncbi.nlm.nih.gov/) [26, 27]. We then tested their linkage
disequilibrium (LD) using the Haploview v4.2 software.
The tag SNPs were all included in the analysis. One was ran-
domly retained if multiple nontag SNPs were found in the
same gene but with strong LD (r2 ≥ 0:80). The call rate of
each SNP was over 95%. This process resulted in a list of 10
SNPs for investigation: SEC16B rs543874, and rs10913469,
BDNF rs11030104, and rs6265, NT5C2 rs11191580, PTBP2
rs11165673, ADCY9 rs2531995, FAM120A rs7869969,
KCNQ1 rs2237892, and C4orf33 rs2968990.

2.4. SNP Data Generating. Genomic DNA was extracted
from umbilical cord blood samples using a Bioteke DNA
Investigator Kit AU18016 (Bioteke, Beijing, China). DNA
concentration and optical density were determined using a
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NanoDrop 1000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, Massachusetts, USA). According to the man-
ufacturer’s protocol, genotyping was performed at BIO
MIAO BIOLOGICAL Corporation (Beijing, China) with
Sequenom MassArraY platform (San Diego, USA).

2.5. Outcome Variables. The outcome variable is infants’
weight status at 12-month old, categorized as OW/OB and
normal weight using BMI standards. BMI ≥ 85th percentile
was set as the OW/OB (case group), and BMI<85th percen-
tile was the normal weight (control group) [28].

2.6. Covariables. Maternal age, prepregnancy, weight and
height, gestational week, gestational weight gain and pater-
nal weight, and height were continuous variables. Maternal
prepregnancy and paternal BMIs were calculated by pre-
pregnancy weight/height [2]. Parental educational levels
were categorized as middle school or lower, high school/
technical, college/university, and master’s degree or
advanced. Parental smoking status before pregnancy was
dichotomized as yes or no. Monthly household income was
grouped as <5001, 5001~8000, 8001~15000, and >15000
RMB. The delivery mode was either virginal delivery or cae-
sarean section.

Infant sex includes boy and girl. Infants’ BMI_Z and
weight for age z-score (WFA_Z) at birth and three months
of age were generated according to the WHO Child Growth
Standards 2006 [29]. Infants’ weight gain from birth to three
months was calculated using WFA_Z at 3-month-old sub-
tract WFA_Z at birth. The feeding pattern in the 1-month-
old was categorized as exclusive breastfeeding, mixed feed-
ing, and formula feeding. Exclusive breastfeeding was
defined as feeding only breastmilk without any other food,
including water; mixed feeding was feeding with breastmilk
and other food; formula feeding was feeding without any
breastmilk [30].

2.7. Statistical Analysis. The differences in the distribution of
demographic characteristics and genotype frequencies
between cases and controls were examined. Category vari-
ables were presented as frequency and percentage, with
Pearson’s chi-square test for two categorical variables and
linear-by-linear regression analysis for variables more than
two categories. Normally distributed variables were pre-
sented as mean and standard deviation, and skewed vari-
ables were described as median and interquartile range. T
-test and Wilcoxon rank-sum test were used to compare
the two-group differences for normally distributed variables
and skew ones, respectively. The Hardy-Weinberg equilib-
rium (HWE) for genotypes was assessed by a goodness-of-
fit chi-square test among controls.

The association between each SNP of neonates and the
risk of OW/OB at 12-month old was evaluated by the odds
ratio (OR) and its 95% confidence interval (CI) using uncon-
ditional multivariate logistic regression models, with the
adjustment for infants’ sex, BMI_Z at birth, feeding pattern
at 1-month old, weight gain from birth to 3-month old,
maternal prepregnancy, BMI and gestational weight gain,
and paternal BMI. In order to increase the statistical power,

the most likely inheritance model for each SNP was adopted
rather than investigating all the models (dominant, recessive,
and additive models) simultaneously. The statistical power
was calculated by Power v3.0 to determine the effectiveness
of SNPs.

The classification and regression tree (CART) analysis
was performed to detect the potential gene-gene interactions
[31]. It was constructed by splitting data recursively into
binary subsamples, beginning with the root node, including
all samples. The Gini criteria were used for a high degree
of homogeneity in the terminal nodes or subgroups before
growing a tree; after the tree was developed, a pruning pro-
cedure was performed to avoid model overfitting. The opti-
mal tree was selected based on the lowest misclassification
error rate and can be assessed based on cross-validation.
Subgroups of 12-month-old infants with differential risk
association of OW/OB were generated according to the ter-
minal nodes of the SNPs belonging to, which meant the
gene-gene interaction tree was developed, the interactions
and cumulative effects of multiple risk SNPs on infants’
OW/OB were examined using unconditional multivariable
logistic regression models. According to the number of con-
founders included in the models, three unconditional regres-
sion models were employed: Model 1 is the unadjusted
model; Model 2 is the Model 1 adjusted for child sex, first-
month feeding pattern, and weight gain from birth to 3-
month old; Model 3 is the Model 2 further adjusted for
BMI_Z at birth, gestational weight gain, and parental BMI.

All statistical analyses were carried out using SPSS v18.0
(SPSS, Chicago, Illinois, USA), and all P values were two-
tailed with a statistically significant level set as 0.05.

3. Results

3.1. Basic Characteristics of Participants in the Case and
Control Groups. A total of 734 infants were included in this
study. The case and control groups, respectively, contain 219
and 515 infants, with boys accounting for 42% and 55%
each. BMI_Z at birth was around -0.5 in both groups. The
exclusive breastfeeding rate was 39.7% in the case group
and 46.6% in the control group. Compared to the control
group, infants in the case group had a significantly greater
BMI_Z at 12-month old (1.64V.S. 0.03) and weight gain
from 1- to 3-month old (0.63V.S. 0.45). Around 70% of
the parents were college-educated. Mothers had higher pre-
pregnancy BMI (20.45V.S. 20.00) and lower prepregnancy
smoking rate (0.92% V.S. 3.73%) in the case group than in
the control group. The average paternal BMI, gestational
weight gain, and gestational week were similar in both
groups, i.e., 23 kg/m2, 14 kg, and 39 weeks, respectively.
Monthly family incomes in the two groups were also identi-
cal. The details are illustrated in Table 1.

3.2. Characteristics of the 10 Candidate SNPs. Information of
gene locations, minor allele frequency, calling rate, and func-
tion of the 10 SNPs was shown in Table S1. The MAF for the
case and control was similar to those in the HapMap
database of CHB. The genotypes for all SNPs in the
control group were confirmed to HWE (P > 0:05).
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Genotype frequencies of the 10 SNPs by the group were
compared in Table S2. The results from Table S2 showed a
statistically significant difference in the genotype of
rs543874 and rs11030104 between case and control groups
(P < 0:05).

3.3. The Association between each SNP and OW/OB in 12-
Month-Old Infants. As shown in Table 2, SEC16B rs543874
and BDNF rs11030104 were significantly associated with
OW/OB at 12-month old. With confounders adjusted, they
were associated with increased risk of overweight/obesity
in the dominant and recessive models, respectively
(P < 0:05). For example, in Model 3, the adjusted OR and

95% CI for rs543874 and rs11030104 were 1.58 (1.11, 2.24)
and 1.48 (1.03, 2.12), respectively. No significant association
was found between the other 8 SNPs and OW/OB.

3.4. The Gene-Gene Interaction Tree Development. The
CART was depicted in Figure 1. The first split was created
by BDNF rs11030104 (Node 0), suggesting that BDNF
rs11030104 posted the highest risk on OW/OB in 12-
month-old infants among the 10 SNPs examined. Next, the
tree progressed on both daughter nodes (Nodes 1 and 2),
and the algorithm created the second split on NT5C2
rs11191580 and SEC16B rs10913469, respectively, resulting
in four daughter nodes (Nodes 3, 4, 5, and 6). The next

Table 1: General characteristics of participants in case and control groups.

Case group (N = 219) Control group (N = 515) P

Infants

Boys, N (%) 92 (42.01) 284 (55.15) 0.0011

BMI_Z at birth -0.52 (1.18) -0.46 (1.15) 0.5528

BMI_Z at 12-month old 1.64 (1.31, 2.00) 0.03 (-0.53, 0.50) <.0001
Feeding pattern in the 1-month old, N (%) 0.1330

Exclusive breastfeeding 87 (39.73) 240 (46.60)

Mixed feeding 106 (48.40) 232 (45.05)

Formula feeding 26 (11.87) 43 (8.35)

Weight gain velocity (0-3months old) 0.63 (-0.07, 1.56) 0.45 (-0.36, 1.18) 0.0028

Mothers

Age (year) 28.82 (26.97, 31.47) 28.44 (26.50, 31.00) 0.1430

Educational level, N (%) 0.6459

Middle school or under 10 (5.46) 32 (7.24)

High school/technical 33 (18.03) 82 (18.55)

University/college 128 (69.95) 290 (65.61)

Master’s degree or advanced 12 (6.56) 38 (8.60)

Prepregnancy smoking, N (%) 2 (0.92) 19 (3.73) 0.0378

Prepregnancy BMI (kg/m2) 20.45 (18.82, 22.55) 20.00 (18.25, 21.99) 0.0209

Gestational weight gain (kg) 14.10 (11.76, 17.00) 14.40 (12.00, 17.00) 0.7177

Gestational week (week) 39.29 (38.57, 40.00) 39.29 (38.43, 40.14) 0.8229

Caesarean section, N (%) 85 (38.81) 184 (35.73) 0.4275

Fathers

Educational level, N (%) 0.5527

Middle school or under 11 (6.04) 24 (5.52)

High school/technical 21 (11.54) 68 (15.63)

University/college 133 (73.08) 310 (71.26)

Master’s degree or advanced 17 (9.34) 33 (7.59)

BMI (kg/m2) 23.66 (21.72, 26.23) 23.82 (21.63, 25.65) 0.6166

Smoking, N (%) 57 (27.54) 143 (28.83) 0.7288

Household monthly income (yuan/RMB), N (%) 0.9618

<5001 98 (44.75) 197 (38.25)

5001~8000 26 (11.87) 126 (24.47)

8001~15000 66 (30.14) 128 (24.85)

>15000 29 (13.24) 64 (12.43)

Note: ∗refers to significant difference between the groups, P < 0:05; results from variables with normal distribution were presented as mean (standard
deviation), with skewed distribution that were present as median (interquartile range), results from category variables were presented as frequency
(percentage).
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progression was on Node 4, split by PTBP2 rs11165675,
resulting in two daughter nodes (Nodes 7 and 8). After that,
SEC16B rs543874 split Node 7 into Nodes 9 and 10. Thus,
the four levels’ gene-gene interaction tree was developed.

3.5. Effects of Gene-Gene Interaction on OW/OB in 12-
Month-Old Infants. Six gene-gene interaction subtrees were
developed by the CART analysis. Among them, the subtree
with individuals carrying the combination of BDNF
rs11030104 G allele, NT5C2 rs11191580 C allele, PTBP2
rs11165675 A allele, and SEC16B rs543874 AA genotype
had the lowest risk for OW/OB in 12-month-old infants.
Thus, this terminal node (Node 10) was considered as the
reference group in the association analyses. The results from
Table 3 showed that except for individuals at the terminal
Node 9, individuals at the other four-terminal nodes had a
higher risk for OW/OB at 12-month old compared to Node
10 (P < 0:05), with the confounders adjusted. For instance,

individuals with the combination of BDNF rs11030104 AA
genotype and rs10913469 CC or CT genotype exhibited the
highest risk for OW/OB at 12-month-old infants
(OR = 5:31, 95% CI = 2:52 − 11:20) in contrast with the ref-
erence group.

3.6. The Cumulative Effect of Risk Genes on OW/OB in 12-
Month-Old Infants. Cumulative effect analysis of the five risk
SNPs identified in the CART analysis was evaluated by
unconditional logistic regression analysis. High-risk geno-
types were set as BDNF rs11030104 AA genotype, NT5C2
rs11191580 TT genotype, PTBP2 rs11165675 GG genotype,
SEC16B rs10913469 CC or CT genotype, and SEC16B
rs543874 GG or GA genotype according to the results from
the single gene association and CART analysis. Participants
were categorized into four groups based on the number of
risk genotypes they harbored, i.e., 0, 1, 2, and 3-5. The sub-
group with 0 risk allele was regarded as the reference group

Table 2: Associations between each SNP and risk for overweight/obesity at 12-month-old infants.

Characteristics
Model 1 unadjusted analysis Model 2 adjusted analysis a Model 3 adjusted analysis b

OR (95% CI) P OR (95% CI) P OR (95% CI) P

SEC16B rs543874 0.02 0.01 0.01

AA 1 1 1

GG+GA 1.48 (1.05, 2.08) 1.57 (1.11, 2.23) 1.58 (1.11, 2.24)

SEC16B rs10913469 0.09 0.11 0.11

TT 1 1 1

CC+CT 1.34 (0.96, 1.87) 1.32 (0.94, 1.85) 1.32 (0.94, 1.86)

BDNF rs11030104 0.02 0.03 0.03

AG+GG 1 1 1

AA 1.53 (1.08, 2.18) 1.50 (1.04, 2.14) 1.48 (1.03, 2.12)

BDNF rs6265 0.05 0.09 0.10

CT+TT 1 1 1

CC 1.43 (1.00, 2.04) 1.38 (0.96, 2.99) 1.36 (0.94, 1.98)

NT5C2 rs11191580 0.04 0.09 0.06

TT 1 1 1

CC+CT 0.71 (0.52, 0.98) 0.75 (0.54, 1.04) 0.73 (0.52, 1.02)

PTBP2 rs11165675 0.06 0.11 0.08

GA+AA 1 1 1

GG 1.43 (0.99, 2.07) 1.36 (0.93, 1.99) 1.40 (0.96, 2.06)

ADCY9 rs2531995 0.13 0.12 0.18

TT 1 1 1

CC+CT 0.68 (0.41, 1.11) 0.67 (0.40, 1.11) 0.70 (0.42, 1.17)

FAM120A rs7869969 0.33 0.43 0.40

AG+GG 1 1 1

AA 0.84 (0.59, 1.20) 0.87 (0.60, 1.24) 0.86 (0.60, 1.23)

KCNQ1 rs2237892 0.23 0.18 0.24

CT+TT 1 1 1

CC 0.82 (0.59, 1.13) 0.80 (0.57, 1.11) 0.82 (0.58, 1.14)

C4orf33 rs2968990 0.18 0.35 0.37

TT 1 1 1

CC+CT 1.34 (0.88, 2.05) 1.23 (0.80, 1.89) 1.22 (0.79, 1.88)

Notes: the unconditional multivariable logistic regression models were adopted; aadjusted for child gender, feeding pattern in the 1-month old, weight gain
velocity from birth to 3-month old; badjusted for all variables of Model 2, including BMI_Z at birth, gestational weight gain. and parental BMI.
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Figure 1: The gene-gene classification and regression tree development of the 10 SNPs.
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in the analysis. As very few individuals had 4 or 5 risk geno-
types (6 cases and 11 controls with 4 risk genotypes; and 1
case and 3 controls with 5 risk genotypes), they were merged
with those harboring 3 risk genotypes to form the final sub-
group of 3-5 risk genotypes. As shown in Table 4, the risk of
OW/OB at 12-month old increased with the number of risk
genotypes individuals harbored. For ones with at least 3 risk
genotypes, the risk for OW/OB at 12-month old was 3.33
times higher than those without any risk genotype
(OR = 4:30, 95% CI = 2:07 − 8:96).

4. Discussion

Our study was among the first to evaluate the association
between genetic variances and OW/OB of 12-month-old
infants in a Chinese population. We found that risk alleles
of SEC16B rs543874, BDNF rs11030104, and NT5C2
rs11191580 were associated with OW/OB in Chinese infants
at the age of 12 months, and SEC16B rs543874 and
rs10913469, BDNF rs11030104, NT5C2 rs11191580, and
PTBP2 rs11165675 had a combined effect on OW/OB in
12-month-old Chinese infants.

SEC16B, a mammalian homolog of SEC16, plays a vital
role in forming coat protein II vesicles, which mediate protein
transport from the endoplasmic reticulum to the Golgi appa-
ratus [32]. It has been reported that obesity may be triggered
by the expression of SEC16B, which affects the synthesis and
transport of lipase, then inhibiting the decomposition of fat
[15]. Our results showed that SEC16B rs543874 was associated
with OW/OB in 12-month-old infants, consistent with a
recent report on children aged 5-13 years old in Northern
Mexican [33]. Furthermore, it has been reported that
rs543874 decreases the binding of SOX6, which was consid-
ered a transcription factor contributing to the developmental
origins of obesity by promoting adipogenesis [34]. Regarding
the association between SEC16B rs10913469 and OW/OB in
12-month-old infants, we did not find significant evidence
and previous studies also reported conflicting results. For
example, a study conducted by Xi et al. showed no association
between SEC16B rs10913469 and central obesity in 6–18-year-
old children in Beijing, China [35]; however, a meta-analysis
found that rs10913469 in SEC16B gene were significantly asso-
ciated with the risk of obesity [36]. The inconsistency may, in
part, indicate that the expression of genetic variants changes
across the life course [37].

BDNF is a neurotrophin that plays a fundamental role in
the development and plasticity of the central nervous system
[38] and was recognized as a major participant in the regu-
lation of food intake and satiety responsiveness [14, 39],
locomotor activity [40], and energy metabolism [41]. In
our study, a significant association was found between
BDNF rs11030104 and OW/OB in 12-month-old infants,
consistent with the results from a prospective cohort study
on four-year-old children [14]. However, we did not find a
significant impact of BDNF rs6265 on infants’ OW/OB at
12-month old. This result is inconsistent with that from a
study on school-aged children, where adolescents with
BDNF rs6265 GG had lower BMI_Z and postprandial glu-
cose levels than those with BDNF rs6265 GA/AA alleles
[42]. The differences of participants’ age and the exclusion
of underweight infants in our study might, to some extent,
explain the discrepancy of the results.

NT5C2 encodes a hydrolase that serves an essential role
in cellular purine metabolism by acting primarily on inosine
5'-monophosphate and other purine nucleotides [43]. This
study detected significant association between rs11191580
and OW/OB in 12-month-old Chinese infants. The impact
of NT5C2 rs11191580 polymorphism on infants’ obesity
may function through the region of linkage disequilibrium
of several genes (NT5C2, CYP17A1, and CNNM2). CYP17A1
gene expression alters the biosynthesis of steroid hormones,
which was reported to reduce adiposity in Japanese women
[44]. CNNM2 (ancient conserved domain protein, ACDP2)
is a transporter of magnesium, which is required for the cat-
alytic activity of numerous metalloenzymes [45]. Thus, those
genes may promote body fat changes by regulating body cell
synthesis.

The PTBP2 rs11165675 allele identified by GWAS in
European adults failed to confer susceptibility to obesity in
our study [9]. However, our results agreed with the findings
of GWAS from Felix et al. in European children [8]. The
protein encoded by PTBP2 binds to intronic polypyrimidine
clusters in pre-mRNA molecules and is implicated in con-
trolling the assembly of other splicing-regulatory proteins
[46]. However, the mechanism of PTBP2 regulating obesity
remains unrevealed.

ADCY9 plays a role in G protein-coupled receptors,
FAM120A participates in RNA binding, KCNQ1 is involved
in a potassium channel that plays an essential role in a num-
ber of tissues, and C4orf33 works on protein binding.

Table 3: Risk estimates of gene-gene interactions on OW/OB in 12-month-old infants.

Terminal node
(subtree group)

Genotype OR (95% CI) P

10 rs11030104 (AG/GG)- rs11191580 (CC/CT)- rs11165675 (GA/AA)- rs543874 (AA) 1

9 rs11030104 (AG/GG)- rs11191580 (CC/CT)- rs11165675 (GA/AA)- rs543874 (GG/GA) 1.96 (0.90, 4.26) 0.09

8 rs11030104 (AG/GG)- rs11191580 (CC/CT)- rs11165675 (GG) 2.78 (1.29, 5.98) <0.01
3 rs11030104 (AG/GG)- rs11191580 (TT) 2.74 (1.55, 4.85) <0.01
6 rs11030104 (AA)- rs10913469 (CC/CT) 5.31 (2.52, 11.20) <0.01
5 rs11030104 (AA)- rs10913469 (TT) 2.51 (1.33, 4.76) <0.01
Note: ORs of terminal nodes were calculated by unconditional multivariable logistic regression analysis, adjusting for child gender, BMI_Z at birth, feeding pattern
in the 1-month old, weight gain velocity from birth to 3-month old, gestational weight gain, and parental BMI. CART: the classification and regression tree.
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Although the common variances in ADCY9 rs2531995,
FAM120A rs7869969, KCNQ1 rs2237892, and C4orf33
rs2968990 were reported to be associated with childhood
or adulthood obesity in GWAS or meta-analysis studies [8,
9], we failed to identify any apparent association in 12-
month-old infants. This inconsistency might indicate that
the effects of variance in ADCY9 rs2531995, FAM120A
rs7869969, KCNQ1 rs2237892, and C4orf33 rs2968990 may
function differently across age and ethnics. Further investi-
gations are warranted to clarify our results.

It has been estimated that genetic factors contribute to
20-60% of interindividual variability in BMI [7] and more
than 100 genes were found to be related to obesity. However,
the heritability analysis of the obesity-related genes could
explain very little of BMI variation [9]. The potential mecha-
nism underlying this missing heritability might include the
complex interplay among genes [13]. In this study, cumulative
analysis of rs10913469 (effective allele: CC/CT), rs543874
(effective allele: GG/GA), rs11030104 (effective allele: AA),
rs11191580 (effective allele: TT), and rs11165675 (effective
allele: GG) showed a strong combined effect on OW/OB sus-
ceptibility in 12-month-old infants, demonstrating that genes
may interact each other to promote the pathogenesis or pro-
gression of OW/OB in infants.

Apart from the genetic effects, we also found that weight
gain velocity from birth to 3 months old had an impact on
OW/OB in 12-month-old infants (Table S3), which was
consistent with previous studies on weight gain velocity and
obesity [47, 48]. However, infant sex, first-month feeding
pattern, BMI_Z at birth, parental BMI, and gestational
weight gain showed insignificant association with OW/OB in
our study. Our previous cohort study found that maternal
prepregnancy obesity, excessive gestational weight gain, and
feeding pattern during the first 6 months of life were
correlated with rapid weight gain during infancy [49]. Thus,
based on our previous findings and the current results, we
hypothesize that compared to the influence of parental
factors, infant feeding pattern and BMI_Z at birth, and
infant weight gain velocity might have a more direct and
substantial impact on infant obesity.

To the best of our knowledge, this is the first try to
explore the genetic susceptibility of OW/OB on gene-gene
interaction networks in children at the early years of life.
In this study, we found three SNPs associated with OW/
OB in infancy, and genes could function interactively on

the development of obesity. However, there are several lim-
itations in our study. Firstly, as the study participants are
one-year-old infants, the obesity rate was low. Therefore,
we used the BMI percentiles for overweight and obesity clas-
sification and merged overweight and obesity to reach a
comparable rate of obesity between cases and controls.
Moreover, the classification of feeding patterns in our study
was based on the first-month breastfeeding situation. As
most children had complementary feeding practice after six
months of age, the feeding frequency and quantity could
be considered. In our study, we considered if there was
breastfeeding at six and 12 months old with no significant
difference between the case and control groups (data not
shown) but did not include the time, frequency, and quan-
tity of complementary food introduction, which made it
one of the limitations in our study. More research in a large,
diverse population is needed to clarify our findings and
explore the underneath mechanisms of the connections.

5. Conclusions

In summary, using the data from the prospective birth
cohort, we demonstrated for the first time that SEC16B
rs574367 and rs543874, BDNF rs11030104 and NT5C2
rs11191580 had an independent effect on infants’ OW/OB
in 12-month-old Chinese infants; the gene-gene interaction
effects of them (adding PTBP2 rs11165675) were also
detected, together with a substantial cumulative effect. More
studies are needed to confirm our findings in different pop-
ulation and to explore the mechanisms of the interactive and
cumulative effects between genes.
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