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Presently, with the introduction of nanotechnology, the evolutions and applications of biosensors and/or nanobiosensors are
becoming prevalent in various scientific domains such as environmental and agricultural sciences as well as biomedical,
clinical, and healthcare sciences. Trends in these aspects have led to the discovery of various biosensors/nanobiosensors with
their tremendous benefits to mankind. The characteristics of the various biosensors/nanobiosensors are primarily based on the
nature of nanomaterials/nanoparticles employed in the sensing mechanisms. In the last few years, the identification, as well as
the detection of biological markers linked with any form of diseases (communicable or noncommunicable), has been
accomplished by several sensing procedures using nanotechnology vis-à-vis biosensors/nanobiosensors. Hence, this study
employs a systematic approach in reviewing some contemporary developed exceedingly sensitive nanobiosensors alongside
their biomedical, clinical, or/and healthcare applications as well as their potentialities, specifically for the detection of some
deadly diseases drawn from some of the recent publications. Ways forward in the form of future trends that will advance
creative innovations of the potentialities of nanobiosensors for biomedical, clinical, or/and healthcare applications particularly
for disease diagnosis are also highlighted.
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1. Introduction

The detecting of any disease (known as diagnosis in the
medical terms) be it communicable (which result in about
4 million deaths annually around the world) or noncom-
municable (causing over 70.00% of all deaths globally) is
one of the dominant aspects toward the improvement of
the efficiency of any biomedical/clinical/healthcare process
[1–4]. According to the World Health Organization
(WHO), the basic human diseases and infections are iden-
tified with the deficiency in access to good food and clean
drinking water; explicitly, the utilization of hazardous
water mostly from industrial activities represents about
80.00% of most diseases [5–7]. Hence, there is a need to
continually search for diagnostic remedies to these dis-
eases. Reportedly, the two basic prognoses in biomedical/
clinical/healthcare diagnosis are the confirmation of the
disease and the investigation of the vulnerability of an
individual’s as an age-linked category for several diseases.
As rightly reported by the WHO, approximately 17.00%
of every six deaths resulting from cancerous complications
as well as other deadly diseases are caused by the late-
phase detection and remote biomedical/clinical/healthcare
diagnosis [8].

The treatment and convalescence for any kind of disease
primarily depend on its early-phase detention as well as the
effectiveness of the diagnosis processes [8, 9]. Microscopic
procedures, immunosorbent approaches, and immunofluo-
rescence (FRS) though demonstrated to be clinically critical
in dealing with various diseases. However, they tend to
exhibit certain limitations such as truncated sensitivity,
stumpy-specificity, inaccuracy, expensiveness, and their
cumbersome nature [10]. To mitigate these shortcomings,
rapid, biocompatible, effective, and excellent throughput
analytical procedures are now the evolving biomedical/clin-
ical/healthcare necessities.

Historically, the development of nanoparticles (NPs)
commenced with the work of Ehrlich before the initial trials
by Scheffel et al. as well as the all-embracing research work
by some group of senior researchers led by Prof. Speiser at
the ETH Zurich toward the end of the 1960s and beginning
of the 1970s, with significant devotion to its development in
the 1980s, particularly for medical purposes such as the
delivery of drug voyage the blood-brain barrier (3Bs) [11,
12]. Presently, there are several reported categories of NPs,
of which their magnitude (that is size and shape), as well
as their origin to a large extent, is instrumental to determin-
ing their applications. Some of the commonest categories of
NPs are shown in Figure 1 with particular reference to the
ones used for biomedical purposes as represented in litera-
ture [12].

Supposedly, NPs are utilized as a means for delivering
loaded constituents via two basic mechanisms: encapsula-
tion (employing lipid-based/polymer-based capsules) and
polymer-based components (employing natural/synthetic
polymers) [12]. Generally, NPs have numerous benefits as
compared to the conventional measures in the diagnostics/
therapeutics fields. According to Jurj et al. [13], they are
habitually harmless and biocompatible and can cross the

3Bs as well as other physiological constricts that serve as bar-
riers [14]. Also, they could efficiently destroy intracellular
and multiple drug-resistant pathogens [15], and they offer
new procedures for the development of vaccines and gene
treatments/rehabilitation (therapy) [16, 17].

Presently, biosensors (BioSS) are very significant for
sensing target particles with great precision, selectivity,
and signal-to-noise proportion. BioSS which are techno-
logically advanced using BMs such as enzymes or nucleic
acids (DNA/RNA) which are employed as the probes for
sensing the target particles are presently been given great
attention by several researchers owing to their numerous
dynamic advantages. Enzymes that react with definite par-
ticles rapidly and selectively as well as the DNA/RNA can
combine with their corresponding categorizations precisely
in nanoscale [18]. Also, biomolecules (BMs) could immo-
bilize and conjugate with other particles by modifying
the surface via the relocation or introduction of chemical
linkers [19, 20].

Recently, the identification, as well as the detection of
biomarker (BioMK) linked with any form of diseases, has
been attained by several sensing procedures using nanotech-
nology (NanoTech) [21]. Some of these procedures com-
prise of electrodes with high conductivity that could
identify or trace electron (particle) dynamic BMs or NPs,
which are present in the body specifically for disease situa-
tions and for the generation of resilient signals [19]; all these
stated characteristics are notable in sensing mechanism
known as BioSS. These BioSS are generally characterized
based on either the biological constituents (elements)/the
category of the receptor that includes enzymes, cells and cell
organelles, antibody (AB), or/and affinity receptors (DNA/
RNA probes) and artificial (nonnatural) receptors or on
the transducing constituents such as acoustic, calorimetric,
electrochemical (ETC), and optical tendencies. BioSS can
be characterized by the utilized transduction sensing proce-
dure during its fabrication. The commonest categories and
subcategories of BioSS are shown in Figure 2 [8]. However,
Figure 3 shows a block pattern of a practical BioSS designed
for the detention of diseases, and Figure 4 shows a distinctive
diagram of an ETC BioSS.

Consequently, the implementation of BioSS is a benefi-
cial approach for the protuberant detection of biological
markers. Furthermore, the recent advancements in BioSS
mechanism vis-à-vis nanobiosensor (NanoBioSS) have
resulted in evolutionary modifications in various research
fields, namely, agricultural, environmental, and biomedical/
clinical/healthcare sciences as well as several other domains
of human endeavours [22–28].

Most of the preeminent applications of BioSS/Nano-
BioSS are found in the diverse manufacturing segments of
which the biomedical/clinical/healthcare services are the pri-
mary ones [29, 30]. Figure 5 explores some of the utmost
distinctive applications and proficiencies of NanoTech vis-
à-vis BioSS/NanoBioSS that fall within the canopy of the
biomedical/clinical/healthcare services as well as the allied
services; the figure is a summary of NanoTech utilized for
some of the utmost biomedical purposes such as diagnostic,
therapeutics, and immunization [12].
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The detection of diseases, retinal prostheses, cellular
miRNA appearance in colorectal cancerous complications,
imaging of contrast during MRIs, diagnosis of the heart,
medicinal mycology, and the monitoring of health are the
main momentous physiognomies or largely characterized
areas well served with BioSS/NanoBioSS benefits [31–33].
These all-encompassing applications and proficiencies addi-
tionally improve the biomedical/clinical/healthcare services
to an innovative pinnacle together with exceptional societal
services [34–36].

Diverse irresistible diseases and infections spread such
as Ebola, SARS, Hendra, Nipah, Avian influenza, and
COVID-19 (SARS-CoV-2) have turned into a global threat
that needs extensive exertion in their proliferation to man-
age. As there are diverse complications related to these
irresistible diseases’ infections, more advance diagnostic
mechanisms need to be developed for mitigation and/or
eliminating the odds of infection outbreak beforehand.
BioSS/NanoBioSS has stood out as one of the appealing
mechanisms for giving influential statistics on these
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Figure 1: Diagrammatic illustration showing some of the commonest categories of NPs used for biomedical purposes [12].
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diseases and infections. The recent SARS-CoV-2 plague
(pandemic), which is extremely infectious, originated from
a recently known coronavirus that has adversely
obstructed humanity [37]. There have been some reported
research studies on the application of BioSS/NanoBioSS in
mitigating this dreaded virus [35, 38–41]. In the same way,
innumerable other communicable and noncommunicable
diseases such as Avian influenza, Ebola, Hendra, Nipah,
and SARS have spawned substantial interest in recent
times. Consequently, BioSS/NanoBioSS have enormous
potential and proficiencies in detecting the outbreak of
deadly virus together with any other diseases. Another
great proficiency of the BioSS/NanoBioSS is in the diagno-
sis of the heart. Cardiovascular diseases are known as one
of the utmost sources of death around the world, resulting
in the death of over 17 million annually [2]. BioSS/Nano-
BioSS using BioMK is playing a critical role in the insur-
gency of diagnostic cardiovascular illnesses. The design
and evolution of exceedingly sensitive and specific BioSS/
NanoBioSS utilizing appropriate surface interactions and
nanomaterials (NMs) are crucial for the specific diagnosis
of heart illnesses [31–33, 42, 43].

Over the years, several categories and subcategories of
BioSS/NanoBioSS have been developed with vast applica-
tions (see Figure 2 for some of the main categories and
subcategories of BioSS/NanoBioSS). Notwithstanding the
effectiveness of most BioSS, there are still some reported
limitations such as meagre selectivity, the influence of
the charged constituent parts (particles) mostly in the
form of interference, deficiency in the surface designs,
and vulnerability to some environmental (ecological)
interference [19, 44–46]. But with the evolutions of Nano-
Tech (whose main concept deals with the execution of
BMs or NPs, with an operational dimension of below

100 nm, in handling materials at the microscopic level
[47]), some of these reported limitations are now been
effectively moderated. According to [19], some of these
critical limitations of BioSS are a result of variability and
truncated signal strength resulting from the detector
BMs. Henceforward, functional NMs assist in the mitiga-
tion of these limitations of BMs through the hybridization
with or substitution of the BMs. Consequently, these func-
tional NMs are beneficial for developing and evolving of
the BioSS/NanoBioSS together with the increase of ETC
signals, preservation of the actions of BMs for a lengthy
duration, and advancement of investigating devices by
the utilization of its distinctive plasmonic and optical pos-
sessions. Hitherto, numerous NMs have been produced
and reported, ranging from broadly used Au NPs to innova-
tive NMs that are either carbon-grounded or transition-
metal dichalcogenide-grounded. These NMs were exploited
either by themselves or through the hybridization (mixture)
with other NMs for the development of highly sensitive
BioSS/NanoBioSS [19]. Figure 6 shows some of the notable
historical background and advancements of some of the
reported developments for BioSS/NanoBioSS mechanisms
as adapted from [8].
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Figure 3: A block pattern of a practical BioSS for the detention of diseases [8].
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Reportedly, the performance of any BioSS/NanoBioSS
is exceptional owing to their remarkable linearity, selectiv-
ity, sensitivity, and stability tendencies coupled with their
outstanding response time and reproducibility as against
the traditional BioSS. This evolving method is censoriously
beneficial in the biomedical/clinical/healthcare domain as
well as in clinical diagnosis. Hence, this study employs a
systematic approach in reviewing some contemporary devel-
oped NanoBioSS together with their biomedical/clinical/
healthcare applications and potentialities, specifically for
the detection of some deadly diseases drawn from some of
the recent publications. The study concludes by suggesting
the way forward in the form of future trends that will advance
creative innovations of the potentialities of nanobiosensors
for biomedical, clinical, or/and healthcare applications par-
ticularly for disease diagnosis.

2. NanoTech in BioSS/NanoBioSS Mechanisms

BioSS/NanoBioSS are analytical devices that possess a bio-
logical sensor in addition to a physicochemical converter
[22, 23, 28]. One of the major functions of any BioSS/
NanoBioSS is to provide an incessant digital electrical sig-
nal that is comparative proportional to the summation of
one or more ingredients that are being analysed [22].

BioSS/NanoBioSS are aiding some of the key advances
in the analytics domains that are both assisting and being
assisted by advances in NanoTech, implying that they rep-
resent both facilitating machinery and evolving applica-
tions in diverse fields. The capability of these BioSS/
NanoBioSS to swiftly and precisely detect a substantial
amount of NMs makes them vastly pertinent to a range
of industrial, agricultural, ecological, and biomedical/clini-
cal/healthcare as well as other scientific applications. Proce-

dures to BioSS/NanoBioSS design/fabrication are as diverse
as their applications, of which each of these BioSS/Nano-
BioSS categories has advantages and restrictions in the form
of limitations based on the anticipated application, as well
as the parameters that are essential for their optimum perfor-
mance [23]. Hence, to be specific, the choice of BioSS/Nano-
BioSS design/fabrication should ruminate factors, for
example, the sensitivity, specificity, dynamic range, output
mode, activation time, usage simplicity, and engineering
simplicity.

At the moment, BioSS/NanoBioSS are used in several
aspects of human endeavours such as diagnosing different
diseases and monitoring and management of the quality
food and environmental effluences [8, 25, 28, 48, 49]. The
surface dimension ratio of most frequently used NMs in
BioSS/NanoBioSS such as noble metal NPs, quantum dot
(QD), carbon-based NMs, and other NMs is larger when
compared to the bulk arrangement of the material and this
makes their properties (chemical, electrical, and optical)
different and better enhanced [50]. These enhanced proper-
ties of NMs offer quicker detection and advanced reproduc-
ibility in NanoBioSS. Hence, NMs provide enhanced
efficiency BioSS/NanoBioSS by improving the properties
(ETC, mechanical and magnetic, and optical) of BioSS/
NanoBioSS [51]. The fact that BioSS are more sensitive
and compact today is achieved by including NMs in these
bioanalytical devices.

For example, an innovative 3rd-generation glucose BioSS
based on distinctive hollow PtNPs decorated with multi-
walled CN (PtNPs-NT) composites was effectively fabricated.
The PtNPs-NT composites were effectively arranged and
directly cast on the glassy carbon electrode (GCE) surface.
With the aid of electrostatic adsorption and covalent bond-
ing, the negative (-) l-cysteine (l-cys) and the positive (+)
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Figure 5: Some of the utmost applications of NPs for biomedical purposes [12].
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poly (diallyl dimethylammonium) chloride- (PDDA-)
coated gold (Au) NPs were improved on the ensuing sur-
face of the electrode, which brought additional immobiliza-
tion of glucose oxidase. Manipulation of the distinctive
possessions of PtNPs-NT composites resulting in the
accomplishment of direct transfer of electron among the
electrode and the redox-active centres of glucose oxidase
and the electrode demonstrated a couple of distinct revers-
ible redox peaks with a fast heterogeneous rate of transfer
of electrons [52] The images of the TEM representing a
solid composite of Pt-supported multiwalled CN and the
hollow composite of Pt-supported multiwalled CN are
shown in Figure 7 [52].

It is proven that CN has the prospective properties to
transform several uses and benefits where nanosized metallic
and/or semiconducting mechanisms are necessary [53]. For
example, glucose BioSS combined with CN has been deco-
rated with Au-coated Pd nanotubes [54], Au NPs [55], and
Pt NMs [56]. Predominantly, Pt NMs with hollow interiors
are auspicious due to their proficiencies to boost electron
conveyance and upsurge the surface area. Spreading the
surface area of the cathode powder is an active procedure
for raising the activity of an electrode [57]. A BioSS on which
the multiwalled CN coated with distinctive hollow nano-
structure (NS) Pt has led to the accomplishment of direct
transfer of electrons (Figure 8) [9].
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Several papers have reported on the uses of NanoTech vis-
à-vis BioSS/NanoBioSS for biomedical/clinical/healthcare
applications (such as identifying of viruses and pathogen
microbes, detecting of cancerous cells, and breath analysis
mechanism) [27, 58], environmental applications (detection
of air, soil, and water pollution) [59–61], and agricultural
applications (climate-smart organic agriculture and identifica-
tion of animals and plants pests and diseases) [25, 48, 62–64].
There have also been suggestions onmodern materials science
vis-à-vis NanoTech been employed in COVID-19-related
researches, as this has evidently played a dynamic role in mit-
igating and combating the present deadly COVID-19 compli-

cations via environmental remediation [37]. For example,
Figure 9, as adapted from [65], illustrates the basic compo-
nents, the various routes of transmission, and the duplication
cycles of COVID-19 together with the utility of modern mate-
rials science in mitigating and combating the COVID-19 pan-
demic complications.

However, the major concentration of this facile review
study is on the biomedical/clinical/healthcare applications
of NanoTech vis-à-vis BioSS/NanoBioSS particularly for
the detection of some deadly diseases drawn from some of
the recent publications and this is being done in the subse-
quent section.

50 nm

(a)

50 nm

(b)

Figure 7: Images of TEM representing (a) a solid composite of Pt-supported multiwalled CN and (b) hollow composite of Pt-supported
multiwalled CN [52].
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3. BioSS/NanoBioSS for the Detention and
Treatment of Diseases

Even with the advancements in scientific knowledge,
humanity is still fronted with some challenges ensuing from
both communicable and noncommunicable diseases. As
stated in Introduction, the prevention and early-phase
detention as well as the effectiveness of the diagnosis and
treatment processes are the most appropriate means for
the survival and spread of such diseases. Hence, several
innovative approaches such as the use of BioSS/NanoBioSS
for the detention and treatment of diseases have continued
to assist in this regard [8, 9, 51, 66–68].

According to several reports, presently, NanoTech innova-
tions are felt in almost every scientific domain (such as biol-
ogy, chemistry, computer science, environmental science,
materials science, mathematics, physics, and engineering)
and all the ensuing benefits (BioSS/NanoBioSS) are making
life easier [47, 69–73]. Remarkably, in the last few years, Nano-
Tech has been utilized in the monitoring and management of
human health with auspicious results, specifically in the aspect
of the treatment of cancerous complications [47, 74].

Table 1 and Table 2 encompass a summary of some
studies involving the applications of BioSS/NanoBioSS for
the detection of some of the most incapacitating diseases
(Table 1 encompasses noncommunicable diseases, while
Table 2 encompasses communicable diseases) drawn from
some recent publications as adopted and modified from
the broad and recent review publication work of [8].

However, the limit of detection (LoD) on this reported
NanoBioSS varies and depends on some factors such as the
utilized BioMK, the nature of the disease, the procedure
employed in the BioSS mechanism, and the used BMs or
NPs. Consequently, BioSS/NanoBioSS are predominantly
characterized based on the nature of the NMs employed in
the sensing mechanisms [19, 23, 26]. At the moment, there
are, however, few reported commercialized BioSS for bio-
medical/clinical/healthcare applications; some of these are
contained in Table 3 as adopted and modified from the
broad review work of [8].

It was observed from Tables 1, 2, and 3 that the devel-
opment of BioSS/NanoBioSS for medical purposes vis-à-vis
disease detention is a contemporary dynamic aspect of
modern material science (NanoTech). According to a
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Table 1: Summary of some reported studies on BioSS/NanoBSS for the detection of some noncommunicable diseases.

BioMK Diseases Procedure NPs used LoD Reference

Cancerous complications

miRNA-182 Cancer of the lung ETC
Molybdenum disulfide (MoS2)/Ti3C2

nanohybrids and modified GCE
0.43 fM [75]

miR-106a and let-7a Gastric cancer ETC

AuNP and cadmium selenide (CdSe)
@ cadmium sulphide (CdS) QTD-
contained magnetic NCs (NCs)

polythiophene/reduced graphene (GP)
oxide-modified GCE

0.02 fM for let-7a
and 0.06 fM for

miR-106a
[76]

CXCL5
Colorectal cancerous

cells CXCL5

ETC impedance
spectroscopy
(EIS) and

voltammetry
(VTM)

Chemokine receptor 2 (CXCR2)
attached to conducting
polymer-AuNP film

0:078 ± 0:004 ng/mL [77]

miR-199a-5p
Triple-negative
breast cancer

(TNBC)
ETC

GCE with GP oxide (GPO) and Au
nanorod

4.50 fM [78]

HER-2 Breast cancer ETC
AuNP grafted functionalized GP and

NS polyaniline (PANI)
2 cells mL−1 [79]

miR-155 Breast cancer ETC GPO and Au nanorod 0.60 fM [80]

BRCA1 Breast cancer Cyclic VTM

ssDNA probe (BRCA1)/PANHS
(polycyclic aromatic nitrogen
heterocycles)/multiwalled

CN/GCE

3:00 × 10−18 mol L−1 [81]

MUC1
Human non-small-
cell lung cancerous

cells

Amperometric
(APM)

MUC1 aptamer probe and benzoic
acid (TTBA) on AuNPs

8 cells/mL [82]

MAGE A2 Lung cancer ETC Graphite/CN-chitosan/Ag (silver)/AB 5.00 fgmL−1 [83]

CpG islands of
adenomatous
polyposis coli (APC)

Colorectal cancer FRS
Ferrosoferric oxide (Fe3O4)/Au core/

shell NPs
3:10 × 10−16 M [84]

Metabolic diseases

Uric acid (UA)

Neuropapillitis,
neurodegenerative
diseases, sclerosis,

and aplastic anaemia

ETC
Au/cobalt (Co) bimetallic NPs

decorated hollow nanoporous carbon
framework (Au/Co@HNCF)

0.023μM [85]

Glucose Diabetes (DBT) ETC
Copper (Cu)-nanoflower decorated

AuNPs-GO nanofiber (NF)
0.018μM [86]

Vaspin Type-2 DBT FRS Upconverting NPs (UC NPs) 39.00 pgmL−1 [87]

Ascorbic acid (AA),
dopamine (DA), uric
acid (UA), and
acetaminophen (AC)

Scurvy,
neurodisorders

ETC
Cerium oxide (CeO2) NPs-decorated

CN

3.10 nM for AA,
2.60 nM for DA,
2.40 nM for UA,

and 4.40 nM for AC

[88]

Vitamin D3
Rickets and

cardiovascular
diseases (CD)

ETC
Cu NPs-nickel NPs at reduced

fullerene-C60 on GCE
0.0025μM [89]

Leptin
Nonalcoholic fatty
liver (NAFLD)

ETC

Bovine serum albumin (BSA)/anti-
leptin/glutaraldehyde (Glu)/

cysteamine (Cys)/AuNPs/porous
GP (PGP)-BP (black phosphorus)/
GCE immunosensor (IMSS) was

employed

0.036 pg/mL [90]
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recent review study by [26], the advancements of BioSS/
NanoBioSS are fast attaining remarkable attention in the
biomedical/clinical/healthcare fields due to their wide-
ranging applications. BioSS/NanoBioSS are presently been
efficaciously employed for detecting and diagnosing, treat-
ment of diseases, as well as in the monitoring and man-
agement of human health [26, 95, 154–158]. Hence,
there should be incessant advances in the development of
materials (NMs to be specific) for the fabrication of
BioSS/NanoBioSS.

4. Conclusion and Prospects of BioSS/
NanoBioSS for the Detention of Diseases

In the recent past, the evolution of BioSS/NanoBioSS has
remained as one of the dynamic areas of modern material
science research (NanoTech) as attested by the large num-
bers of research publications. In the meantime, BioSS/Nano-
BioSS for detecting of diseases has stimulated a great deal of
attention. The recent biomedical/clinical/healthcare applica-
tions (such as diagnostic, therapeutics, and immunization)

Table 1: Continued.

BioMK Diseases Procedure NPs used LoD Reference

Glucose DBT ETC
Carbon quantum dot (CQD)/Au NPs
and glucose oxidase (GOx) enzymes

17.00μM [91]

3-Hydroxybutyrate
(3-HB)

Hyperketonemia
and diabetic

ketoacidosis (DKA)
APM

Immobilization of the enzymes 3-
hydroxybutyrate dehydrogenase onto a
screen-printed GCE modified with

GPO and thionine (THI)

1.00μM [92]

Glucose DBT APM
Glucose oxidase immobilized on

GPO-Fe3O4
0.10μM [93]

Creatinine
Protracted kidney
infection, CD, and

type 2 DBT
APM

Immobilization of NPs of creatininase,
creatinase, and sarcosine oxidase onto

GCE
0.01μM [94]

Neurological diseases

Survival motor
neuron (SMN)
protein

Spinal muscular
atrophy

VTM
Carbon NF-modified screen-printed

electrodes
0.75 pg/mL [95]

miR-195 Parkinson’s disease ETC
Exfoliated GPO and AuNWs were
employed to amend the surface of

screen-printed GCE
2.90 fM [96]

APOe4
Alzheimer disease

(AD)
FRS and ETC

Curcumin-GP QD platform coated on
the transparent indium-tin-oxide

electrode
0.48 pgmL-1 [97]

Amyloid-β AD FRS Sheet-like structures of GP QD
Dependent on the
FRS intensity

[98]

miR-145 Multiple sclerosis FRS
Ag nanoclusters and hairpin
oligonucleotide probes, MB1

and MB2
0.10 nM [99]

α-1 Antitrypsin AD VTM
CN and Ag NPs functionalized with
alkaline phosphatase-labeled AB

0.01 pmol L-1 [100]

Acetylcholine AD VTM
Extremely permeable Au electrode

functionalized with
acetylcholinesterase (AChE)

10.00μmol L-1 [101]

Amyloid-β AD ETC Screen-printed GCE 0.10 ng/mL [102]

Neonatal diseases

C-reactive protein
(CRP)

Sepsis ETC

Magnetic reduced GPO/Ni (nickel)/
platinum (Pt) NP micromotor

biofunctionalization on the outer layer
(using carbon black (CB), reduced

GPO, multiwalled CN, and anti-CRP)

0.80μg/mL [103]

Thyroid-stimulating
hormone (TSH)

Thyroid
dysfunctioning

ETC
Screen-printed GCE, anti-TSH AB,

and amino-coated Ag NPs
0.001μIU/mL [104]

Bilirubin (BR) Jaundice VTM
Reduced GPO oxide-poly styrene
sulfonate (PSS) coated upon GCE

2.00μM [105]
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Table 2: Summary of some reported studies on BioSS/NanoBioSS for the detection of some communicable diseases.

BioMK Diseases Procedure NPs used LoD Reference

Viral diseases

Antibodies against
COVID-19

COVID-19
Multiplexed grating-

coupled FRS plasmonics
Au-coated
nanoscale

1 : 1600 dilution [106]

Dengue viral RNA Dengue virus ETC monitoring
Methylene blue
conjugated
AuNPs

100.00 fM [107]

S spike
glycoproteins

SARS-CoV-2 ETC monitoring
GPO and Au
nanostars

1:68 × 10−22 μgmL−1 [108]

Peptide DNA/RNA
Influenza A viruses (H1

to H16 subtypes)
Visual colorimetric assay

(CMA)
Au NPs 2.30 ng [109]

DENV proteins Dengue viral disease
ELISA-plate

spectrophotometers
Au nanorods 1.00 pg [110]

COVID-19 spike
protein

COVID-19 FET-based BioSS GP sheets 2:42 × 102 copies/mL [111]

Complementary
sequences of RdRp-
COVID-19,
ORF1ab-COVID-
19, and E genes of
COVID-19

COVID-19
PPT effect and LSPR
sensing transduction

Dual-
dimensional

Au nanoislands
(AuNIs)

0.22 pM [112]

HBV DNA Hepatitis B
ETC impedance spectra

(EIS)

Tin-doped
WO3/In2O3
nanowires

0.10 pM to 10.00μM [113]

Virus DNA/RNA
Narrowly related Zika
and dengue viruses

Fluorometric detection GPO 2:10 × 101 − 5:1 × 102 FFU/mL [114]

Dengue viral DNA Dengue viral disease
Sandwich hybridization

strategy of DNAs
AuNPs 1:00 × 10−29 M [111]

Sialyl
oligosaccharide
receptor-mimic
peptide

Influenza A virus
Optimized peptide

termination

Boron-doped
diamond
electrode

5.00–10.00 pfu/sample [115]

HCVcoreAg Hepatitis C
Modification of buffer pH
from acidic to neutral

Silicon-on-
insulator (SOI)

nanowire
0.30 pg/mL [116]

Concanavalin A
lectin

Dengue type 2, Zika,
chikungunya, and yellow

fever

Cyclic VTM and
impedance spectroscopy

Zinc oxide NPs

0.0421 pfu/mL for ZIKV,
0.0437 pfu/mL for YFV,

0.062 pfu/mL for CHIKV, and
0.0382 pfu/mL for DENV

[117]

L-lysine levels HIV APM BioSS
L-lysine oxidase
(LOx NPs) and

GPO NPs
0.01μM [113]

Nonspecific
proteins

MERS-CoV and HCoV Electrochemiluminescence Au NPs
0.40 and 1.00 pgmL−1 for
HCoV and MERS-CoV,

respectively
[118]

Hepatitis B virus
gene

Hepatitis B ETC monitoring
AMT-Au NPs-

PGEs
0.86μg/mL [119]

Viral DNA HPV-18 FRS assay
Ti3C2

nanosheets
100.00 pM [120]

HIV-1 gene AIDS
Electrochemiluminescence

NanoBioSS

Europium
sulfide

nanocrystals
(EsNCs)

3.00 fM to 0.30 nM [121]
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Table 2: Continued.

BioMK Diseases Procedure NPs used LoD Reference

Envelop protein AB
(Zev-Abs)

Zika virus ETC IMSS

Interdigitated
microelectrode

of Au
(IDE-Au)

10.00 pM [122]

Virus
oligonucleotide

MERS-CoV CMA
Citrate anion-
stabilized
AgNPs

1.53 nM

[123]
Virus
oligonucleotide

Human papillomavirus CMA
Citrate anion-
stabilized Ag

NPs
1.03 nM

Surface receptor Influenza A Chromatographic assay Carbon NPs
350 TCID50/mL (i.e., the 50%
tissue culture infectious dose)

[124]

JEV via recognition
cavities

Japanese encephalitis
virus

FRS detection
Magnetic
silicon

microspheres
2.50–45.00 nM [125]

Influenza A (H1N1) and
A (H3N2)

Paper-based immunoassay
(IMA)

Au NPs
2:70 × 103 – 2:70 × 104

plaque-forming unit per assay
[126]

AB specific to
influenza virus

Influenza A (H7N9) ETC sensor
GPO,

multiwalled
CN

0.81 pg/mL [127]

AB specific to viral
infection

Influenza A and B IMA Europium NPs
1:00 × 101 to 1:00 × 103 EID 50/

mL
[128]

Specific mouse α-A
NP mAbs

Influenza A (H1N1) FRS IMA
Magnetic NPs
(MnFe2O4)

0.007 HAU [129]

Influenza A (H3N2) FET BioSS
Silicon

nanowire,
magnetic NPs

29 viruses/μL [130]

DNA-based
detection

Influenza A (H5N1)
DNA-based microarray
assay (scanometric

detection)

AuNPs with Ag
staining
technique

1:00 × 102 fM per assay (PCR
fragments)

1:00 × 103 TCID50 per assay
(viral RNA)

[131]

Bacterial diseases

Bacterial target
DNA

S. aureus

Targeted DNA was
quantified in

spectrophotometry at
260 nm; the sensitivity of
this method was studied
with PCR and gel agarose

electrophoresis

MNP-TiO2-
AP-SMCC

230.00CFU/mL [132]

Electrostatic
interaction of cell
wall and
concomitant
inhibition of
peroxidase activity
of CS-MNPs

Gram-negative
Escherichia coli or the

Gram-positive
Staphylococcus aureus

CMA

Chitosan-
coated iron

oxide magnetic
NPs (CS-M

NPs)

1:00 × 104 CFU/mL by the
naked eye and 1:00 × 102 CFU/

mL by spectrophotometry
within 10min

[133]

Anti-E. coli O157
AB

E. coli O157
Cyclic VTM and ETC
impedance spectroscopy

Au NPs 15.00CFU/mL [134]

Anti-E. coli AB E. coli Chemiresistive BioSS Au NPs 12.00CFU/mL [135]

Biofilm
Staphylococcus
epidermidis

ETC sensing
Magnesium
zinc oxide
(MZO) NS

A drain current change of ~80%
after ~200min of S. epidermidis

bacteria culturing
[136]
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Table 2: Continued.

BioMK Diseases Procedure NPs used LoD Reference

Bacterial peptides
Listeria monocytogenes
and Staphylococcus

aureus
ETC BioSS Au NPs

3.00 CFU/mL for
Staphylococcus aureus and
9.00CFU/mL for Listeria

monocytogenes

[137]

Bacteria’s target
DNA

Foodborne bacteria
including Escherichia coli

O157:H7, Vibrio
parahaemolyticus,

Salmonella,
Staphylococcus aureus,
Listeria monocytogenes,

Shigella, etc.

Amplified microcantilever
array BioSS

Au NPs 0.005–0.040 fM or 1–9 cells/mL [138]

Receptor-binding
protein of bacteria

Escherichia coli,
Pseudomonas

aeruginosa, and Vibrio
cholerae

CMA Au NPs ∼100 cells [139]

Mycobacterium
tuberculosis
oligonucleotide

Mycobacterium
tuberculosis (MTB)

CMA
Citrate anion-
stabilized (Ag

NPs)
1.27 nM [123]

Fungal diseases

Fungal spores Aspergillus niger CMA
Peptide-

modified Au
NPs

50 spores [140]

Concanavalin A
(ConA) and wheat
germ agglutinin
(WGA) lectins

Candida spp. Impedimetric BioSS
Lectin-

modified Au
NPs

1:00 × 102 – 1:00 × 106 CFU/mL [141]

Protein BioMK
Aspergillus fumigatus

allergen Asp f 1
CMA

Magneto-BioSS
biochip

~100.00 pg/mL [142]

Parasitic diseases

AB as receptor Malaria ETC BioSS
Platinum NPs

(Pt NPs)
8.00 ng/mL [143]

pLDH Malaria
EIS: ETC impedance

spectroscopy
GCE 0.50 fM [144]

β-Hematin P. berghei, P. falciparum ETC NS Au-CuO
3.60–4.80mM
0.65–1.35mM

[145]

Bilharzia AB Bilharzia disease ETC NanoBioSS
Nanostrip with
immobilized
Au NPs

8:39 × 10–2 ng/mL [146]

Table 3: Some reported commercialized BioSS/NanoBioSS for biomedical/clinical/healthcare applications.

Target analyte Linked disorder Type of BioSS/NanoBioSS Reference

Glucose DBT
Enzymatic-ETC NanoBioSS, lateral flow (LF) immunochromatographic

(ICM) assays reverse iontophoresis
[147]

Human chorionic
gonadotropin (hCG)

Gestation, fertility,
and ovulation

LF ICM assay, FRS-labeled AB assay [148]

Streptococci spp.
Diseases of the throat

or skin
LF ICM assay, FRS-labeled AB assay

[149,
150]

Mycobacterium
tuberculosis

Tuberculosis LF ICM assay, FRS-labeled AB assay [151]

Alpha-fetoprotein (AFP)
Cancerous

complications
LF ICM assay, ETC [152]

Bacillus anthracis Anthrax Standard LF assay, FRS-labeled AB assay [153]
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of BioSS/NanoBioSS mechanism via the development of
NanoTech present an encouraging procedure for the effective
and precise detection of protein BioMK allied with various
diseases. Be that as it may, this recent review study presents
a facile review of some of the reported biomedical/clinical/
healthcare applications and potentialities of NanoBioSS par-
ticularly for some deadly diseases, emphasizing some of the
potential BioMK that could detect such diseases. As observed
from most reported research publications, there are limited
approaches that are concentrating in the direction for
decreasing sample volumes or the duration of the analysis.

Consequently, there is still a great deal of work that
needs to be carried out before NanoBioSS will be broadly
employed in biomedical/clinical/healthcare laboratories as
a replacement for just research laboratory purposes alone.
A vibrant direction of imminent research is still in the aspect
of molecular diagnostics for the accomplishment of
advanced permanence and sensitivity. In the interim, diag-
nostic validation by processing an advanced quantity of
biomedical/clinical/healthcare samples coming from persons
infected with various diseases is required. Also, some com-
ponents such as the nature of the protein, enzyme antigen,
or/and other BMs, in addition to the concerned immobiliza-
tion, should be considered. It is also suggested that the com-
mercial approach to NanoBioSS from these useful reported
researches should be one of the strategic aspects that require
appropriate attention especially with funding and manpower
in imminent research. Nevertheless, to exclusively achieve
the biomedical/clinical/healthcare potentialities of Nano-
BioSS, additional and more researches should be executed
and NanoBioSS could be pertinent in a complex matrix
and extreme settings. Future research approaches should
also hypothesize and conceptualize the implementations of
innovative computational procedures such as big data ana-
lytics, Internet of Things, artificial intelligence, deep learning
approachability, and microchip-built devices (all these are
embedded in what is known as smart systems) intercon-
nected with NanoBioSS for various biomedical/clinical/
healthcare applications vis-à-vis the detection of diseases.
Consequently, biomedical/clinical/healthcare investigations
that recognise these smart systems interconnected with
NanoBioSS should be reinvigorated for the development of
prominent future detection of diseases (diagnostics).
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