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Registration is useful for image processing in computer vision. It can be applied to retinal images and provide support for
ophthalmologists in tracking disease progression and monitoring therapeutic responses. This study proposed a robust detection
model of vascular landmarks to improve the performance of retinal image registration. The proposed model consists of a two-
stage convolutional neural network, in which one segments the retinal vessels on a pair of images, and the other detects
junction points from the vessel segmentation image. Information obtained from the model was utilized for the registration.
The keypoints were extracted based on the acquired vascular landmark points, and the orientation features were calculated as
descriptors. Then, the reference and sensed images were registered by matching keypoints using a homography matrix and
random sample consensus algorithm. The proposed method was evaluated on five databases and seven evaluation metrics to
verify both clinical effectiveness and robustness. The results established that the proposed method showed outstanding
performance for registration compared with other state-of-the-art methods. In particular, the high and significantly improved
registration results were identified on FIRE database with area under the curve (AUC) of 0.988, 0.511, and 0.803 in S, P, and A
classes. Furthermore, the proposed method worked well on poor quality and multimodal datasets demonstrating an ability to
achieve high AUC above 0.8.

1. Introduction

Image registration transfers images which are acquired at
different times and viewpoints, or by different modality,
and represents them in a single coordinate system [1]. It
has been widely applied to medical image analysis to obtain
useful information from combining several data sources. In
particular, retinal image registration is an essential process
in diagnosis and treatment of various retinal diseases [2,
3]. Clinically, combined information acquired from several
retinal images is valuable for fully understanding about dis-
eases. Registration can provide support for determining cor-
rect therapy and increasing treatment success rate by

applying it for detecting lesions changes, tracking disease
condition, and monitoring therapeutic response.

Manually comparing two images (the reference and
sensed images) is a laborious task and takes a significant
amount of time. To solve this problem, many researches
have proposed computer-aided automatic registration
methods, and they have helped to reduce the task time and
burden on ophthalmologists. They can be categorized into
two types: feature-based and intensity-based methods [4–6].

The feature-based method detects features including
region, edge, and line [7]. The correspondence between the
features are calculated for image registration. In this method,
the features should be distinct and spread over the image
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region [1]. Also, they should have common characteristics
even if images are taken from a different angle or direction,
or some other unexpected change occurs. The feature-based
method is robust for illumination variations, because fea-
tures hold information on a high level.

The intensity-based method statistically compares the
entire region or subregion of the reference and sensed
images. To calculate the similarity and match the image pair,
a variety of metrics can be used including cross-correlation,
mutual information, phase correlation, sum of absolute
values of differences, and entropy correlation [4]. This
method is fit for simple transformation problems. However,
its performance can suffer from the heavy computational
complexity and illumination variations, because these may
lead the significant changes in the intensity of images [8].

In the retinal image registration problem, pairs of images
to be compared may have large differences in their intensity
distribution. Even if the retinal image is obtained from the
same person and a similar environment, noise and illumina-
tion artifact may occur. Also, the development of lesions
such as exudate, microaneurysm, and drusen may induce
changes in the image. Overall, the feature-based method is
considered more robust than the intensity-based method in
these situations, and therefore, we mainly focused on the
feature-based method for the registration of the retinal
image.

For retinal image registration, various feature-based
methods have been proposed to detect keypoint sets in pre-
vious studies [9–11], and many have used retinal vessel
information such as vasculature trees, bifurcation points,
and crossover points which can be acquired by manual or
automatic methods. These retinal vessel features are known
to be stable and satisfy the characteristics [9] that features
should have. Importantly, retinal vessels are spread through-
out the entire image region, and they are structurally distinct
with dark and low intensity on the retinal image. As well,
vessels are a common element even in diverse situations
and conditions, because they are relatively invariant to the
intensity variance [12]. Therefore, this study selected retinal
vessel information for image registration.

This study proposed a robust detection model of vascu-
lar landmarks for retinal image registration. The proposed
model consists of a two-stage convolutional neural network,
with one being for vessel segmentation and the other for
junction detection. For registration, the keypoints were des-
ignated by using the obtained vascular landmark points, and
descriptors were calculated using orientation features based
on SIFT algorithm [13]. Then, the keypoints were matched
and the image pair was registered. The proposed method
was evaluated on five databases and seven evaluation metrics
to identify its clinical effectiveness and robustness. The
experiment was conducted using TensorFlow frameworks
on Intel Core I7-7700K CPU and GeForce GTX 1080 Ti
GPU.

The remainder of this paper is organized as follows: Sec-
tion 2 introduces prior related studies. Section 3 presents the
proposed method including image preprocessing, vascular
landmark detection model, and registration algorithm. Sec-
tion 4 presents the datasets and evaluation metrics which

were used to perform and evaluate the proposed method,
and this section also contains the experimental results.
Lastly, Section 5 contains the discussion and conclusion.

2. Related Work

A number of earlier studies have proposed diverse registra-
tion methods that can be applied to retinal image. In [14],
similar vessel structure was used for retinal image registra-
tion. Bifurcation and terminal points were detected from
the centerline of skeletonized retinal vessels. Then, similar
vessel regions on the image pair were matched based on
the Hungarian matching algorithm. Ramli et al. [15] pro-
posed a D-saddle detector to extract feature points on retinal
vessel with diverse contrast and size. This method could
detect features even on low-quality regions by combining
the conventional saddle detector with multiresolution differ-
ence of Gaussian pyramid. It showed higher success rate and
accuracy compared with GDB-ICP, Harris-PIIFD, and H-M.
Chen et al. [16] used the angle and length features between
bifurcation points and connected branches. These features
were normalized to be less affected by the image transforma-
tion. They also proposed a shortest path algorithm to obtain
clear vascular trees by connecting or removing the isolated
ridge on the initial segmented retinal vessel region with
width of one pixel. In addition, many other studies [5,
17–19] have actively conducted registration research based
on the information provided by junction points such as
bifurcation, trifurcation, crossover, and terminal.

Despite these efforts, several studies showed limitation in
registration performance. Retinal image registration
methods based on vascular information are heavily depen-
dent on the vessel segmentation performance. However,
automatic vessel segmentation is a difficult process because
of the poor and inhomogeneous contrast of retinal images.
It is extremely challenging to detect junction points using
existing filter-based methods. Although many studies have
applied the skeletonization algorithm prior to junction
detection, a great deal of vascular information may be
missed or incorrect junctions can be obtained in this pro-
cess. Furthermore, it is hard to match the reference and
sensed images with only lengths and angles, because there
are many similar junction points on the retinal images and
these points are often indistinguishable from image to
image. To address the limitations of these previous studies,
this study proposed a robust detection model of vascular
landmarks for retinal image registration.

3. Material and Methods

3.1. Image Preprocessing. Contrast-limited adaptive histo-
gram equalization (CLAHE) was applied to the original ret-
inal images before they were input to the proposed model.
The retinal images were taken in different environments
and situations, and as such, they were likely affected by illu-
mination, noise, etc. Because this could negatively influence
registration performance, the pixel intensity on the retinal
images was equalized by CLAHE with tile size of 8 × 8.
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In addition, the images were augmented during the
training process of the proposed detection model to prevent
the overfitting problem and efficiently train the model. The
two types of methods including flip and rotation were used
in this study. One flipped the image horizontally or verti-
cally, or both, and the other rotated the image with different
angles between 0° and 360°.

3.2. Vascular Landmark Detection Model. The goal of this
study was to achieve registration of retinal image pairs
obtained from the same person. For that, this study detected
vascular landmarks based on a deep learning model. The
proposed model involves a two-stage deep network, which
segments retinal vessels and detects vessel junctions based
on the U-net [20] and RetinaNet [21] algorithms. In detect-
ing vessel junction, the initial areas which include junction
points were detected, and then, they were calibrated to
improve the detection performance.

3.2.1. Vessel Segmentation Network. In the first part of the
model, the retinal vessel region on the retinal image was seg-
mented by an individual network named as vessel segmenta-
tion network (VSN). This network was designed based on
U-net which was proposed by Ronneberger et al. [20]. The
architecture of VSN is presented in Figure 1.

The VSN consists of the convolution based downsam-
pling path and the transposed convolution based upsam-

pling path. In the downsampling path, as the levels go
deeper, the sizes of the feature maps are reduced by half
and higher-dimensional features are obtained. Meanwhile,
the size of these feature maps was recovered in the upsam-
pling path. In other words, the downsampling path captured
the context of the retinal image to extract advanced features,
and the upsampling path was conducted for more precise
localization. Additionally, the upsampled feature map was
concatenated with the downsampling path to obtain the
localization information.

The VSN includes a multi-input module and a con-
nected convolution module. The multi-input module fed
image datasets to the fore part of the downsampling path
on each level as shown in Figure 2. The preprocessed image
was resized and convoluted to match with input data of the
correspondence level. Then, it was concatenated with input
data of the former level. This module could make the model
learn richer context features by providing image information
and fusing it with a feature map of each level. The connected
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Figure 1: The architecture of the vessel segmentation network.
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Figure 3: The architecture of the connected convolution module.
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Figure 2: The architecture of the multi-input module.
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convolution module was applied to improve performance by
connecting the feature maps in same level (Figure 3). The
feature maps were calculated by applying 3 × 3 convolution,
batch normalization, and ReLU function, and the input fea-
ture map and acquired second feature map were
concatenated. This structure enabled the VSN to share infor-
mation between different steps in the module and train the
complex features.

In this study, different hyperparameters of the model
were compared, and optimal conditions were set to alleviate
the overfitting problem and efficiently train the model.
Epoch was 100 and learning rate was 5 × 10−6. Adam and
cross entropy were applied for the optimizer and loss
function.

3.2.2. Junction Detection Network. Junction detection net-
work (JDN) was designed based on the RetinaNet [21] for
the detection stage. The JDN was trained to detect vascular
junction points consisting of bifurcation and crossover to
apply them as keypoints for image registration. As shown
in the architecture of the network (Figure 4), the JDN
included the downsampling and upsampling paths.

Downsampling consisted of five levels, and it was con-
structed using the ResNet-50 [22]. Multiple residual layers

were involved in the ResNet module on each level, and these
layers efficiently extracted the feature maps through a spe-
cific process. First, residual function (R) was performed to
the input valuexi,j (j

th layer on i th level) in order, 1 × 1, 3
× 3, and 1 × 1 convolution. In residual function, the ReLU
function was involved between convolution operations.
Then, the calculated value (Rðxi,jÞ) was added to the input
value of the layer as shown in Equation (1). Before this pro-
cess, the dimension of these two values were matched by
using identity mapping (I). Finally, the xi,j+1 was calculated
by operating the ReLU function to the added value. This
residual layer was repeated on each level. The output feature
map on the last residual layer, named Ci, was used for further
processing. The size of the feature map fC1, C2, C3, C4, C5g
was reduced by half as the level became deeper.

xi,j+1 = ReLU R xi,j
� �

+ I xi,j
� �� �

: ð1Þ

To minimize the computational load, only three Ciði ∈ f
3,4,5gÞ were used in the upsampling process. These Ci values
were applied the 1 × 1 convolution and upsampled by a factor
of 2 using 3 × 3 transposed convolution. Then, a merged fea-
ture map (Mi) was obtained by connecting convoluted and
upsampled values in the same level with element-wise addition
method as shown in Figure 4. This structure compensated for
the missing local information.

In the next process, three new feature maps denoted as
Piði ∈ f3,4,5gÞ were generated by applying 3 × 3 convolution
to the Mi. This convolution was used to reduce the aliasing
effect which may occur due to the lost information in the
previous process [23], and P6 and P7 were obtained by
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Figure 4: The architecture of the junction detection network. The numbers written after C, M, and P represent the level.

Table 1: Confusion matrix.

Predicted class
Positive Negative

Actual class
Positive TP FN

Negative FP TN
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conducting the 3 × 3 convolution to P5 with stride 2. The
spatial size was reduced 0.5 times.

From the acquired feature maps, the anchor boxes with a
predefined shape were applied to detect the junction point.
The length of base anchors (BA) were set for the feature
map (P3 − P7). Then, multiple anchor boxes were calculated
from each of the base anchors with two scales (S) and three
aspect ratios (AR), which were, respectively, set as f20, 21/2g
and f1, 2, 0:5g in this study. The height and width length of
the anchor box were calculated by using Equations (2) and
(3). The maximum number of boxes was set at 200, because
the number of junction points was less than 200 on retinal
images in the empirical study.

Hm,n =
BA × Smffiffiffiffiffiffiffiffiffi

ARn

p , ð2Þ

Wm,n = BA × Sm ×
ffiffiffiffiffiffiffiffiffi
ARn

p
, ð3Þ

where m and n are the index number of scale and aspect
ratio, respectively.

These anchor boxes were classified and regressed in the
two subnets (Figure 4). These subnets consist of five sequen-
tial 3 × 3 convolutions. The classification subset used the
focal loss [21] as loss function, while the smooth L1 loss
was applied for the regression of the anchor boxes. The
JDN was trained by integrating these two loss functions

and optimized using momentum with cosine learning rate
decay [24].

3.2.3. Calibration. The vascular landmark points for registra-
tion were detected with VSN and JDN. For the registration
step, the detected points play an important role by matching
corresponding points between image pairs. The detection
performance could affect the registration performance.
Therefore, this study calibrated the vascular landmark points
before the registration step. First, the subimage was obtained
by cropping the image based on the detected vascular land-
mark points. Then, the centerline of the vessel was acquired
by skeletonizing the vessel region [25], and the points were
calibrated by taking into account that three or more
branches are met in vascular junction points. For all pixels
in the subimage, the neighbor vessel pixel was counted,
and the junction points were revised.

3.3. Image Registration. The vascular landmark points
detected by the above model were used for image registra-
tion. For the reference and sensed images, the regions within
a distance of five pixels from the junction points were desig-
nated as keypoints, and descriptors were calculated using
orientation feature based on SIFT algorithm [13]. The simi-
larity between the descriptors for two images was evaluated
by using Euclidean distance. Then, keypoints were matched
by comparing the distance and finding the closest pair. In
this process, some keypoint pairs were ignored if the dis-
tance ratio between the nearest distance and second closest
distance was higher than a certain threshold. The optimal
threshold was chosen as 0.84 through the empirical study.

To register the pair of retinal images, the 3 × 3 homogra-
phy matrix was calculated from the matched keypoints by
considering the rotation, scale, shearing, reflection, transla-
tion, and perspective [26]. Outliers which could interrupt
the registration were removed by applying random sample

Table 2: Comparison of the segmentation performance on DRIVE database.

Method Sensitivity Specificity Accuracy AUC

Unsupervised method

Aguirre-Ramos et al. [34] 0.785 0.966 0.953 —

Shah et al. [35] 0.742 0.977 0.947 —

Memari et al. [36] 0.761 0.981 0.961 0.871

Solís-Pérez et al. [37] 0.827 0.965 0.956 —

Zhou et al. [38] 0.726 0.980 0.948 —

Supervised method

Zhuang [39] 0.786 0.981 0.956 0.979

Alom et al. [40] 0.779 0.981 0.956 0.978

Guo et al. [41] 0.789 0.980 0.956 0.981

Feng et al. [42] 0.762 0.981 0.953 0.968

Kushol et al. [43] 0.759 0.975 0.946 —

Adapa et al. [44] 0.629 0.984 0.945 0.951

Jin et al. [45] 0.739 0.983 — 0.976

Khan et al. [46] 0.825 0.979 0.965 0.978

Proposed method 0.805 0.982 0.966 0.982

Table 3: Detection results of JDN on RetinaCheck database.

Input image type Precision Recall F1 score

Color image 0.723 0.784 0.752

Grayscale image 0.750 0.800 0.774

Vessel image 0.809 0.853 0.831
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consensus algorithm [27]. The acquired matrix transformed
the sensed image as described in Equations (4) and (5) to
register two images. The coordinate of the transformed pixel
ða′, b′Þ was calculated from the original pixel ða, bÞ of the
sensed image.

a′ = h1,1 × a + h1,2 × b + h1,3
h3,1 × a + h3,2 × b + 1

, ð4Þ

b′ = h2,1 × a + h2,2 × b + h2,3
h3,1 × a + h3,2 × b + 1

, ð5Þ

where hp,q is an element of the homography matrix in row (p
) and column (q).

4. Experiments and Results

4.1. Dataset. In this study, retinal images were acquired from
a total of five public databases to train the proposed model
and verify the performance. Details about each database
are as follows.

The DRIVE [28] database was used to train and test the
VSN and JDN. It contains 40 retinal images which have been
divided into train and test datasets with 20 images each.
These images were provided in JPEG file format with 768
× 584 resolution. This database also provided the ground
truth dataset obtained by manual segmentation task per-
formed by human observers. They were instructed by an
ophthalmologist and requested to segment regions as retinal
vessels when they were convinced to a degree of certainty of
greater than 70%. This ground truth dataset was used to
evaluate the segmentation performance of the proposed
method.

Although the DRIVE database offered a prominent data-
set with regard to vessel segmentation, it did not involve
information on vessel junctions. Therefore, the RetinaCheck
[29, 30] database was supplementally collected and used for
junction detection. This database provided the ground truth
of bifurcation and crossover points on the retinal images of
the DRIVE database which was annotated by three experts.
The RetinaCheck database also provided the ground truth
for the IOSTAR database [29, 30] which was obtained by i-
Optics B.V. on the Netherlands.

The FIRE [31] database was used for the evaluation of
registration performance, because it contains not only pairs
of retinal images acquired from the same patients but also
the correspondence data relevant for each image pair. The
image dataset consists of 134 image pairs acquired from 39

patients, with resolution of 2912 × 2912 pixels. Also, the
images were categorized into 3 classes (S, P, and A) accord-
ing to the characteristics of the image pairs such as approx-
imate overlap, anatomical changes, and registration
application.

To verify the robustness of the proposed method, two
other databases were applied which were supplied by Köhler
et al. [32] and Alipour et al. [33]. The first database contains
18 image pairs which consist of two images of good and poor
quality obtained from the same person. The providers men-
tioned that the images with poor quality were affected by a
defocused camera setting. The second database provided
60 fluorescein angiography and retinal images acquired from
30 healthy people and 30 patients with diabetic retinopathy.
These databases were applied to confirm two things: whether
the proposed method will be affected by image quality and
whether it will show reasonable performance even with mul-
timodal images. However, these two databases did not
involve the ground truth for registration. Therefore, the cor-
respondence points were manually detected by the authors
after training by an ophthalmologist in Dongguk University
in the Republic of Korea. The ground truth obtained in this
way was double checked by an ophthalmologist for reliabil-
ity of the dataset.

4.2. Performance Evaluation. The performance of the pro-
posed method was evaluated in three parts, and these con-
sisted of vessel segmentation, junction detection, and
registration. For each part, different evaluation metrics were
used to quantitatively analyze the performance, and the
results were compared with other state-of-the-art methods.

Confusion matrix-based evaluation approaches were
used for vessel segmentation and junction detection. This
is a table which lays out the results of the predicted class
from the model and groups each actual label into four ele-
ments as shown in Table 1. These elements consist of true pos-
itive (TP), true negative (TN), false positive (FP), and false
negative (FN), and various performance measurements can
be calculated based on these elements. In this study, sensitivity
(TP/ðTP + FNÞ), specificity (TN/ðTN + FPÞ), and accuracy
(ðTP + TNÞ/ðTP + TN + FP + FNÞ) were used for the VSN,
and the JDN was evaluated by precision (TP/ðTP + FPÞ), sen-
sitivity, and F1 score (2TP/ð2TP + FP + FNÞ). The sensitivity
and specificity measure how well the network correctly iden-
tifies the positive and negative into actual classes, respectively.
The sensitivity is also known as recall in the detection prob-
lem. The precision calculates the ratio of well-detected regions
to all regions predicted as positive. The accuracy is the

Table 4: Comparison of the detection performance on RetinaCheck database.

Method
DRIVE IOSTAR

Precision Recall F1 score Precision Recall F1 score

Azzopardi and Petkov [47] 0.400 0.740 0.520 0.630 0.330 0.430

Abbasi-Sureshjani et al. [30] 0.750 0.610 0.670 0.470 0.600 0.520

Uslu and Bharath [48] 0.650 0.690 0.670 0.520 0.670 0.590

Zhao et al. [49] 0.710 0.700 0.700 0.620 0.570 0.600

Proposed method 0.805 0.776 0.790 0.524 0.842 0.646
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Figure 5: Continued.
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Figure 5: Continued.
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proportion of TP and TN in the entire elements, and F1 score
represents the harmonic mean of precision and sensitivity.
Also, the performance of the VSN was evaluated by using
the area under the curve (AUC) of the receiver operating char-

acteristic (ROC) curve which was plotted based on the sensi-
tivity and specificity.

For the registration score, measurements proposed by
Hernandez-Matas et al. [10] were applied in this study. In

(m) (n)

(o) (p)

(q) (r)

Figure 5: The registration results for the retinal images of the S (a–f), P (g–l), and A (m–r) classes on the FIRE database. The first and
second columns are original retinal images, and the third to fourth columns are the results of the retinal vessel segmentation and
junction detection. The fifth column shows the registration image which marks the area where two images meet as yellow. The last
column shows registration result by overlapping images.
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this method, the success rate was obtained for the error
threshold in the range from 0 to 25. From this, a curve was
plotted in which the x-axis is the error threshold and y
-axis is the success rate. The AUC of this curve was used
for quantitative evaluation.

4.3. Experimental Results for Retinal Vessel Segmentation.
The VSN was evaluated on the DRIVE database. The net-
work was trained with 20 images from the database, and
another 20 images were used for testing. The obtained
results were compared with other state-of-the-art methods
using four evaluation metrics consisting of sensitivity, spec-
ificity, accuracy, and AUC. Table 2 lists the retinal vessel seg-
mentation performance of the proposed VSN as well as
other unsupervised/supervised methods. The VSN achieved
the highest AUC of 0.982 outperforming other diverse
methods. For the other metrics, superior performance of
the VSN was also demonstrated for sensitivity, specificity,
and accuracy with results of 0.805, 0.982, and 0.966,
respectively.

4.4. Experimental Results for Retinal Vessel Junction
Detection. The RetinaCheck database was used to test the
JDN. This study calculated the detection results involving
precision, sensitivity, and F1 score according to the type of
input image as shown in Table 3. The color image is the
original RGB image, and the grayscale image refers to the
green channel which generally showed distinct retinal tissues
among the three channels. The vessel image indicates the
manually segmented binary image representing 1 for retinal
vessel pixels and 0 for other pixels. The experimental results
on the color image had a relatively low F1 score of 0.752, and
the grayscale image showed an increased F1 score by about
0.022. The performance was improved to over 0.8 in all three
metrics by using the vessel image for input data. The optimal
results for precision, sensitivity, and F1 score were 0.809,
0.853, and 0.831, respectively.

Also, the RetinaCheck database was applied to the previ-
ously trained VSN and JDN for evaluation of the proposed
vascular landmark detection model. This allowed an evalua-
tion of the overall performance of the proposed vascular
landmark detection model, including the series of processes
from segmenting the retinal vessel on the retinal image to
detecting junction points using the acquired vessel image.
Then, the results were compared with other methods as

shown in Table 4. The results of the COSFIRE were written
by citing the contents of [30]. For the BICROS, the results
using 2-D Gabor wavelet segmentation method are dis-
played in Table 4. The method proposed in this study per-
formed better than all four other methods on the DRIVE
image dataset for all three metrics. Furthermore, it also dem-
onstrated a significant F1 score of 0.646 on the IOSTAR
dataset.

4.5. Experimental Results for Retinal Image Registration. The
retinal image registration performance of the proposed
method was evaluated on the FIRE database. For pairs of
images, junction points were extracted using the proposed
model. Next, these points were used to register the reference
and sensed images. Figure 5 presents the resulting images of
each process for the FIRE image dataset, and Table 5 shows
the experimental results of the proposed method and five
other methods. The information in the 3rd~5th rows of
Table 5 were written with reference to the paper of
Hernandez-Matas et al. [10]. The proposed method exhib-
ited a superior AUC. Especially, these results were 0.010
and 0.143 higher in S and A classes compared with the high-
est performance found among other methods. Of particular
note, other methods do not achieve AUC values above 0.8 in
A classes, whereas the proposed method showed outstanding
performance with AUC of 0.803 in this class. The overall
result of the proposed method was 0.794, and the curve is
plotted in Figure 6.

To verify the robustness of the proposed method, the
registration performance was additionally evaluated on two
databases. One involves image datasets with pairs of differ-
ent image quality, and the other includes image pairs
obtained with different modalities. These databases were
applied to check whether the proposed method would per-
form well on poor quality and multimodal images. As shown
in Figure 6, the proposed method showed a significant AUC
of 0.821 on the different image quality database. High per-
formance was also demonstrated with the multimodal
images, with 0.824 and 0.819 for normal and abnormal,
respectively.

5. Discussion and Conclusion

This study presents a robust detection model of vascular
landmarks for retinal image registration. This model
involved two convolutional neural networks which were
named VSN and JDN. The former segmented retinal vessel
on the retinal image, and the latter was used for detecting
junction points from the vessel image. Especially, JDN was
designed to output the specific areas which include the junc-
tion points, and it was calibrated by taking into account that
three or more branches are meet in vascular junction points
to improve the detection performance. The detected vascular
landmarks were applied for image registration to find the
same points in image pairs and match them. The proposed
method was evaluated using different databases and evalua-
tion metrics for vessel segmentation, junction detection, and
registration. This study applied a total of five public

Table 5: Comparison of the fundus image registration
performance on FIRE database.

Method
Classes of FIRE data

S P A

SIFT [13] 0.967 0.411 0.534

SURF [50] 0.978 0.384 0.422

GDB-ICP [51] 0.814 0.303 0.303

Harris-PIIFD [3] 0.900 0.090 0.443

H-M 16 [52] 0.945 0.443 0.577

REMPE [53] 0.958 0.542 0.660

Proposed method 0.988 0.511 0.803
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databases and seven types of evaluation metrics for quantita-
tive and comparative analysis.

The proposed vascular landmark detection model
showed superior results for retinal vessel segmentation and
junction detection. First, the proposed VSN segmented the
retinal vessel region with better performance compared to
other unsupervised/supervised methods with the highest
accuracy and AUC which estimate overall performance.
The sensitivity of the VSN was 0.805, and this indicates that
the proposed network segmented the vessel regions well.
Achieving a specificity of 0.982 meant that most nonvessel
pixels were predicted as actual class. The JDN, which is the
second part of the proposed model, also showed remarkable

performance in detecting junction points. It acquired the
highest results when using the vessel image as the input
image among the three types of the images. This experimen-
tal result seems to indicate that the vessel image involves
more distinct vessel information than RGB and grayscale
images.

The proposed vascular landmark detection model was
compared with other state-of-the-art methods on the Reti-
naCheck database which provides junction information for
the DRIVE and IOSTAR image datasets. Although the pro-
posed model achieved significantly good performance, it
showed relatively low precision compared to some methods
on the IOSTAR dataset. This is likely to be caused by the
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Figure 6: The error threshold-success rate curve for registration. (a) FIRE database, (b) different quality database from Köhler et al. [32],
and (c) multimodal image database from Alipour et al. [33].
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ground truth of the database. Whereas this dataset did not
check junction points within the optic disc area, the pro-
posed model detected the points in this area. This may have
effects on the TP and FP, and it may result in the low preci-
sion. Nevertheless, the proposed model showed the highest
F1 score on the DRIVE and IOSTAR images compared with
other methods.

This study registered retinal image pairs based on the
detected junction points. The proposed method acquired
outstanding performance on the FIRE database. Of particu-
lar note, the significantly superior results were confirmed on
the A class. This class has anatomical changes between
images; thus, this class was registered with low results of
under 0.7 in previous studies. In contrast, the proposed
method precisely matched the pairs of images by accurately
detecting the common points. Therefore, it demonstrated a
high performance, and the overall AUC was 0.794 for the
FIRE database. However, the proposed method showed rela-
tively low AUC compared with REMPE [53] for the P class.
The results may occur because the P class showed low over-
lap between images. The proposed registered the images
with vascular junction points, and the number of these
points were relatively small than the keypoints applied in
other previous study. Therefore, this limitation may affect
the registration performance of P class. Nevertheless, the
proposed method showed high performance overall.

Furthermore, this study evaluated the proposed method
under various suboptimal image conditions. The proposed
method accurately registered poor quality images that were
acquired in defocused camera setting with AUC of 0.821.
As well, it performed well with images acquired by different
modality including fluorescein angiography and retinal
image. The AUC values for the multimodal dataset were
0.824 for normal and 0.819 for abnormal. These experimen-
tal results verified the clinical effectiveness and robustness of
the proposed method for registration of retinal images.

However, this study had limit of the number of dataset.
To overcome this limitation, this study tried to acquire as
much data as possible by obtaining not only image datasets
which have been generally used for fundus image research
but also image datasets which have not been applied to
related studies. Also, this study organized ground truth datasets
by additional labeling task. Although this efforts, it is considered
that the limit of the number of data still exists. Therefore, this
study will supplement the image dataset with a process of Insti-
tutional Review Boards (IRB) in future study, and the proposed
method will be evaluated on this rich dataset.

Data Availability

The datasets that were used in this study are openly available
in the DRIVE database (http://www.isi.uu.nl/Research/
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[32], and Fundus Fluorescein Angiogram Photographs and
Colour Fundus Images of Diabetic Patients database (https://
hrabbani.site123.me/available-datasets/) [33].
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