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COVID-19 is still prevalent in more world regions and poses a severe threat to human health due to its high pathogenicity. The
incidence of COPD patients is gradually increasing, especially in patients over 45 years old. COPD patients are susceptible to
COVID-19 due to the specific lung receptor ACE2 of SARS-CoV-2. We attempt to reveal the genetic basis by analyzing the
expression of common DEGs of the two diseases through bioinformatics approaches and find potential therapeutic agents
based on the target genes. Thus, we search the GEO database for COVID-19 and COPD transcriptomic gene expression. We
also study the enrichment of signaling regulatory pathways and hub genes for potential therapeutic treatments. There are 34
common DEGs in the two datasets. The signaling pathways are mainly enriched in intercellular junctions between virus and
cytokine regulation. In the PPI network of common DEGs, we extract 5 hub genes. We find that artesunate CTD 00001840,
dexverapamil MCF7 UP, and STOCK1N-35696 PC3 DOWN could be therapeutic agents for both diseases. We also analyze
the regulatory network of differential genes with transcription factors and miRNAs. Therefore, we conclude that artesunate
CTD 00001840, dexverapamil MCF7 UP, and STOCK1N-35696 PC3 DOWN can be therapeutic candidates in COPD
combined with COVID-19.

1. Introduction

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-
2), also known as coronavirus disease 2019 (COVID-19),
spreads worldwide [1–3]. New mutant strains of SARS-CoV-
2 keep emerging, challenging the wisdom of scientists2 and
posing a severe threat to human health. SARS-CoV-2 is a
highly pathogenic coronavirus that can cause zoonotic dis-
eases. According to the current studies, coronavirus stinger
proteins bind specifically to cellular receptors (angiotensin-
converting enzyme 2, ACE2; dipeptidyl peptidase 4, DPP4),
which mediates viral entry into the cell. Coronaviruses have
a potent genomic RNA that directs the synthesis of viral
nucleic acids and proteins assembled into new coronaviruses
and secreted extracellularly [4]. And viral particles can also
bind to host factors, cell surface serine protease TMPRSS2,
to promote viral endocytosis and fusion at the cell membrane

[5]. Gene sequencing results show that TMPRSS2 can coex-
press ACE2 on several tissues, such as nasal mucosa, lung epi-
thelium, and bronchial epithelial tissue, which explains the
preference for coronavirus infection in the respiratory system
[6, 7]. In addition, accessory proteins on coronaviruses, associ-
ated with viral variability, show limited conservation [8]. Stud-
ies have shown that additional proteins are related to viral
infection immunity. Unfortunately, the function and proper-
ties of accessory proteins are still largely unknown [9].

Chronic obstructive pulmonary disease (COPD) is a
group of systemic diseases in which the airways are severely
involved [10], and airway epithelium is damaged, leading to
decreased airway barrier function. Immunohistochemical
staining of COPD patients who smoke showed significantly
higher expression of ACE2 protein than in normal non-
smoking controls [11], which increases the opportunity for
SARS-CoV-2 infections. A clinical study from China showed
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that 62.5% of patients with severe COVID-19 were comor-
bid COPD and 25% of COVID-19 patients who died had
COPD [12]. The high rate of severe disease and increased
mortality in patients with COPD and COVID-19 [13] make
the management of SARS-CoV-2 infections more problem-
atic. In addition, high expression of ACE2 and DPP4 can
be detected in blood and alveolar lavage fluid in patients
with COPD and asthma [14]. Increased expression of
ACE2, TMPRSS2, and DPP4 is associated with altered func-
tions of transcription factors that regulate mitochondrial
function, telomerase, etc. [15]. In the setting of COPD air-
way barrier dysfunction, SARS-CoV-2 infection leads to
severe airway damage to the mucosa. Pathology shows dif-
fuse alveolar damage and severe perivascular T cell infiltra-
tion with extensive neovascularization and
microthrombosis [16]. The above studies suggest that COPD
is a significant risk factor for poor prognosis in SARS-CoV-2
infections [14]. It makes the association between COPD and
COVID-19 a hot topic of interest.

Nowadays, a considerable amount of information is used
to describe the mechanisms of physiological functions of
cells and tissues through different biosequencing. Complex
data, practical software programs, and multisystem model-
ing platforms constitute a data-driven multisystem bioinfor-
matics ecosystem [17]. The use of systems biology allows us
to understand the interactions and information flow in dif-
ferent dimensions within cells, tissues, and organisms [18].
During the COVID-19 epidemic, sequencing of the COVI-
19 genes combined with available databases and computa-
tional tools allows analysis of protein sequences, prediction
of vaccine targets, and potential B and T cell targets for
immune modeling [19]. The use of bioinformatics during
the COVID-19 epidemic has significantly deepened the
study of the virus and shortened the development cycle of
treatments and vaccines against the virus. Our study seeks
to find bioinformatics links between COPD and COVID-
19. First, we analyze the COVID-19 dataset GSE147507
and COPD dataset GSE106986 to look for common differen-
tially expressed genes (DEGs). And we explore the Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) regulatory networks and then analyze
the hub genes, which are the core of the gene regulatory net-
work. We search for the regulation with transcription factors
(TFs), miRNAs, and targeted drug candidates based on com-
mon DEGs. The use of bioinformatics during the COVID-19
epidemic has significantly deepened the study of the virus
and shortened the development cycle of treatments and vac-
cines against the virus [20].

2. Materials and Methods

2.1. Dataset Collection in This Study. COPD is a susceptibil-
ity factor for the severe acute respiratory syndrome corona-
virus 2 (SARS-CoV-2) infection. We collected data from the
National Center for Biotechnology Information (NCBI)
(https://www.ncbi.nlm.nih.gov/geo/) GEO database on
microarray, and RNA-seq expression profiling by high-
throughput sequencing of SARS-CoV-2 infection in human
lung epithelial and alveolar cells was performed on the

GSE147507 dataset. The GSE147507 dataset was provided
by the GPL18573 Illumina NextSeq 500 expression platform.
19 samples were collected in the GSE106986 dataset, includ-
ing 5 on normal nonsmoking controls and 14 on COPD
groups assay results. We performed a microarray-based
analysis of GSE106986 and GSE147507.

2.2. Identification of DEGs among COVID-19 and COPD.
The DEGs were the basis for our study. The GSE147507 data-
set was obtained using the DESeq2 method with R (version
3.6.3) software, and a cutoff criterion of P value < 0.05 and
log2-fold change ðabsoluteÞ > 1:0 was chosen for normal con-
trols, and SARS-CoV-2 infected differential genes. GSE106986
was obtained through the GEO2R (https://www.ncbi.nlm.nih
.gov/geo/geo2r/) web tool, which uses the limma package for
identifying DEGs of COPD and control individuals. Cutoff
values for the database were taken as P value < 0.05 and
log2-fold change ðabsoluteÞ > 1:5. The expression of common
DEGs to both datasets was obtained through the online data
analysis library Sangerbox (http://sangerbox.com/).

2.3. GO and KEGG Enrichment Analyses of Common DEGs.
The GO term analysis of genes includes biological processes,
molecular function, and cellular components. KEGG path-
ways describe signaling pathways associated with disease
metabolism and are often annotated with signals. GO and
KEGG enrichment analysis data for common genes are
available through the (http://enrich.shbio.com/) online data-
base, and analysis maps are available from the online analy-
sis website (http://www.bioinformatics.com.cn/).

2.4. The PPI Network Analysis. PPIs are active and passive
processes that reflect protein interactions in cellular tissues.
The execution of protein functions requires different protein
interactions to be realized. We used STRING (https://string-
db.org/) database to construct a network of protein interac-
tions and Cytoscape (V.3.6.0) software to implement net-
work mapping to describe common protein’s biological
and physical roles interactions in COVID-19 and COPD.
Cytoscape (V.3.6.0) is an open-source network visualization
platform that is a flexible tool to integrate multiple datasets
and improve the performance of different interactions, such
as PPIs, gene interactions, protein-DNA interactions, and
others [21].

COVID19
N = 814

COPD
N = 758

780
(49.62%)

34
(4.32%)

724
(46.06%)

Figure 1: Coexpression analysis of the GSE147507 datasets for
COVID-19 and GSE106986 datasets for COPD with differential
genes. The cross-tabulation study showed 34 common DGEs.
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2.5. Hub Gene Extraction. PPI network consists of node,
edge, and the connection between them, among which hub
gene is considered the core of the PPI network. We use the
Cytohubba plugin in Cytoscape (V.3.6.0) software to extract
the hub gene. And we use the degree algorithm to realize the
analysis of learning genes. Based on the principle of the clus-
tering coefficient of the Cytohubba plugin, the top 5 hub
genes are used to estimate the shortest available path.

2.6. Recognition of TFs and miRNAs Engages with Common
DEGs. TFs are specific proteins bound to target genes
responsible for the rate and information of transcription of
genetic information and are essential for controlling genetic
information [22]. We analyze DEGs associated TFs through
the online database NetworkAnalyst (https://www
.networkanalyst.ca/). NetworkAnalyst is a comprehensive
data platform that can analyze gene regulatory networks,
gene coexpression networks, and pharmacogenomics net-
works [23]. We implemented transcription factors analysis
of differential gene regulation through the JASPAR database

network. In addition, we used the TF-miRNA coregulatory
interaction database to analyze how miRNAs interact with
DEGs. The miRNA interaction information is obtained from
the RegNetwork repository. We used the TF-miRNA data-
base to detect miRNAs’ biological functions and characteris-
tics interacting with common DEGs.

2.7. Protein-Drug Interaction Analysis. Protein-drug interac-
tion analysis data is analyzed from the DSigDB database on
the Enrichr (https://maayanlab.cloud/Enrichr/) platform.
We obtain drug information to predict potential drugs for
protein targets on the DrugBank database (https://go
.drugbank.com/).

2.8. Molecular Docking. The candidate drugs’ chemical crys-
tals were obtained from the PubChem database (https://
pubchem.ncbi.nlm.nih.gov/), and we converted the molecu-
lar structure to the mol2 format using OpenBabel software.
The top 5 hub gene molecular forms were obtained from
the Uniport database (https://www.uniprot.org/) and were

Table 1: The GO pathways and their corresponding P value and description for common DEGs.

GO ID Description Gene ID P value

BP

GO:0009615 Response to virus DMBT1/GBP1/LCN2/CCL8/RSAD2 1.84E-04

GO:0071347 Cellular response to interleukin-1 GBP1/LCN2/CCL8/CCL18 2.10E-04

GO:0010821 Regulation of mitochondrion organization LMNA/BAP1/MOAP1/UBE2J2 2.24E-04

GO:0001666 Response to hypoxia ALDH3A1/LMNA/PGF/PKLR/TGFBR2 2.88E-04

GO:1903533 Regulation of protein targeting KCNE1/BAP1/UBE2J2 3.24E-04

GO:0036293 Response to decreased oxygen levels ALDH3A1/LMNA/PGF/PKLR/TGFBR2 3.31E-04

GO:0070555 Response to interleukin-1 GBP1/LCN2/CCL8/CCL18 3.65E-04

GO:0070482 Response to oxygen levels ALDH3A1/LMNA/PGF/PKLR/TGFBR2 4.41E-04

GO:0035162 Embryonic hemopoiesis GATA2/TGFBR2 5.49E-04

GO:0060216 Definitive hemopoiesis GATA2/MEIS1 4.98E-04

CC

GO:1904724 Tertiary granule lumen CHIT1/TNFAIP6 3.82E-03

GO:0035580 Specific granule lumen CHIT1/LCN2 4.82E-03

GO:0045121 Membrane raft KCNE1/TGFBR2/TUBA1A 1.55E-02

GO:0098857 Membrane microdomain KCNE1/TGFBR2/TUBA1A 1.56E-02

GO:0098589 Membrane region KCNE1/TGFBR2/TUBA1A 1.72E-02

GO:0005652 Nuclear lamina LMNA 1.83E-02

GO:0005885 Arp2/3 protein complex ARPC1B 1.83E-02

GO:0042589 Zymogen granule membrane DMBT1 1.83E-02

GO:0030018 Z disc KCNE1/NEBL 2.05E-02

GO:0031588 Nucleotide-activated protein kinase complex PRKAB1 2.32E-02

MF

GO:0008009 Chemokine activity CCL8/CCL18 3.32E-03

GO:0005539 Glycosaminoglycan binding PGF/CCL8/TGFBR2/TNFAIP6 6.53E-04

GO:0005200 Structural constituent of cytoskeleton TUBA1A/ARPC1B/TUBA1C 7.43E-04

GO:0048020 CCR chemokine receptor binding CCL8/CCL18 2.56E-03

GO:0005126 Cytokine receptor binding PGF/CCL8/CCL18/TGFBR2 1.49E-03

GO:0003924 GTPase activity GBP1/RRAD/TUBA1A/TUBA1C 2.35E-03

GO:0005525 GTP binding GBP1/RRAD/TUBA1A/TUBA1C 3.93E-03

GO:0032550 Purine ribonucleoside binding GBP1/RRAD/TUBA1A/TUBA1C 4.09E-03

GO:0001883 Purine nucleoside binding GBP1/RRAD/TUBA1A/TUBA1C 4.20E-03

GO:0032549 Ribonucleoside binding GBP1/RRAD/TUBA1A/TUBA1C 4.24E-03
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removed from the corresponding ligands and water mole-
cules by PyMOL software. The molecular docking analysis
of compounds and target genes was obtained from the
Swissdock database (http://www.swissdock.ch/). The
obtained results can be used to interpret the predictions of
protein molecule binding.

3. Results

3.1. The Common DEGs of COVID-19 and COPD. The com-
mon DEGs were acquired to study the changes in gene

expression for patients comorbid COVID-19 and COPD.
The intercept value condition (P value < 0.05 and log2-fold
change ðabsoluteÞ > 1:0) was met for 814 differential genes
in the COVID-19 dataset, and 758 differential genes were
identified in the COPD dataset. By different statistical
methods, we obtained 34 common DEGs (Figure 1). These
common DGEs were used to analyze further experimental
data.

3.2. Gene GO and KEGG Enrichment Analyses. GO and
KEGG pathway enrichment analyses for common DGEs is

Table 2: The KEGG pathways and their corresponding P value and description for common DEGs.

ID Description P value Gene ID

hsa04530 Tight junction 7.46E-05 PRKAB1/TUBA1A/CLDN2/ARPC1B/TUBA1C

hsa04061 Viral protein interaction with cytokine and cytokine receptor 2.99E-02 CCL8/CCL18

hsa04060 Cytokine-cytokine receptor interaction 4.45E-02 CCL8/CCL18/TGFBR2

hsa05130 Pathogenic Escherichia coli infection 1.78E-03 TUBA1A/CLDN2/ARPC1B/TUBA1C

hsa04210 Apoptosis 5.69E-03 LMNA/TUBA1A/TUBA1C

hsa00010 Glycolysis/gluconeogenesis 1.41E-02 ALDH3A1/PKLR

hsa04540 Gap junction 2.35E-02 TUBA1A/TUBA1C

hsa05410 Hypertrophic cardiomyopathy 2.46E-02 LMNA/PRKAB1

hsa05012 Parkinson disease 2.89E-02 TUBA1A/TUBA1C/UBE2J2

hsa05132 Salmonella infection 2.89E-02 TUBA1A/ARPC1B/TUBA1C
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Figure 2: The GO and KEGG enrichment analyses. (a) The BP-, CC-, and MF-related GO terms of 34 common DEG identification results.
(b) The top 10 terms of KEGG analysis result of 34 common DEGs. The redder the bubble, the more genes are enriched.
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obtained using online databases. The GO terms include bio-
logical process (BP), molecular functions (MF), and cellular
components (CC). We analyzed the top 10 GO terms
(Table 1 and Figure 2(a)). Our results indicate that the BP

subgroup is highly concentrated on neutrophil chemotaxis,
chemokine-mediated signaling pathway, and lymphocyte
chemotaxis. The MF mainly focuses on glycosaminoglycan
binding, structural constituent of cytokines, and chemokine
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Figure 3: The PPI network for common DEGs is shared by COVID-19 and COPD. (a) The interaction network of 34 common DEGs. These
five genes are considered hub genes according to their degree value. (b) The PPI network of top 10 hub genes with neighbors. The redder the
color, the tighter the gene connectivity, and the edges indicate the connectivity between two nodes.
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receptor binding. The CC especially involves tertiary granule
lumen, tertiary granule, and nuclear-activated protein kinase
complex. The analysis of KEGG signaling pathways is
mainly enriched in viral protein interacting with cytokine
and cytokine receptor, tight junction, and cytokine-
cytokine receptor (Table 2 and Figure 2(b)).

3.3. The PPI Network Analysis of Common DEGs and the
Extraction of the Hub Genes. The common DEGs were pro-
vided to STRING online database to obtain the interaction
network of coexpressed genes. The data obtained from
STRING are provided to Cytoscape software for further net-
work mapping. The protein-protein interaction (PPI) net-
work contains 27 nodes and 218 edges, and these results
are shown in Figure 3(a).

The extraction of the hub genes is achieved using the
Cytohubba plugin in Cytoscape software. We find that the
first five hub genes are RPL8, RPLP0, RPL35, RPS16, and
RPS12. The association of the hub genes with neighbors in
the PPI network is shown in Figure 3(b). The hub genes net-
work includes 13 nodes and 156 edges. The redder color
indicates the higher connection tightness. Topological anal-
ysis for the hub genes (RPL8, RPLP0, RPL35, RPS16, and
RPS12) is identified using Cytohubba. The topological anal-
ysis result is presented in Table 3. At the same time, our
analysis in the Enrichr database (https://maayanlab.cloud/
Enrichr/) shows that these hub genes are associated with
heart disease, tuberculosis, asthma, anemia, etc. (Table 4).

3.4. TFs or miRNA and Gene Interactions. NetworkAnalyst
implemented TFs and common DEG interactions. The
results of TF-gene interactions are shown in Figure 4(a).
The 34 common DEGs related to transcription factors were
selected—genes with at least 3 nodes, resulting in the selec-
tion of 32 DEGs. We can see that a target gene is regulated
by more than one transcription factor, and one transcription
factor can regulate multiple target genes. We also analyzed
the miRNAs involved in the regulation of the target genes.
The results showed 18 target genes, 39 nodes, and 67 edges
in the network (Figure 4(b)).

3.5. TFs and miRNA Coregulatory Interactions. TFs and
miRNAs interaction network was extracted by NetworkAna-
lyst. TF-miRNA regulatory network is analyzed based on
common DEGs. We obtained 29 common DEGs by screen-
ing genes with at least 3 nodes. We got the associated TFs
and miRNA network, and the regulatory network is shown
in Figure 5. It can be seen that there are 98 nodes in the net-
work and 271 edges. 43 TFs and 26 miRNAs are involved in
regulating common DEGs.

3.6. The Selection of Genetic Candidate Drugs. Drug acquisi-
tion is the ultimate aim of disease research. We analyzed the
common DEGs in COPD and COVID-19, and the results
showed that 5 of the hub genes were selected. After studying
the Enrichr platform DSigDB database, we obtained the pos-
sible drug candidates (Table 5). The binding of the drug can-
didate to the target protein was then further evaluated by
molecular docking, and the higher the molecular docking
score, the more stable the result and the closer to the natural
conformation of the compound (Table 6). The results
showed that dexverapamil MCF7 UP, STOCK1N-35696
PC3 DOWN, and artesunate CTD 00001840 were consid-
ered the optimal drugs to target common DEGs.

4. Discussion

COPD is a risk factor for mortality rates in patients with
COVID-19. Decreased airway mucosal barrier function is
an essential physiological basis for SARS-CoV-2 susceptibil-
ities. Our results explain from a bioinformatic approach that
COPD shares a common genetic origin with COVID-19. We
analyzed differential gene expression from two gene RNA-
seq datasets of COPD and COVID-19. The 34 common
DGEs are used to analyze disease-related signaling pathways
and network regulatory relationships, which helps find
potential biological targets and drug candidates for both
diseases.

Table 3: Topological result exploration for top five hub genes.

Hub gene Degree Stress Closeness Betweenness Eccentricity Clustering coefficient

RPL8 10 102 11.5 38.17 0.26 0.58

RPLP0 9 62 11 22.17 0.26 0.67

RPL35 8 26 10.33 5.5 0.17 0.82

RPS16 8 40 10.33 9.833 0.17 0.71

RPS12 7 2 9.5 0.33 0.17 0.95

Table 4: The enrichment relationship between core genes and
diseases.

Disease term P value
Combined

score

Aase-Smith syndrome
5.00E-
03

1.39E+03

Anemia, macrocytic
2.48E-
02

5.02E+01

ECG abnormality
1.17E-
02

1.08E+02

Tuberculosis
2.55E-
02

4.88E+01

Asthma
3.26E-
02

1.30E+02

Non-small-cell lung carcinoma
4.75E-
02

1.79E+02

Secondary malignant neoplasm of
liver

5.00E-
03

1.39E+03
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The GO enrichment analysis is the basis of bioinformat-
ics analysis. It is mainly reflected in the biological process
(molecular activities), molecular function (activities of
molecular level), and cellular component [24, 25]. The GO
analysis of 34 common DGEs explains the role of enriched
genes [26]. In terms of the biological process, 34 common
DEGs are mainly enriched in response to the virus and cel-
lular response to interleukin-1. SARS-CoV-2 infections can
be followed by a severe inflammatory waterfall-like response,
causing massive inflammatory cell activation and releasing
large amounts of inflammatory factors such as IL-1, IL-6,
and IL-18 [27–29]. High-dose interleukin-1 blockade can
cause a decrease in serum C-reactive protein and improve

respiratory function in COVID-19 patients around 21 days
[30]. In addition, IL-1β, as a more potent proinflammatory
factor, can promote the release of IL-8 and IL-6 and the
increase of lymphocytes and dendritic cells in lung tissue
during the inflammatory trigger phase [31–34]. This effect
may be one of the driving factors of cytokine release syn-
drome and systemic inflammatory response syndrome after
SARS-CoV-2 infection [28, 35]. The common DEG regulat-
ing functions are mainly enriched in tertiary and specific
granule lumen. They may be associated with virus replica-
tion in the host, similar to Taz et al. [36]. For describing
the enrichment of molecular function in terms of activities
at the molecular level, these 34 common DEGs mainly focus

(a)

(b)

Figure 4: TF or miRNA interactions with common DEGs. (a) TF interaction with common DEGs. (b) miRNA interaction with the common
DEGs network analysis. Red represents common DEGs, purple represents TF, and the green represents miRNA.
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on chemokine receptor binding and glycosaminoglycan
binding. Elevated levels of chemokines promote leukocyte
aggregation in lung tissue and immune responses and exac-

erbate inflammatory injury [37]. High-throughput and
ultrasensitive proteomics platforms showed that the serum
of cytokines and chemokines such as CCL8 and CXCL10

Table 5: Candidate drug compounds for COVID-19 and COPD.

Name of drug DrugBank number Chemical formula P value Genes

Artesunate CTD 00001840 DB09274 C19H28O8 0.011 RPS12

Dexverapamil MCF7 UP DB14063 C27H38N2O4 0.020 PKLR

STOCK1N-35696 PC3 DOWN DB00625 C14H9ClF3NO2 0.018 RPL18A

hydralazine CTD 00006108 DB01275 C8H8N4 0.020 PL18A/RPS12

Gabexate PC3 UP DB12831 C16H23N3O4 0.020 PKLR

Disodium selenite CTD 00007229 DB11127 Na2O3Se 0.003 RPS16/RPL18A/RPLP0/RPL8

FERRIC AMMONIUM CITRATE CTD 00000709 DB09501 C6H11FeNO7 0.009 MRPS9

Table 6: Molecular docking analysis of candidate drugs and target genes.

Name of drug Genes Estimated affinity (kcal/mol)

Artesunate CTD 00001840 RPS12 -7.44

Dexverapamil MCF7 UP PKLR -7.85

STOCK1N-35696 PC3 DOWN RPL18A -7.36

Hydralazine CTD 00006108
PL18A -5.87

RPS12 -6.59

Gabexate PC3 UP PKLR -7.30

Disodium selenite CTD 00007229

RPS16 -3.37

RPL18A -4.48

RPLP0 -2.84

RPL8 -3.68

FERRIC AMMONIUM CITRATE CTD 00000709 MRPS9 -4.74

Figure 5: TF-miRNA network regulating common DEGs. The network contains 29 common DEGs, 43 TFs, and several miRNAs involved
in regulation. Red represents common DEGs, purple represents TF, and the green represents miRNA.
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in COVID-19 patients was significantly higher than in
healthy controls [38]. Similar findings were observed in ani-
mal experiments, where chemokines increased in 3 days
after viral infection, and levels of chemokines such as
CCL8 and CCL2 continued to expand after 7 days despite
a decrease in viral load [39]. Our analysis suggests that
CCL8, CCL18, and other chemokine receptor binding are
enriched in the gene expression profile of patients who suf-
fered COVID-19 and COPD, which may contribute to the
high rate of severe illness and mortality. In the KEGG
enrichment analysis, common DEGs were mainly enriched
in signaling pathways such as tight junction and viral pro-
tein interaction with cytokine and cytokine receptors. Cyto-
kine storms are related to the severity of COVID-19 and
serve as an essential risk factor for COVID-19 death [40].
The chemotactic monocytes produce high levels of chemo-
kines and cytokines and induce delayed release of IFN-α/β
after SARS-CoV-2 infection, resulting in increased apoptosis
of epithelial and endothelial cells, alveolar edema, and vascu-
lar infiltration, which in turn cause respiratory failure
[40–42]. This suggests that excessive release of cytokines is
a major factor in the expansion of inflammation during
COVID-19. An observational study showed that 35 in 37
patients with severe pneumonia developed acute respiratory
distress syndrome and required mechanical ventilation
when they came with COVID-19 [43].

Many TFs have been associated with COPD pathogenesis
in current studies, such as NFKB1, E2F1, YY1, KLF5, FOS, and
HNF4A TP63 [26, 44–50]. These TFs are related to COPD,
especially its acute exacerbations. TFs regulated mucus secre-
tion in COPD patients, such as HOXA5, activated the Notch
signaling pathway, inhibited cupped cell differentiation, and
produced excess airway mucus [51]. A recent study about
the genomics of COVID-19 showed that TFs like FOXC1,
GATA2, YY1, FOXL1, and NFKB1 regulated the inflamma-
tory network in SARS-CoV-2 infections [52]. It suggests more
common TFs in both COVID-19 and COPD. We speculate
that this may contribute to the medical development of
COVID-19 in COPD patients. In particular, specific TFs are
significantly associated with receptor ACE2 in SARS-CoV-2-
infected hosts, such as GATA2 and HNF4A, promoting or
repressing the expression of ACE2 [53]. In addition, we found
that TFs coregulate COVID-19 with miRNAs [54, 55]. In our
target genes, hsa-miR-200 regulates target genes like BAP1,
TNFAIP1, and TF HOXA9. At the same time, data analysis
showed that hsa-miR-200 could also affect ACE2/TMPRSS2
expression [56]. TFs and miRNAs jointly regulate target genes
and are involved in the development and progression of
COPD and COVID-19 comorbidity.

Much current research on SARS-CoV-2 infection drugs is
still at the clinical trial stage. The effectiveness of currently
used antibodies against viral invasion, nucleotide analogs
against viral replication, and protease inhibitors against viral
particle formation for SARS-CoV-2 infections still deserves
further improvement [57]. Our bioinformatic data analysis
shows that artesunate CTD 00001840, dexverapamil MCF7
UP, and STOCK1N-35696 PC3 DOWN may be helpful in
the treatment of COVID-19. Artesunate was an antimalarial
drug for its prominent role in inhibiting proliferation and

inflammation and promoting apoptosis [58]. Studies have
shown that artesunate and its derivatives inhibit SARS-CoV-
2 activity in vitro, which show concentrations 10-160 times
higher in lung tissue than in blood [59, 60]. A domestic obser-
vational clinical study showed that for patients treated with
artesunate, the time to clinical improvement, the time to
SARS-CoV-2 conversions, and the days in the hospital were
significantly shorter than the control group [61]. On a mouse
model of cigarette smoke-mediated COPD, investigators
found that artesunate alleviated cigarette smoke-mediated air-
way remodeling [62]. The above studies suggest that artesu-
nate treatment may benefit patients with COPD and
COVID-19. ACE2 is a receptor of SARS-CoV-2, so
angiotensin-converting enzyme inhibitors and angiotensin
receptor blockers may upregulate the ACE2 levels in hyperten-
sive patients with COVID-19. Alternatives to this kind of drug
need to be sought. Investigators believe that dexverapamil is a
better substitute, and animal experiments have shown that
dexverapamil does not affect ACE2 expression [63].
STOCK1N-35696 PC3 DOWN is a drug for anti-HIV treat-
ment. It has been demonstrated that STOCK1N-35696 PC3
DOWN can inhibit SARS-CoV-2 infection of cells by binding
to cell membrane ACE2 in cellular assays [64]. Gabexate PC3
UP is used chiefly to treat acute pancreatitis [65, 66] and is a
serine protease inhibitor [67]. Studies have shown that gabex-
ate inhibits the inflammatory expression of IL-6 and IL-10 and
attenuates the inflammatory effects of influenza pneumonia
[68]. In any case, these findings will give us therapeutic direc-
tion for COVID-19 in clinical practice.

This study integrates the bioinformatics data of COVID-
19 and COPD, which is expected to give potential therapeu-
tic agents for COVID-19 treatment. We will provide more
data to support these potential drugs in future clinical and
experimental trials.
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