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Background. Senescence is thought to be an imperative effect on the development of cancer. However, few studies pay an attention
to the senescence-associated genes in pancreatic cancer (PC). The prognostic value of senescence-related genes (SRGs) and their
involvement in tumor microenvironment (TME) in the PC remain obscure. The aim of this research was to investigate the
prognostic role of senescence-associated genes and their affection in TME in PC. Methods. The transcriptome and clinical
information of PC patients were obtained from The Cancer Genome Atlas (TCGA) and the Gene Expression Omnibus (GEO)
databases. Two SRG-mediated molecular clusters were comprehensively identified. In total, data from the 285 PC patients were
randomly used to develop a senescence-associated gene signature in the training set and verified in the validation set. Immune
microenvironment analysis pertained to senescence-related genes was performed. Results. A SRG_score including five
senescence-associated genes was established to separate PC patients into two risk groups. High-risk patients had worse overall
survival than low-risk patients. The result of the multivariate Cox regression analysis identified the risk score and stage as
independent prognostic factors for PC patients. Receiver operating characteristic curve (ROC) analysis confirmed the credible
predictive ability of the nomogram. The area under time-dependent ROC curve (AUC) reached 0.746 at 1 year, 0.781 at 3
years, and 0.868 at 5 years in the training set and 0.653 at 1 year, 0.755 at 3 years, and 0.785 at 5 years in the validation set.
Moreover, the SRG_score was associated with TME, tumor mutation burden (TMB), and chemotherapeutic drug sensitivity.
Conclusions. This study found that the novel SRG_score could be an independent prognostic target for PC patients.
Senescence-associated genes had a vital impact on the immune microenvironment and the treatment of PC patients.

1. Introduction

Pancreatic cancer (PC) is one of the most malignant tumors.
According to the statistics of the National Cancer Associa-
tion, the mortality rate of the PC ranks fourth, and the
five-year survival rate is less than 10% [1]. Moreover, there
are no specific manifestations in early PC, which is mainly

characterized by abdominal pain, jaundice, gastrointestinal
symptoms, weight loss, and fatigue. Abdominal mass may
occur in the middle and late stages. Traditional therapy
methods, including surgery, chemotherapy, and radiother-
apy, have a poor effect on the prognosis. In recent years,
immunotherapy has become a hot spot in tumor therapy,
which brings new hope for the patients [2]; however,
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immunotherapy has not yet reached the desired effect in the
treatment of pancreatic cancer. Although there has been
continuous research on the diagnosis and treatment
methods of PC for many years, it is found that the long-
term survival rate of PC patients has not improved signifi-
cantly, so researchers began to explore different areas.

The biological and therapeutic response of PC is further
shaped by numerous forms of regulated cell death, such as
apoptosis, necroptosis, ferroptosis, senescence, and alkalip-
tosis. Among them, senescence serves a key role in the
mechanism of tumor and is characterized by cell cycle arrest,
aging-related phenotype, macromolecular damage, and
metabolic disorder [3]. Nowadays, a great number of studies
have concluded a close relationship between tumors and
senescence [4, 5]. Most tumors occur in the aging period
of the body, and senescent cells are difficult to repair mis-
match genes, which are more likely to lead to the activation
of oncogenic genes and the inactivation of tumor suppressor
genes [6]. Cellular senescence refers to the process that is
mainly manifested in the decline of the ability of cell prolif-
eration and differentiation and physiological function with
the passage of time [7, 8]. Cellular senescence can affect
the therapeutic effect of the tumor by the mechanism of cell
autonomous and cell nonautonomous [9]. It is worth noting
that due to the specific physiological environment of tumor
cells and the complex environment of the organism, the
mechanisms of tumor cell autonomous and nonautonomous
show a variety of biological effects on the regulation of cellu-
lar senescence, having a comprehensive impact on the
occurrence of tumor and the effect of chemotherapy [10],
and can lead to two opposite effects of tumor promotion
or tumor inhibition [11]. Recent study has found that
complement factor B (CFB) could promote proliferation by
preventing cellular senescence and had profound implica-
tion in immunological tumor promotion in PC [12]. A
growing body of studies elucidated that senescence is depen-
dent of its role in the proliferation and migration of PC cells
and has been demonstrated to play an irreplaceable role in
promoting inflammatory cell death of PC [13, 14].

Tumor immune microenvironment (TME) is a compli-
cated and evolving environment and has the advantage of
guiding tumor progression through manipulating immune
functions [15]. Previous evidence also demonstrated that
the induced senescence is correlated with immune cell
intrinsic and extrinsic factors from the tumor immune
microenvironment [16]. Accumulating studies suggested
that senescence of T cell populations plays an important role
in promoting cancer particularly [17, 18]. Implanted with
preneoplastic skin, breast, and prostate cell lines of mouse
and human origins with senescent fibroblasts, the growth
of the tumor is more obvious compared to these cells with-
out the senescent fibroblasts [19, 20]. In the TME, senescent
tumor cells may increase antitumor immune responses by
secreting IL-6, IL-8, and insulin-like growth factor binding
protein 7 (IGFBP7) with the ability of recruiting immune
cells such as T lymphocytes to the tumor site [21]. Above
all, it has great research value for deepening the function
of senescence in TME, tumor growth, and proliferation
and developing more effective anticancer drugs. However,

our understanding of the effect of senescence in the patho-
genesis and TME of PC is still limited. More and more pre-
dictive models are used to predict the prognosis of cancer
patients [22]. Hence, with the development of a molecular
subtype classification pattern based on senescence-related
genes (SRGs) and the features of TME cell infiltration mod-
ulated by multiple SRGs, it is beneficial to understand the
mechanism of PC oncogenesis and predict the response to
the effect of potent anticancer drugs targeting molecules.

2. Materials and Methods

2.1. Data Acquisition.We obtained the transcriptome data of
PC patients from The Cancer Genome Atlas (TCGA) data-
base (https://portal.gdc.cancer.gov/) and the gene expression
files (GSE57495 from the GPL15048 platform and
GSE62452 from the GPL2644) from the Gene Expression
Omnibus (GEO) (https://www.ncbi.nlm.nih.gov/geo/). The
inclusion criteria were as follows: (1) available for overall
survival (OS) of data and senescence-related mRNA expres-
sion; (2) diagnosed as PC; and (3) follow-up data. We
excluded PC patients without detailed follow-ups. The frag-
ments per kilobase of transcript per million (FPKM) values
of TCGA data were changed into transcripts per kilobase
million (TPM) values through performing the R package
“limma.” The transcriptome data were transformed to the
format of Log2½transcripts permillion ðTPMÞ + 1�. To merge
the two datasets and eliminate batch effects, we used the
combat algorithm included in the SVA R package.

2.2. Prognostic- and Senescence-Related Gene Cluster
Analysis and Relationship between Molecular Subtypes with
the Prognostic of PC. Seventy-seven SRGs were obtained
via screening the MSigDB Team (http://www.broad.mit
.edu/gsea/msigdb/). Among these genes, genes with a p value
< 0.05 were considered prognostic- and senescence-related
genes (SRGs) via the univariate Cox regression analysis.
According to prognostic-SRG expression, we applied the con-
sensus unsupervised clustering analysis function of the R
package “ConsensusClusterPlus” to develop a distinct
senescence-related molecular subtype for further analysis. PC
samples were distinguished, and the consensus clustering
algorithm was subjected to adjust the stability and patterns
of molecular subtypes. Gene set variation analysis (GSVA)
was utilized to explore the differences in the biological proces-
sion of SRGs. Furthermore, the Kaplan-Meier curve was gen-
erated to analyze the prognostic difference between different
subtypes by the “survival” and “survminer” R packages.

2.3. Identification of Differentially Expressed Genes among
Subtypes and Functional Annotation. To identify DEGs
between the two senescence subtypes, we performed the
“limma” package in R with the significance criteria of a
fold-change of 2 and an adjusted p value of < 0.05. The Gene
Ontology (GO) analysis and the Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis were exe-
cuted to identify the related gene functions and enriched
pathways using the “clusterprofiler” package in R.
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2.4. Correlations of Molecular Subtypes with TME in PC. The
ESTIMATE algorithm was performed to investigate the
immune and stromal levels of each patient. The abundance
of 23 immune cell types based on all gene expression levels
was calculated by the CIBERSORT algorithm, and we
applied a single-sample gene set enrichment analysis
(ssGSEA) algorithm to investigate the expression of immune
cell infiltration in the PC TME.

2.5. Establishment of the Senescence-Related Prognostic SRG_
model. The senescence-related prognostic SRG_model was
constructed. First, the DEGs associated to PC were entered
into the univariate Cox regression analysis for identifying
the OS. Second, according to the expression of prognostic
SRGs, different subtype groups (senescence gene subtype
A, senescence gene subtype B, and senescence gene sub-
type C) were generated among patients via an unsuper-
vised clustering method. Finally, all PC patients were
randomly assigned to either training set or validation set.
In other words, according to the prognostic- and
senescence-related genes, the absolute shrinkage and selec-
tion operator (LASSO) penalty for analysis and lowest
Akaike information criterion (AIC) value were applied to
identify the best prognostic value of these genes. The genes
screened out via this method were further used to establish
a prognostic SRG_model in the training set. The formula
of risk score was as follows: esum ðnormalized expression
level of each senescence − associated gene × corresponding
regression, where Coefi is the coefficient from the multi-
variate Cox regression analysis and Expi is the relative
expression of each gene, respectively. Based on the optimal
cutoff value of risk score by using the “survminer” R pack-
age, a total of PC patients in the training set were divided
into low-risk (SRG score < median value) and high-risk
(SRG score > median value) groups and then explored
the prognostic value of this system by the Kaplan-Meier
survival analysis. As previously provided, the testing set was
categorized into low- and high-risk groups, and the prognostic
value of patients in these two risk groups was compared using
the similar method of the R “survival” package. Then, time-
dependent receiver operating characteristic (ROC) curves for
1-, 3-, and 5-year survival were used to evaluate the predictive
accuracy of the SRG_score in the two sets.

2.6. Construction and Validation of a Nomogram Scoring
System. A predictive nomogram was developed to predict
three different years of survival ratio based on the outcome
of the risk score and disease stage using the R package
“rms.” Calibration plots were used to describe the predictive
value between the predicted 1-, 3-, and 5-year survival out-
comes and the actual observations.

2.7. Evaluation of Immune Status between the Two Different
Risk Groups. To evaluate the proportions of tumor-infiltrating
immune cells (TIICs), CIBERSORT was applied to quantify
the abundance of 23 infiltrating immune cells in heteroge-
neous samples in the low- and high-risk groups. We also used
box plots to examine the differential expression levels of 23
infiltrating immune cells among the three gene cluster groups.

Meanwhile, we also investigated the correlations between
SRG_score and infiltrating immune cells.

2.8. Mutation and Drug Susceptibility Analysis. The somatic
mutation data of PC patient from the TCGA database was
depicted using the “maftools” R package. We also compared
the tumor mutation burden (TMB) score between high- and
low-risk groups. We also explored the semi-inhibitory
concentration (IC50) values of chemotherapeutic drugs,
including multitarget kinase inhibitors, DNA synthesis
inhibitors, and immunomodulators, to compare the sensitiv-
ity to several chemotherapy drugs related to the selected risk
signature genes by the R “pRRohetic” package [23].

2.9. Statistical Analyses. R software (version 4.1.0) was per-
formed in all statistical analyses. A p < 0:05 was regarded
statistically significant, and all p values were two tailed.

3. Results

3.1. The Expression Level of SRGs in PC. The detailed process
in this study is shown in Figure 1. A total of 77 SRGs were
included in this study. Comprehensive dissection of the
expression level of these genes between some PC samples
and some adjacent nontumor samples from TCGA was
conducted. The results showed a relatively high expression
level of CCND1 and MMP1 in the PC samples. While the
expression level of CREG1, CRYAB, FILIP1L, IFNG, IRF5,
TNFAIP2, TNFAIP3, and VIM in the PC tissues exhibited
significantly lower than that in the normal pancreatic tissues
(Mann-Whitney U test, ∗p < 0:05; ∗∗p < 0:01; ∗∗∗p < 0:001;
p ≥ 0:05, not significant) (Figure 2(a)). Subsequently, we con-
structed a comprehensive network to deeply investigate the
connection and mutual function of the senescence genes in
the PC samples (Figure 2(b)). Survival analysis revealed that
expression levels of CCND1, MMP1, CREG1, CRYAB,
FILIP1L, IFNG, TNFAIP2, TNFAIP3, and VIM had an
impact on the prognosis of PC patients with p values < 0.05
(Figure 2(c)). The results demonstrated that these specific
genes influenced the development of PC and patients’ survival.

3.2. Identification of Senescence Clusters in PC. To better
understand the potential biological molecule of SRG related
to tumorigenesis, we integrated three eligible PC cohorts
(TCGA, GSE57495, and GSE62452) correlated with follow-
up in our study for further analysis. After removing the nor-
mal pancreatic tissues, the prognostic values of 77 PRGs
with p < 0:05 were selected as the threshold for filtering
according to the univariate Cox regression and Kaplan-
Meier analyses. To further investigate the expression charac-
teristics of SRGs in PC, we applied unsupervised clustering
methods to categorize the patients with PC into different
molecular subgroups. By gradually adding the clustering
variable (k) from 2 to 9, we identified k = 2 as the optimal
cluster number to divide the entire cohort into cluster A
(n = 239) and B (n = 46) using a consensus clustering
algorithm (Figures 3(a)–3(c)). According to principal
component analysis (PCA), we observed that there was a sig-
nificant difference between the two clusters (Figure 3(d)).
The Kaplan-Meier curves showed a longer OS in patients
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with cluster B than that in patients with cluster A (log-rank
test, p = 0:003; Figure 3(e)).

3.3. Characteristics of the TME in Distinct Subtypes. To
investigate the biological characteristics of these distinct
molecular clusters, GSVA enrichment analysis was per-
formed, and the results showed that cluster A was not only
significantly enriched in immune-related pathways, includ-
ing Fc gamma R-mediated phagocytosis, transforming
growth factor beta (TGF-β) signaling pathway, regulation
of actin cytoskeleton, focal adhesion, extracellular matrix
(ECM) receptor interaction, and adherens junction, but also
in cancer-related pathways, such as pancreatic cancer, pros-
tate cancer, renal cell carcinoma, chronic myeloid leukemia,
and acute myeloid 1 (Figure 4(a)). To confirm whether SRGs
are associated with the TME of PC, we compared the human
immune cell enrichment scores between cluster A and clus-
ter B using the CIBERSORT algorithm. It was found that the
infiltration levels of most immune cells were obviously

higher in the cluster A than those in the cluster B
(Figure 4(b)). Meanwhile, in the assessment of the TME
score, including stromal score, immune score, and estimate
score, we utilized the R “estimate” package to explore the
immune-related score between the two subtypes. The results
demonstrated that the patients with cluster A have higher
TME score (Figure 4(c)).

3.4. Function Enrichment Analysis and Identification of Gene
Subtypes Based on DEGs. We identified DEGs between the
two subtypes using the R package “limma” and performed
functional enrichment analysis, including GO and KEGG
enrichment analyses. The differentially expressed genes
between the cluster A and the cluster B were partially
expressed at high levels in immune-related biological pro-
cesses (Figure 5(a)). The consequence of the KEGG pathway
analysis indicated that the differentially expressed genes also
were significantly enriched in pathways pertained to
immune aspect (Figure 5(b)), demonstrating that senescence

PC samples from three datasets (n = 285) Validation of SRG_score

Correlation of SRG_score with survival

Correlation of SRG_score with TME

Correlation of SRG_score with mutation
and drug susceptibility

Development of a prognostic nomogram

Identifcation of senescence subtypes

Characteristics of TME in distinct
subtypes

Identifcation of senescence subtypes-
related genes

Unsupervised clustering for senescence
subtypes-related genes

Gene subtype A
Gene subtype B
Gene subtype C

LASSO and multivariate Cox regression
analysis for quantifying senescence

pattern

SRG_score

Cluster A Cluster B

Figure 1: Flow diagram of the study design and analysis of the senescence-related genes in pancreatic cancer patients.
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can be regarded as a pivotal role in the immune regulation of
the TME. Next, we used a consensus clustering algorithm to
categorize patients into gene subtypes A–C based on prog-
nostic DEGs (Figure 5(c)); the Kaplan-Meier curves showed
that patients with gene subtype A had the worst OS, whereas
patients in gene cluster C showed a favorable OS (log-rank
test, p < 0:0001; Figure 5(d)). And the different expression
patterns of these genes in the two clusters, three gene
subtypes, and clinicopathological feature are depicted in a

heatmap (Figure 5(e)). The box plot showed the prominent
differences in the mRNA expressions of these genes among
the three gene subtypes (Figure 5(f)).

3.5. Construction of the Prognostic SRG_score. The SRG_
score was established based on the subtype related DEGs.
Figure 6(a) illustrates the distribution of patients in the two
senescence clusters, three gene subtypes, and two SRG_score
groups. First, we used the “caret package” in R to randomly
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Figure 2: Expressions of senescence-related genes in pancreatic cancer and normal tissues. (a) Differences in the mRNA expression values of
the ten senescence-related genes between normal and pancreatic cancer samples. (b) Interaction of the senescence-related genes in PC. Lines
connecting the senescence-related genes represent their interaction with each other, with the line thickness indicating the strength of the
association between SRGs. Blue and pink represent negative and positive correlations, respectively. The size of each circle represents the
prognostic effect of each regulator and scaled by the p value. (c) The Kaplan-Meier curve analysis of the senescence-related DEGs. The
cohort was divided into two groups (high and low risk) based on the median risk score, which was used as the cutoff value. ∗p < 0:05, ∗∗
p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001; ns: not statistically significant; PC: pancreatic cancer; DEG: differentially expression gene.
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classify the patients into training (n = 143) and testing
(n = 142) groups at a ratio of 1 : 1. LASSO-penalized multivar-
iate Cox analyses were performed to further select optimum
prognostic signature. Finally, a prognostic signature com-
prising five genes, including TRPS1, KCNH3, CDA,
ATP1A3, and FLRT3, was developed according to the min-
imum partial likelihood deviance (Figures 6(b) and 6(c)). A
novel risk score was calculated by multiplying the expres-
sion of each gene and its corresponding coefficient, which
was obtained by multivariate Cox regression analysis. SRG
score = ð0:4339 × expression value of TRPS1Þ + ð−0:3478 ×
expression value of KCNH3Þ + ð0:1856 × expression value of
CDAÞ + ð−0:4464 × expression value of ATP1A3Þ + ð0:2314
× expression value of FLRT3Þ. We divided PC patients into
high and low SRG score groups based on the median value.
Survival analysis suggested that high-risk patients had a
significantly worse prognosis than that in patients with
low scores in training cohort (log-rank test, p < 0:001;
Figure 6(d)) and testing cohort (log-rank test, p = 0:004;
Figure 6(e)). The distributions of risk scores in the two
clusters and three gene subtypes are shown in Figures 6(f)
and 6(g). The Kaplan-Meier analysis demonstrated that
the five included senescence-related genes are dependent
of their roles in the prognosis of PC patients with p values
< 0.05 (Figure S1). There were differences in the expression
level of senescence-related DEGs between the high-risk
group and the low-risk group (Figure 6(h)).

In both sets of cohorts, the distribution of the risk scores
and vital statuses of patients was the same (Figures 7(a) and
7(b)). In addition, to estimate the predictive performance of
this model, time-dependent ROC curves were used to
estimate the validity of the five SR risk assessment tool
constructions in the two cohorts, and the area under time-
dependent ROC curve (AUC) values was calculated at
0.746, 0.781, and 0.868 representing the 1-, 3-, and 5-year
survival rates of SRG_score in the training group, respec-
tively (Figure 7(c)). Similarly, the AUCs were equal to
0.653 at 1 years, 0.755 at 3 years, and 0.785 at 5 years in
the testing group (Figure 7(d)). All the AUC values were
more than 0.6, which implied that the model could achieve
satisfactory predictive accuracy in the two cohorts.

3.6. Evaluation of TME between the High- and Low-Risk
Groups. We performed the CIBERSORT algorithm to inves-
tigate the correlation between the SRG_score and the tumor
immune cell infiltration. The results of Spearman’s test
showed that the SRG_score was positively linked with M0
macrophages, dendritic cells activated, M2 macrophages,
mast cell resting, and neutrophils and negatively correlated
with B cells memory, T cell CD4 memory resting, CD8+ T
cells, naive B cells, and monocytes (Figure 8(a)). A low
SRG_score tended toward a higher degree of immune score,
while although there is no difference between the SRG_score
and stromal score, a stromal score was higher in low SRG_

0.00

0 1 2 3

Time (Years)

4 5 6 7 8

0.25
p = 0.003

0.50
Su

rv
iv

al
 p

ro
ba

bi
lit

y 0.75

1.00

A
B

0

239
Number at risk

46
157 55 21 9 5 2 0 0

19 13 9 6 1 1 035

1 2 3

Time (Years)

4 5 6 7 8SR
G

 cl
us

te
r

SRG cluster
A+
B+

p = 0.003

(e)
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Figure 4: Continued.
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score patients (Figure 8(b)). We also assessed the association
between tumor immunity and the five genes in the proposed
model. We found that several infiltrating/immune cells were
obviously correlated with the five genes (Figure 8(c)).

3.7. Mutation and Drug Susceptibility Analysis. Given TMB
has been identified as a critical role in the development of
tumor, we explored the differences in the distribution of
somatic mutations between high- and low-risk groups.

The top 20 most frequently mutated genes of these two
groups were shown in Figures 9(a) and 9(b), respectively.
Missense mutation was the most common among all muta-
tion types, and KRAS had the highest mutation frequency.
Spearman’s correlation analysis indicated that the SRG_
score elevated with the increase of TMB in the gene subtypes
(R = 0:28, p = 0:00031; Figure 9(c)). The TMB score was
lower in the low-risk group compared to the high-risk group
(Figure 9(d)). We next investigated an association between
the sensitivities of chemotherapy drugs currently used for
the treatment of PC and the SRG_score through the Genomics
of Drugs Sensitivity in Cancer (GDSC) database. We found
that the patients in the high SRG_score group were linked to
lower IC50 value for gemcitabine, while the patients with low
SRG_score were linked to lower IC50 values of chemothera-
peutics such as axitinib. Together, these results showed that
PRGs were related to drug sensitivity (Figure 9(e)).

3.8. Development of a Nomogram to Predict Survival. On the
basis of the multivariate Cox analysis, the forest plot revealed
that both stage and SRG_score were independent risk factors
for OS of PC patients (Figure 10(a)). To establish a quantita-
tive approach for OC prognosis, we integrated the SRG_
score and independent clinical risk feature to construct a
nomogram (Figure 10(b)). The total score was utilized to
predict the 1-, 3-, and 5-year OS of the PC patients. More-
over, the decision curve analysis (DCA) verified that the

nomogram showed superiority in predicting the OS
compared with SRG_score and stage, respectively
(Figure 10(c)). Calibration curves for the probability of OS
at 1, 3, and 5 years showed that there is a satisfactory consis-
tency between actual observation and nomogram-predicted
OS probabilities in the PC cohort (Figure 10(d)).

4. Discussion

Pancreatic cancer is one of most common malignancies of
the digestive system with extremely low 5-year survival rate
[24]. Only a few patients are eligible for resection due to
an advanced stage at the time of diagnosis [25]. Beyond that,
pancreatic cancer is also not sensitive to additional treat-
ments, including radiation, chemotherapy, and immune
checkpoint inhibitor-based (ICI-based) immunotherapy,
because of immunosuppressive and desmoplastic microenvi-
ronment [26]. Consequently, better understanding of the
molecular mechanism of PC might have a fundamental
impact on the treatment response. The advent of pro-
grammed cell death, an active death process, has consider-
ably improved the stability of the internal environment not
only in the normal development of individuals but also in
abnormal physiological conditions or diseases [27]. Senes-
cence tends to occur during the earliest stages of PC [28].
It exerts an indispensable function in tumor development
by secretion of senescence-associated secretory phenotype
(SASP) [29]. However, the synergistic effects of various
senescence-related genes have not yet been fully elucidated
in PC. In the present study, we revealed two distinct molec-
ular subtypes based on the expression of 77 SRGs. We fur-
ther analyzed the prognosis and immune cell infiltration
condition between the two subtypes. Patients with cluster
B were characterized by a better OS, lower immune scores,
and less immune cell infiltration compared to patients with
subtype A. According to the functional enrichment analysis,
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Figure 4: Correlations of tumor immune cell microenvironments and two PC clusters. (a) GSVA of biological pathways between two
distinct clusters, in which red and blue represent activated and inhibited pathways, respectively. (b) Abundance of 23 infiltrating immune
cell types in the two clusters. (c) Correlations between the two clusters and TME score. PC: pancreatic cancer; GSVA: gene set variation
analysis; TME: tumor microenvironment.
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Figure 5: Identification of gene subtypes based on DEGs. (a, b) GO and KEGG enrichment analyses of DEGs among two senescence
clusters. (c) Unsupervised consensus clustering identified three independent subclusters based on the expression levels of the
differentially expressed genes. (d) The Kaplan-Meier curves for OS of the three gene subtypes (log-rank tests, p < 0:001). (e)
Relationships among clinicopathologic feature, the two clusters, and the three gene subtypes. (f) Differences in the expression of SRGs
among the three gene subtypes. DEGs: differentially expressed genes; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and
Genomes; OS: overall survival; SRGs: senescence-related genes.
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antigen processing, and presentation, Fc gamma R-mediated
phagocytosis, TGF-β signaling pathway, regulation of actin
cytoskeleton, focal adhesion, ECM receptor interaction,
and adherens junction were exhibited in SR-A tumors,
which were related to immune aspect. Thus, it is found that
SRGs might serve as potential diagnostic or therapeutic tar-
gets for assessing the clinical outcome and immunotherapy
response of PC. To explore the molecular differences among
different subtypes, we further identified the DEGs of the two
subtypes. A total of DEGs were determined to be associated
with the important prognostic value of PC. After screening
by the univariate Cox regression analysis, log-rank test, and
LASSO Cox method, 5 genes were ultimately regarded to con-
struct the stable and effective prognostic SRG_score and vali-
date its predictive ability, including TRPS1, KCNH3, CDA,
ATP1A3, and FLRT3, which was proved to be efficient by sur-
vival and ROC analysis. These genes had been reported to be
related with other cancers and might be potential novel prog-
nostic factors of PC [30, 31]. In this study, the SRG score could
link senescence and prognosis and showed good performance
in predicting the survival of patients. In addition, for the sake
of the facility of clinical application, a nomogram was pro-
duced including risk score and stage, which were practical
and easy to offer more utility risk stratification to distinguish
the patients with markedly distinct survival outcomes.

Our results also highlight that prognosis, TME, and drug
susceptibility differed significantly between patients with high
SRG_score and those with low SRG_score. It has been reported
that the inability of immune cells in the tumor microenviron-
ment led solid cancers to escape from host immunity, which
indicated that the immune microenvironment plays a key role
in the occurrence and development of cancer [32–35]. These
findings represent a new insight to improve discussions on
patient prognostication and stratification through considering
the microenvironment characteristics and transcriptomics.
Thus, the immune condition and senescence correlation with
their interaction in tumor microenvironment and those relat-
ing to PC progression could bring us to enter an era of discus-
sion with PC with respect to prognosis. In the present study, we
found that subtype A was linked to a higher SRG_score while
subtype B could indicate a lower SRG_score, which implied
that the immune level had an important implication in prog-
nostic outcome.

Nowadays, cancer was considered to be a heterogeneous
disease not only relating to abnormal mutations in tumor
cells but also resulting from their microenvironmental com-
ponent and stromal cell proportions or activation states [36,
37]. Notably, the two major groups of cellular and noncellu-
lar elements in TME are important for tumorigenesis and
tumor types. Besides, the distinct characteristic of TME
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Figure 6: Construction of the SRG_score in the training set. (a) Alluvial diagram of cluster distribution in groups with different SRG_scores
and survival outcomes. (b, c) The LASSO Cox regression model was constructed from the prognostic genes, and the tuning parameter (λ)
was calculated based on the partial likelihood deviance with 10-fold cross-validation. An optimal log λ value is indicated by the vertical black
line in the plot. (d) The Kaplan-Meier analysis of the prognosis between the two groups in training cohort. (e) The Kaplan-Meier analysis of
the prognosis between the two groups in testing cohort. (f) Differences in SRG_score between senescence subtypes. (g) Differences in SRG_
score between gene subtypes. (h) Expression of senescence-related DEGs in the high- and low-risk groups. SRG: senescence-related gene;
DEGs: differentially expressed genes.
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responsible for tumor develops had an essentially effect on
tumor growth, metastasis, and prognosis [38, 39]. TME is
mostly made up of nonmalignant cells of the tumor such
as immune cells, granulocytes, lymphocytes, and macro-
phages, which engage in a variety of immune responses
and activities, and the ECM establishes a sophisticated link
with tumor [40]. Stromal densification, composed of 200
different cellular and noncellular compositions, is a pro-
nounced histological feature of pancreatic cancer and is also
regarded as desmoplastic reaction or TME. During the last
10-15 years, emerging clinical and preclinical studies sup-
ported the pivotal role of TME in pancreatic tumorigenesis
[41]. Regarding anticancer, previous studies also under-
scored that senescence plays a vital role in improving
advanced cancer patients’ clinical outcomes and prognoses
by regulating the TME [42, 43]. We discovered that the char-
acteristics of the TME and the relative abundance of 23
TIICs differed significantly between the two molecular
subtypes and different SRG_scores. This finding suggests
the crucial effect of SRGs in PC progression.

In this study, we systematically investigated the TME
immune cell infiltration level in different two heterogeneous
senescence-related subgroups (A and B). It was found that
the A subgroup possessed a higher content of immune cells
than that of the B subtype. B cells are beneficial for the prog-
nosis of cancer patients due to the effective suppression of
tumorigenicity [44, 45]. Low-risk group has tended toward
higher B cell infiltration levels than those in high-risk group.
In addition, high-risk group was also notable for the B cell
naïve, which plays a master role in promoting tumor. Neu-
trophils are inclined to enhance PC development and pro-
gression [46]. Tumor-infiltrating B cells were also related
to a favorable prognosis for PC. Meanwhile, given the
pivotal effect of immune cells in the transformed pancreas,
various methods of stimulating T cell activity and their anti-

tumor capacity have been explored [47]. Our observation
found that more CD8+ T cells, monocytes, and T cell CD4
memory resting were infiltrated in the TME of the low-risk
group. These findings supported the point that senescence
score was significantly associated with overall survival and
patients in the low senescence score group exhibited a supe-
rior prognosis. Increasing evidence showed the importance
of macrophages in the pathogenesis of PC via influencing
T cell-mediated tumor function based on macrophage
phenotype [48]. Moreover, the M2 phenotype of tumor-
associated macrophages clustering into the stroma is immu-
nosuppressive for cancer patients and promotes cancer
progression [49, 50]. High tumor stromal density of M2
macrophages predicts worse prognosis in cancer patients
and accelerates the metastasis of cancer [51–53]. Next, we
further found that patients with low SRG_score group pos-
sessed lower macrophages M2 level, implying that the
SRG_score holds important value for TME. A high TMB
means more favorable immunotherapy due to a great deal
of neoantigens [54]. Based on our analysis, SRG_score pre-
sented a significantly negative correlation with TMB, indi-
cating that patients with a high SRG score may provide
more profitable outcomes for immunotherapy.

With the in-depth study of adjuvant chemotherapy,
appropriate selection of chemotherapy drugs is conducive to
improve the prognosis of advanced cancer patients [55]. Gem-
citabine has been suggested as the first-line therapy for
patients with advanced PC and improve quality of life [56,
57]. Axitinib could function as a selective inhibitor of VEGF
receptors 1, 2, and 3 [58], and the result of phase I study of axi-
tinib in combination with gemcitabine indicated that this
combination showed performance in encouraging antitumor
activity [59]. Cisplatin is beneficial for metastatic in combina-
tion with gemcitabine [60]. Inhibition of AKT improved the
anticancer cell proliferation, migration, and invasion [61]. In
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Figure 7: The risk survival status chart of PC cohort. (a) The risk survival status plot of the patient in the training cohort and the number of
patients who died increased with the increase in patient risk score. (b) The risk survival status plot of the patient in the testing set. (c) ROC
curves to predict the sensitivity and specificity of 1-, 3-, and 5-year survival in the training set and testing set according to the SRG_score.
PC: pancreatic cancer; ROC: receiver operating characteristic.
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Figure 8: Evaluation of the TME between the two groups. (a) Correlations between SRG_score and immune cell types. (b) Correlations
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Figure 9: Comprehensive analysis of the mutation and drug susceptibility of the SRG_score in PC. (a, b) The waterfall plot of somatic
mutation features established with high and low SRG_scores. Each column represented an individual patient. The upper bar plot showed
TMB, and the number on the right indicated the mutation frequency in each gene. The right bar plot showed the proportion of each
variant type. (c) Spearman correlation analysis of the SRG_score and the three gene subtypes. (d) TMB in different SRG_score groups.
(e) Relationships between SRG_score and chemotherapeutic sensitivity. PC: pancreatic cancer; TMB: tumor mutation burden.
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this study, SRG_score also played an important role in affect-
ing the sensitivity of PC to chemotherapy. It was found in this
study that the two subgroups had significantly distinctive drug
sensitivity in terms of several anticancer drugs.

By exploring the estimate IC50, patients in the low-risk
subgroup showed superiority in sensitizing to axitinib, lena-
lidomide, metformin, methotrexate, vorinostat, and temsiro-
limus as compared with those in the high-risk subgroup,
while patients in the high-risk subgroup may gain more ben-
efit from gemcitabine, cisplatin, bortezomib, dasatinib, pazo-
panib, and cytarabine. According to the results of risk score,
different patients can obtain more effectively sensitive che-
motherapy drugs single or in combination, which more con-
formed to the opinion of individualized treatment in
precision medicine.

This study had several limitations. First, this research
was conducted solely on data from the TCGA and GEO
public databases. Therefore, additional in vivo and in vitro
experimental studies will be conducted to confirm our find-
ings. Furthermore, data on some important clinical variables
such as neoadjuvant chemotherapy and chemoradiotherapy
were unavailable for analysis in most datasets, which
resulted in the need for clinical trials.

5. Conclusions

This study expanded the knowledge about the function of
TME in tumor progression, drug sensitivity, and prognostic

value of SRGs in PC. We also identified the therapeutic
responsibility of SRGs in PC. These findings highlight the
crucial clinical implications of SRGs and provide innovative
strategy for guiding individualized precise therapy for patients
with PC.
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