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Ubiquitous technology, big data, more efficient electronic health records, and predictive analytics are now at the core of smart
healthcare systems supported by artificial intelligence. In the present narrative review, we focus on sensing technologies for
the healthcare of Anorexia Nervosa (AN). We employed a framework inspired by the Interpersonal Neurobiology Theory
(IPNB), which posits that human experience is characterized by a flow of energy and information both within us (within
our whole body), and between us (in the connections we have with others and with nature). In line with this framework,
we focused on sensors designed to evaluate bodily processes (body sensors such as implantable sensors, epidermal sensors,
and wearable and portable sensors), human social interaction (sociometric sensors), and the physical environment (indoor
and outdoor ambient sensors). There is a myriad of man-made sensors as well as nature-based sensors such as plants that
can be used to design and deploy intelligent systems for human monitoring and healthcare. In conclusion, sensing
technologies and intelligent systems can be employed for smarter healthcare of AN and help to relieve the burden of
health professionals. However, there are technical, ethical, and environmental sustainability issues that must be considered
prior to implementing these systems. A joint collaboration of professionals and other members of the society involved in
the healthcare of individuals with AN can help in the development of these systems. The evolution of cyberphysical
systems should also be considered in these collaborations.

1. Introduction

Ubiquitous technology, big data, more efficient electronic
health records, and predictive analytics are now at the core
of smart healthcare systems supported by artificial intelligence
(AI) [1]. Particularly, the advances in health informatics and
sensor technology provide several possibilities for a positive
transformation of traditional medical treatments. For exam-
ple, intelligent systems can provide real-time feedback to elec-
tronic devices, the patient, and the physician to improve the
efficiency in healthcare, reduce costs, relieve the burden of
health professionals, and more importantly, to enhance
human decision making, allowing better and more informed

medical decisions for an optimal treatment [2]. In the present
narrative review, we focus on sensing technologies for the
healthcare of AnorexiaNervosa (AN). AlthoughAN is among
the least commonmental disorders, AN affects approximately
13.6 million people [95% UI: 10.2–17.5 million], mostly
women, and accounts for themost deaths among eating disor-
ders [3–5].Moreover, the illness course inAN is usually a pro-
tracted course that can develop into a severe-enduring
condition with detrimental effects in the health of millions of
women [6, 7].

Instead of a deep dive into the technical aspects of sensor
technology, which is not our area of competence, we provide
an overview of sensing technologies for researchers and
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health professionals in the field of eating disorders. Those
interested to further explore this technology can use the
extensive list of bibliographic references used to elaborate
this manuscript.

This study is divided into two major sections. In the first
section, we introduce sensor technology and the framework
we will use to group the large diversity of sensors. This first
section covers body sensors (implantable, epidermal, wear-
able, and portable), sociometric sensors, and ambient sen-
sors. The second section is dedicated to the
implementation of intelligent systems for smarter
healthcare.

1.1. Sensor Technology. In general terms, sensors capture and
quantify physical phenomena such as temperature [8, 9].
There is a myriad of sensors for various fields such as aero-
space technology, agriculture, food packaging, and
healthcare, among many others. For example, conventional
electrochemical biosensors can detect biofluids in the human
body like lactate [10]. More advanced biosensors, based on
quantum mechanics and nanomaterials (e.g., polymer, gra-
phene, carbon), can detect neurotransmitters like dopamine
or serotonin [11–17]. For example, quantum sensors can be
used to detect photons or electromagnetic fields at the
atomic level, allowing the detection of neural activity [9].

Therefore, to explore the applications of sensors for the
healthcare of AN, we employed a framework inspired by
Interpersonal Neurobiology Theory (IPNB) [18]. IPNB
posits that human experience is characterized by a flow of
energy and information both within us (within our whole
body), and between us (in the connections we have with
others and with nature) [18]. In this regard, what we call
mind, would be “the emergent, self-organizing, embodied,
and relational process that regulates the flow of energy and
information” [18(p. 4)]. In line with this framework, we focus
on sensors designed to evaluate bodily processes (body sen-
sors), human social interaction (sociometrics), and the phys-
ical environment.

1.1.1. Body Sensors. Body sensors can be further divided into
different categories. In this review, we categorize them as
implantable (injectable, insertable, or ingestible), epidermal
(skin-attached), and wearable and portable [19].

(1) Implantable Sensors. The cardiac pacemaker developed
in the 1960s is an illustrative example of one of the first
implantable sensors [19]. Novel heart monitoring devices
include Mobile Cardiac Outpatient Telemetry (MCOT; Car-
dioNet, Inc.), Reveal LINQ (Medtronic), and Implantable
Cardioverter Defibrillators (ICDs) such as Visia AF devices
(Medtronic) for the management of tachyarrhythmia. Car-
diovascular issues in AN are widely recognized and “are
the main cause of morbidity and mortality in AN” [20].
Studies report elevated heart rate variability (HRV), brady-
cardia, and QT interval prolongation (that is, from the Q
wave to the end of the T wave in an electrocardiogram),
the latter two associated with the development of ventricular
arrhythmias [20, 21].

In this regard, a recent study reported a sensor capable of
providing interoceptive stimulation to enhance HRV [22].
Interoception deficits (i.e., the difficulty to accurately iden-
tify internal physiological signals like hunger or satiety),
have been identified as a key symptom in network analysis
of AN psychopathology [23]. Therefore, there is a venue
for further research on the autonomic nervous system in
AN [24] using sensing technology.

Implantable sensors can also be used for neural sensing
(e.g., brain neural recording), intracranial neurostimulation
(invasive deep brain stimulation, DBS), neuromodulation,
and neurofeedback [25–36]. The neuroanatomical areas of
major interest for the treatment of AN have been the brain’s
subcallosal cingulate cortex and the nucleus accumbens
[36–40]. Other reports include the dorsolateral prefrontal
cortex (DLPFC) [26], the bed nucleus of the stria terminalis
[41], and the ventral anterior limb of the capsula interna
[42]. Most of these studies have focused on eating behavior
and weight gain as indicators of successful outcomes [43],
and much less on body image issues [e.g., 40]. First, it is
important to recognize that weight gain is just one of many
other important markers of a successful treatment outcome
[33]. Second, it is also worth noting the caveats of imple-
menting intracranial sensors (e.g., undergoing neurosurgery,
using durable and flexible biocompatible materials, cytotox-
icity) [34], and most importantly the ethical concerns that
can generate these interventions [44, 45].

Implantable brain sensing technologies have raised
many interests among scholars, health professionals,
patients, business companies, and the public through the
media depiction of brain-computer interfaces [46]. How-
ever, it has raised concerns about ethical issues related to
the use and misuse of neurotechnologies [44, 47–55]. In this
regard, it is important to consider both ethical issues and
future directions, prior to adopting implantable neural
devices and neurostimulation [56–58].

Other than heart and brain sensors, there are also
implantable biosensors for tracking diverse biochemical sub-
stances and processes in the human body. There are several
chemical substances of interest (biomarkers) for the treat-
ment of AN. For example, individuals with AN commonly
present an endocrine dysregulation associated with the
hypothalamic-pituitary axis, and more precisely the
hypothalamic-pituitary-gonadal axis and the hypothalamic-
pituitary-adrenal axis [59]. This endocrine dysregulation is
associated with a series of symptoms in AN such as amenor-
rhea and bone loss. Indeed, AN is usually associated with
low bone mineral density and osteoporosis (i.e., skeletal fra-
gility due to bone loss) [60]. In this regard, there are
implantable biosensors for monitoring bone health [61]. In
other words, biosensors can help monitor a series of bio-
chemicals associated with this endocrine dysregulation,
including adipokines and gut peptides related to energy bal-
ance, hunger and satiety (e.g., Leptin, Ghrelin, Neuropeptide
Y, Peptide YY), hormones related to the menstrual cycle,
stress, sleep, and others (e.g., oxytocin, growth hormone,
luteinizing hormone, gonadotropin-releasing hormone, pro-
gesterone, testosterone, estradiol, cortisol, etc.), and even key
processes such as the chronobiology of hormones [2, 62–66].
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Clearly, there are many possibilities to integrate implantable
biosensors in the healthcare and treatment of AN. However,
once again, it is important to evaluate the ethical trade-offs.

Implantable biosensors can also be used in the design of
implantable drug delivery systems to release localized and
controlled amounts of drugs [2]. Thus, a venue of interest
for these biosensors is its use in the design of nanoscale drug
delivery systems, such as plant-based nanotechnology (phy-
tonanotechnology) for the delivery of herbal drugs [67, 68].
For example, there is a “renaissance” in the interest for psy-
chedelics like the nonsynthetic ayahuasca, psilocybin, mes-
caline, peyote [69]. Studies have shown promising effects of
psychedelics on key evolved psychological mechanisms like
cognitive flexibility [70, 71]. Cognitive flexibility (i.e., the
ability to shift perspective to adapt to a changing environ-
ment or a new habitat), and in a more general way, behavior
flexibility (e.g., to anticipate others’ actions and acting
accordingly), have evolutive roots that allow developmental
adaptation throughout life [72–74]. Individuals with AN dis-
play lower cognitive flexibility compared to healthy controls,
although most suitable assessment tools are necessary to bet-
ter explain this deficit and differences [75–77]. Future stud-
ies can evaluate the use of biosensors to design implantable
drug delivery systems that employ psychedelics such as aya-
huasca or psilocybin to enhance key adaptive psychological
mechanisms like cognitive flexibility in AN. A similar
approach can be used in the design of nutrient delivery sys-
tems to improve nutrient bioavailability [78] in individuals
with AN.

Other group of implantable biosensors are ingestible
sensors for gastrointestinal monitoring [19, 79]. For exam-
ple, the SmartPill motility testing system (Medtronic)
includes a smart pill that travels through the gastrointestinal
tract and a software that provides valuable sensor data such
as gastric emptying time, colonic transit time, pH, tempera-
ture, and pressure from the antrum and duodenum (https://
www.medtronic.com/). Other smart pills have been designed
to sample the gut microbiome [80]. Individuals with AN
present a series of gastrointestinal complications including
constipation and bloating, with decreased gastric motility
and delayed gastric emptying as the most common underly-
ing causes, although the causes of gastric dysmotility in AN
require further research [81]. Regarding the gut microbiota,
preliminary results suggest that further research is needed to
better characterize the gut microbiome in AN [82–84].
Future research can use ingestible sensors to monitor these
gastrointestinal complications and provide a better profile
of the gut microbiome in AN.

Finally, an emergent technology of implantable body
sensing that is attracting the attention of scientists, inven-
tors, and companies is smart dust, considered “the future
of humans monitoring” [85]. Based on technologies such
as complementary metal-oxide-semiconductor (CMOS)
and microelectromechanical systems (MEMS), a smart dust
system can consist of thousands of sensor nodes or motes
(below 100 μm of size and ultra-low powered), which can
sense chemicals, light, magnetism, vibration, acceleration,
and temperature [85]. For human monitoring, these sensor
nodes can be inserted in the human body (e.g., by drinking

water), and neural dust and body dust are probably the most
relevant of these technologies for mental healthcare. Neural
dust is expected to provide neural recording and neural
stimulation [85–87]. However, the present size of these
devices (at a millimeter scale) is still a limitation, and brain
activity recording via neural dust is still at the conceptual
and simulation level [85]. Similarly, body dust is expected
to track key biochemical reaction pathways (i.e., metabolic
pathways, signaling pathways) involved in human biological
systems. Different efforts are being made to downscale the
size of these sensors and turn them feasible to produce and
use [88, 89]. This advancement in the miniaturization of
sensing technologies coupled with nanomaterials with out-
standing properties (e.g., graphene composites), optoelec-
tronics (i.e., using light for sensing, recording, stimulating,
and controlling), and quantum sensing [9] for the develop-
ment of optoneuroelectronic or optoelectrophysiology
devices [87, 90] could also help bring innovations in this
area.

In the future, more individuals with AN could eventually
benefit from implantable sensing technology. However, it is
important to highlight that the need to use these technolo-
gies should be evaluated prior to its implementation in the
treatment of AN. In the case they are approved, they should
be used under strict regulation to accomplish ethical guide-
lines and recommendations. Moreover, we suggest that
implantable biosensors should not be used as a standalone
device, but rather used as the first layer of a smart healthcare
system aimed to provide personalized care in the treatment
of individuals with AN.

(2) Epidermal Sensors. Most biosensors are usually mini-
mally invasive and can monitor, for example, glucose levels
[91]. This noninvasive approach is commonly employed to
measure physiological signals like pulse or heart rate by
attaching sensors to the skin [66]. These epidermal sensors
are skin-inspired electronics typically ultrathin, soft, and
stretchable, giving the appearance of a second skin or tattoo
[10, 66, 92]. An example of this technology is the 5x5mm
Lab-on-Skin sensing chip developed by Xsensio (https://
xsensio.com), to track biomarkers in human sweat [93, 94].
Similar soft and flexible electrochemical bioelectronics have
been developed with the appearance of a wristband or band
aid to measure sweat samples [95, 96], wound pH [97],
pulse, breath, and body movement [98], among others [10].

Individuals with AN are known to present altered phys-
iological responses to certain stimuli like high-calorie food
(e.g., ice cream, pizza) [99] or images of human bodies
(e.g., their own body, ultra-thin female bodies) [100]. There-
fore, there are several opportunities to use epidermal sensors
for the continuous measurement of various physiological
responses in AN. For example, electrodermal activity
(EDA) sensors to monitor skin conductance response (gal-
vanic skin response), together with epidermal sensors of
heart rate, and cortisol, can provide overall a continuous
real-time measurement of stress levels, as it can be done with
commercial devices [101]. However, it should be noted that
epidermal sensors are commercially less developed
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compared with wearable commercial sensors that have been
used more frequently [101, 102]. In any case it is important
to highlight that both require a rigorous validation involving
the preprocessing of raw data (e.g., noise reduction), signal
processing, and feature extraction [103, 104].

(3) Wearable and Portable Sensors. Perhaps the most famous
sensors among consumers are wearable sensors such as
smart watches and portable sensors such as smartphones
that incorporate a camera, accelerometer, gyroscope, light
detection, etc. The main difference between the epidermal
sensors mentioned above and the wearable sensors men-
tioned here, are that the former are ultrathin, soft, and flex-
ible skin-attached sensors, whereas the latter are commonly
rigid and not exclusively used in contact with the skin.
Examples of wearable and portable sensor devices include
mobile electroencephalography (EEG), smart glasses
(including eye-tracker glasses), smart contact lens (rigid,
soft), helmet, headband, earring, earpiece, fingertip, rigid
wristband, belt, smart textiles (e.g., bra, shirt, sock), and fork
[19]. As can be seen, there are different wearable and porta-
ble devices, but we will cover just three devices of interest for
the healthcare and treatment of AN, prior to covering wear-
able biosensors.

The first sensor of interest is the portable Sensing Fork
designed by Kadomura et al. [105] as part of a mobile based
system to promote healthy eating among children. What is
interesting about this system is that it integrates several ele-
ments of an intelligent system: a sensor, a gamified smart-
phone application (app), a food type classifier, an eating
action classifier, and feedback to the user [105]. A similar
device, the HAPIfork, has been developed by the company
Hapilabs (https://hapilabs.com).

Mobile EEG sensors are commonly used as a brain-
computer interface (BCI) to track brain neural activity
[106, 107] and to provide neurofeedback in controlled set-
tings [108, 109] or “in the wild” through mobile phone apps
for consumers (e.g., the Muse headband). Although com-
pared to functional magnetic resonance imaging (fMRI), it
has a poorer spatial resolution, it has good temporal resolu-
tion, it is portable, and inexpensive [110]. The United States
has funded research on BCI through “the Defense Advanced
Research Projects Agency (DARPA), the Army Research
Lab, the Air Force Research Laboratory, and other organiza-
tions” [111, 112]. Although most of the funding focused on
neuroprosthetics for the treatment of patients with trau-
matic brain injury, major limb amputation, among others;
it had an enormous impact on the development of compa-
nies interested in commercializing BCI-based solutions
[113]. Among the most popular BCI devices, we have the
open hardware OpenBCI, the Emotiv EPOC, the Muse
headband, and the NeuroSky’s EEG biosensor.

Eye-trackers are other well-known sensors used for var-
ious purposes including research on advertising [114, 115],
gender attitudes [116], body-related attentional bias [117],
and eating disorders [118–121]. Although desktop eye-
tracking devices are by far more precise, wearable eye-
trackers provide descent resolution and sampling rates

[122]. Popular eye-trackers include Pupil Labs glasses, Tobii
glasses, SMI glasses, and low-cost solutions like Remo-
teEye [123].

Finally, wearable biosensors employ a biological recogni-
tion element (receptor) and a transducer (e.g., electrode) to
detect biofluids [124, 125]. Biosensors can use different
receptors, such as enzymatic electrochemical biosensors to
detect glucose, uric acid, lactate, and hydrogen peroxide;
intact living cells to work as cell sensors and microbial sen-
sors; antibodies to act as immunosensors; and even nucleic
acids (e.g., aptamers) to recognize molecules [125]. There-
fore, wearable biosensors can have different functionality,
such as detecting metabolic parameters (e.g., pH, electro-
lytes), physiological signals (e.g., heart rate, skin tempera-
ture), and even toxic chemicals like organophosphate
compounds [126]. A recent review of electrochemical affin-
ity biosensors details a series of devices to detect hormones
and metabolites that can be of relevance for the treatment
of AN, like the aforementioned cortisol, leptin, ghrelin,
growth hormone, estradiol, among others [65].

Wearable biosensor devices worth mentioning include
contact lenses and eyeglasses for tear biosensing [127, 128],
the 61 x 41 x 5.5 mm VivaLINK (https://www.vivalink
.com/) axillary patch to measure temperature, the 90 x 20
x 7.9 mm cardiac patch from the same company, textile sen-
sors (smart textile) for sweat analysis [129], to name just a
few. In fact, the list of wearable biosensors and their applica-
tions is so extensive that we refer the reader to previous work
[19, 66, 103, 124, 126, 130–133].

1.1.2. Sociometric Sensors. The quantity and quality of inter-
personal relationships exert a strong influence in shaping the
individual’s affect, cognition, and behavior. Social network
analysis has been used for a long time to study human social
interaction [134]. Traditional sociometric techniques
employ self-reports about friendships and networks, provid-
ing a valuable but limited view of human interactions [135].
In this regard, computational science methods that include
sensing technology, social physics, and simulations can pro-
vide accurate measures of human social interaction and
remarkably precise predictions of individual and collective
human behavior [136, 137]. Therefore, in this group, we
consider as a sociometric sensor any sensor (i.e., implant-
able, epidermal, wearable, portable) that can provide rele-
vant social data.

For example, the growing adoption of 5G technology
and pervasive wireless sensors in smart spaces (i.e., smart
cities, smart organizations including smart hospitals, and
smart homes) provide a fine-grained collection of social sig-
nals, allowing a continuous remote monitoring of human
daily life activities and social interactions. In this scenario,
sociometric sensor devices have been developed to provide
accurate measures of interpersonal proximity and verbal
communication [138–141]. Sociometric data collected by
sensors in daily life settings can be used to examine peer pro-
cesses and family processes in AN with the possibility to
identify cliques (e.g., group of friends), influence agents in
the network, and key communication and interaction pro-
cesses known to shape social norms within groups [142].
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Similarly, sociometric sensors can be used to examine group
interactions, communication, collaboration, and overall
group dynamics [143] among healthcare professionals
[144]. In sum, methodologies from computer science and
social sciences (i.e., computational social sciences) can be
employed for social data mining (e.g., using sociometric sen-
sors), social signal processing [145], simulation (e.g., agent-
based models), and interventions [146].

1.1.3. Ambient Sensors. In this category, we basically have
outdoor and indoor ambient sensors. Regarding outdoor
sensors, many urban cities are equipped with environment-
embedded sensors to measure physical conditions such as
humidity, temperature, atmospheric pressure, and wind for
weather forecasting. In fact, there are several types of out-
door sensors: soil moisture sensors for irrigation manage-
ment; air quality sensors to track pollution; and city
cameras, including thermal cameras and AI cameras, for
security, traffic management, people counting, monitoring
energy transformers to avoid overheating, etc.

Along with these sensors, we have satellite data, location
data, and a geographic information system (GIS) to, for
example, map the surrounding built environment of citizens.
Although all these data from ambient sensors and geoloca-
tion apparently seem disparate, we can use computer vision,
signal processing, simulation, machine learning and AI, to
analyze a built environment, identify patterns like individual
and group human behavior within cities, and predict future
patterns [147].

The built environment of a neighborhood has an impor-
tant effect on health behaviors. For example, built environ-
ments can facilitate open air physical activity if they
provide suitable infrastructure like walking paths [148]. Sim-
ilarly, healthy food availability and accessibility in living sur-
roundings can facilitate healthy eating [149]. Individuals
with AN struggle with food and it could be even worse if
the surrounding living environment does not provide
healthy food choices (e.g., the so-called “food deserts”) or
food that fits a personally tailored nutrition [150, 151]. Fur-
thermore, high levels of physical activity are common in
individuals with AN [152, 153], and this overactivity has
been linked to thermoregulation and ambient temperature
[154], both of which can be measured with sensors.

Therefore, environment-embedded sensors can be
implemented in indoor and outdoor spaces to measure
diverse conditions like temperature, ambient radio signals
(e.g., Wi-Fi), air quality, location, etc. Then, we can integrate
the information of the built environment that surrounds
individuals with AN with the data of their indoor living con-
ditions, into intelligent systems for healthcare monitoring.
For example, weather forecasting data with previous individ-
ual’s mobility and sleep patterns [155] could predict physical
overactivity in outdoors in AN. An intelligent system that
integrates this information together with real-time air qual-
ity data [156] can send an SMS reminder to the user to avoid
excessive exercise and reduce his exposure to air pollution,
the latter linked to cardiovascular diseases [157, 158]. In a
similar fashion, data from global positioning system (GPS)
and ecological momentary assessment (EMA) has been used

to monitor the food environment and food and eating pat-
terns [159].

As we will see below [160], there are many other oppor-
tunities to integrate ambient sensors in intelligent systems
for healthcare monitoring.

1.2. Intelligent Systems. Intelligent systems for healthcare
monitoring can be designed to relieve the burden of
healthcare professionals, reduce costs, and improve the
treatment of individuals with AN. In this regard, it is impor-
tant to integrate sensor data with traditional data from the
clinical history and physical examination, laboratory tests,
self-reports, etc. For example, Figure 1 shows an intelligent
system that employs machine learning models integrating
sensor data and traditional data (e.g., self-reports) to provide
feedback to the caregiver, physician, and patient.

First, given that we can acquire data from multiple sen-
sors, sensor fusion is recommended to enhance the quality
of the data collected by the sensors [161]. For example, if
the signal of a heart sensor is affected by noise (e.g., move-
ment), heart data from additional sensors can ensure the
reliability of heart monitoring [161]. Similarly, sensor fusion
can be used to obtain data that cannot be obtained by iso-
lated sensor data [161].

Then, the architecture to process these multisensor sen-
sor data can be a decentralized distributed architecture
[162, 163], like a network of nodes with a hierarchical struc-
ture. For example, we can employ Wireless Sensor Networks
(WSNs), which are networks of scattered wireless sensors to
collect diverse physical data from the environment [164],
together with Wireless Body Area Networks (WBANs) that
comprise body sensors located in different parts of the body
[98, 161]. The first layer in this hierarchy constitutes the
edge computing layer that retrieves the data from body sen-
sors, RFIDs, etc. These data are forwarded to a fog comput-
ing layer (e.g., a Raspberry Pi, a smartphone), which acts as
the connecting link between the edge layer and the cloud
computing (the highest layer in this hierarchy), reducing
latency and enhancing efficiency [165]. Finally, cloud com-
puting can be leveraged to perform the most arduous tasks,
including the use of artificial intelligence (e.g., graph neural
networks) for classification and predictive analytics.

Although, the need to use cloud services should be eval-
uated in terms of cybersecurity, privacy, confidentiality, and
environmental sustainability [162]. Moreover, improve-
ments in radio technology (e.g., 6G standard, autonomous,
dynamic, distributed, adaptive wireless networks), will allow
more efficient infrastructures depending less on remote
cloud services. For example, Amazon Web Service (AWS)
Wavelength (https://aws.amazon.com/wavelength/features/)
is a mobile edge computing infrastructure that embeds
AWS services within 5G networks, reducing the need for
mobile applications to heavily rely on remote cloud servers.

There are several examples of a three-layer architecture
for healthcare monitoring. Niu et al. [98] developed the
bodyNET system that employs five wearable epidermal sen-
sor nodes and smart textiles that operate with a smartphone
via Bluetooth, and a cloud server via cellular network, for
pulse detection, breath detection, and body movement
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detection. Similar systems have been used for tracking eating
behavior [166] to predict heart failure [167, 168] and mental
health issues such as depression [169].

However, perhaps the most promising venue of intelli-
gent systems in healthcare is to provide tailored interven-
tions at real-time using mobile health (mHealth)
technology, digital twin (e.g., a digital replica of a patient),
social robotics, or others. That is the case of digital just-in-
time adaptive interventions (JITAIs) or ecological momen-
tary interventions [170–174] that can adopt a human-aware
AI (or human-centered AI, i.e., AI systems that are centered
on the user) approach [175] and a context-aware approach
[168, 174]. In this case, these intelligent systems are
grounded in both evidence-based interventions (e.g., behav-
ior change theories) and continuous learning (e.g., reinforce-
ment learning), to provide a user-friendly experience
tailored to the needs of the user. For example, a JITAIs can
be a gamified mobile app grounded in Cognitive Behavioral
Therapy (CBT), and the mechanisms of behavior change
[176, 177] that delivers reminders or instructions to support
decision making, behavior change, activities of daily life, etc.
These alerts can benefit individuals with AN and those mon-
itoring their treatment [170]. Sensing technologies can be
key in designing these intelligent systems, and these systems
can be integrated together with traditional interventions to
provide a smarter healthcare in AN.

2. Discussion

This review focused on the integration of sensor technology
and intelligent systems, to provide smarter healthcare deliv-
ery systems in Anorexia Nervosa (AN). Through this narra-
tive review, we have seen that to design and deploy these
intelligent systems, we require the effort of professionals
from diverse fields. Domain expertise in the field of eating
disorders, healthcare management, sensor technologies,

internet of things (IoT), big data, data science, artificial intel-
ligence is required, among others. However, global chal-
lenges such as the COVID-19 pandemic or climate change,
have demonstrated that the deployment of intelligent sys-
tems is feasible through cooperation and consilience across
different disciplines, and it fosters innovation scaling [178].

Current interventions that use technology, particularly
mobile technology (i.e., mHealth interventions) for the treat-
ment of eating disorders such as AN are scarce, but the use
of evidence-based techniques, gamification, and the possibil-
ity of remote monitoring and guidance are just some of the
factors that can make them attractive for patients and clini-
cians [179–182]. Therefore, as we have seen previously, there
are several opportunities to integrate sensing technology and
foster innovation in the field of eating disorders, particularly
in healthcare settings. Anorexia Nervosa affects the lives of
millions of women and is a chronic condition that deserves
the careful attention of health professionals but can create
a burden among them. Sensing technologies can relieve this
burden if they are used to not only provide data but also
used particularly if they are embedded in intelligent systems
for smarter healthcare of patients with eating disorders.

In this regard, we highlight the fact that there is a fast
development in the manufacture of new and low-cost elec-
tronic devices, particularly in modern cities like Shenzhen
(China). We have mentioned above that these new technol-
ogies, like polymer and graphene composite-based nanosen-
sors, quantum sensors, will be the future of human
monitoring. As we also mentioned, there are ethical con-
cerns that arise from ubiquitous technologies. However, we
must also mention environmental and sustainability issues
related to the manufacture of sensor technologies. For exam-
ple, intelligent cameras with computer vision capabilities can
be used for healthcare but require higher power consumption
and materials like lithium or gold, that usually have high and
hidden environmental costs. In summary, it is important to

Body sensors

Patient

Sociometric sensors

Ambient sensors

Self-reports Clinical
interviews

EHR

Data Processed
data

Machine
learning

Caregiver

Physician

Figure 1: An intelligent integrated system for healthcare monitoring. Note: EHR=Electronic health records. Image icons are from The Noun
Project, 2022. (https://thenounproject.com/). Royalty-free license.
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recognize along the ethical issues mentioned above, the envi-
ronmental sustainability of the manufacture and use of these
sensors. Future research should consider alternatives to man-
made sensors, such as nature-based biosensors. For example,
plants used as sensors (phytosensors), are a more sustainable
alternative, have higher sensitivity and specificity, and can be
used for human monitoring [183, 184].

Finally, we have shown how sensor technologies can be
integrated in the treatment of AN through the design and
deployment of intelligent systems supported by artificial
intelligence. In this regard, it is worth mentioning that there
are established network standards (e.g., IEEE 802.15.6 for
WBANs), device standards (e.g., IEEE/ISO 11073-10420-
2010 for body composition analysis), and communication
standards (e.g., Proxy Mobile IPv6, PMIPv6 by the Internet
Engineering Task Force, IETF) for these systems. However,
to implement more advanced and future intelligent systems,
we need to design new standards and protocols that require
the collaboration and synergy of different professionals. To
give an example, there is a joint effort to build cyberphysical
social systems, which includes what is called Societies 5.0, a
new paradigm to modeling and managing complex systems
such as societies [185, 186]. The transition towards these
cyberphysical social systems, and more particularly cyber-
physical medical systems [187], urgently requires interdisci-
plinary collaboration [188]. For example, there are
cybersecurity issues, like cyberattacks to healthcare devices
[187], that can be solved with secured protocols and stan-
dards [189, 190]. Importantly, cyberphysical social systems
can be used for behavior monitoring [191], and therefore
they have a great potential for smarter healthcare at the indi-
vidual and population level.

3. Conclusions

In conclusion, sensing technologies and intelligent systems
can be designed and deployed for smarter healthcare for
AN. However, there are technical, ethical, and environmen-
tal sustainability issues that must be considered prior to
implementing these systems. A joint collaboration of profes-
sionals and other members of the society involved in the
healthcare of individuals with AN can help in the develop-
ment of these systems. The evolution of cyberphysical sys-
tems should be considered in these collaborations.
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