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The purpose of this study was to investigate the effect of image preprocessing on radiomic features estimation from computed
tomography (CT) imaging of locally advanced rectal cancer (LARC). CT images of 20 patients with LARC were used to
estimate 105 radiomic features of 7 classes (shape, first-order, GLCM, GLDM, GLRLM, GLSZM, and NGTDM). Radiomic
features were estimated for 6 different isotropic resampling voxel sizes, using 10 interpolation algorithms (at fixed bin width)
and 6 different bin widths (at fixed interpolation algorithm). The intraclass correlation coefficient (ICC) and the coefficient of
variation (CV) were calculated to assess the variability in radiomic features estimation due to preprocessing. A repeated
measures correlation analysis was performed to assess any linear correlation between radiomic feature estimate and resampling
voxel size or bin width. Reproducibility of radiomic feature estimate, when assessed through ICC analysis, was nominally
excellent (ICC > 0:9) for shape features, good (0:75 < ICC ≤ 0:9) or moderate (0:5 < ICC ≤ 0:75) for first-order features, and
moderate or poor (0 ≤ ICC ≤ 0:5) for textural features. A number of radiomic features characterized by good or excellent
reproducibility in terms of ICC showed however median CV values greater than 15%. For most textural features, a significant
(p < 0:05) correlation between their estimate and resampling voxel size or bin width was found. In CT imaging of patients with
LARC, the estimate of textural features, as well as of first-order features to a lesser extent, is appreciably biased by
preprocessing. Accordingly, this should be taken into account when planning clinical or research studies, as well as when
comparing results from different studies and performing multicenter studies.

1. Introduction

Radiomics concerns the management of standard-of-care
digital medical images from different modalities (e.g., com-
puted tomography (CT), magnetic resonance (MR), and
nuclear medicine (NM)), with the aim of mining from them
pathophysiologic changes underlying disease [1]. Specifi-
cally, quantitative morphological and textural characteristics
of tissue can be obtained from medical images by measuring
different mathematical indices, namely, “features.” In addi-
tion to other available data from demographics, pathology,

blood biomarkers, and genomics, radiomic features can be
used for diagnostic, prognostic, or predictive purposes
exploiting statistical or machine learning methods [2].
Despite its potential, radiomics is not yet a widely used
and well-consolidated tool in clinical practice, since it
involves complex processes (e.g., image acquisition and
reconstruction, image segmentation and rendering, features
estimation, databases and data sharing, classification, and
analysis), which need proper application and optimization
in order to obtain reliable results [3, 4]. Moreover, accurate
classification methods using radiomic features and artificial
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intelligence (AI) require large data sets. Given that each step
of the radiomic workflow can introduce noise (i.e., variabil-
ity) in radiomic features estimation, robust radiomic features
should be obtained for adequately training AI predictive
models, mostly when only limited data are available as in
many practical applications [5].

Colorectal cancer is the most common gastrointestinal
malignancy and the third leading cause of cancer-related
death in Western countries. More than half of rectal cancer
patients are diagnosed with locally advanced tumors (locally
advanced rectal cancer (LARC): T3/T4 tumor and/or posi-
tive limphonodes) [6]. For this group of patients, preopera-
tive radiochemotherapy (RTCT) followed by total
mesorectal excision (TME) is the standard of cure [7]. How-
ever, some studies [8, 9] have reported better outcomes for
the not negligible part of the patients who reach pathological
complete response (pCR) after RTCT. In order to apply
organ-preserving strategies, as well as to personalize treat-
ments or to deescalate therapies [10], there is a great interest
in stratifying the risk in patients with LARC, aimed at pre-
dicting pCR by exploiting various techniques which include
radiomics [11]. Moreover, it would be of practical utility
whether this could be accomplished by using the available
CT images acquired for radiation therapy planning
[12–14]. In this regard, we note that previous studies have
assessed the potential role of CT imaging radiomics in rectal
cancer both for contrast-enhanced [12, 13, 15–17] and non-
contrast CT scans [14, 18].

Robustness of radiomic features relies on reproducibility
and repeatability of their estimates considering different
aspects of the radiomic workflow [19, 20]. Previous studies
of CT imaging [21–24], as well as of MR [25–30] and NM
[31–34] imaging, have assessed the reproducibility and
repeatability of radiomic features estimation for various
applications. Phantom and in vivo CT studies have reported
dependence of radiomic feature estimates on various factors
such as scanner type [35, 36], tube current [37–39], acquisi-
tion voxel size [21, 35], reconstruction kernel [40–43], and
number of gray levels [21] or gray level discretization [35].
Shafiq-Ul-Hassan et al. [21], given that in clinical studies
CT images are acquired using different voxel sizes, have sug-
gested that resampling all image data sets with the same iso-
tropic voxel size allows to reduce variability in radiomic
features estimation. This specific preprocessing step can be
accomplished by using different interpolation algorithms.
However, the effect of the used interpolation algorithm on
CT imaging radiomic feature estimate is usually not taken
into account.

Only few studies have investigated the robustness of
radiomic features from CT imaging in rectal cancer. For
instance, Hu et al. [44] have studied feature stability in
repeated CT acquisition, showing that features normalized
to the tumor volume and those calculated as average over
slices exhibit greater values of intraclass correlation coeffi-
cient (ICC) and concordance correlation coefficient (CCC)
with respect to the unnormalized ones. Van Timmeren
et al. [45] have compared two different test-retest situations,
i.e., the analysis of repeated CT acquisitions after 15 minutes
and few days in lung and rectal cancer, respectively. They

have found that 446/542 features have a higher CCC for
the test-retest analysis of the data set of patients with lung
cancer than for patients with rectal cancer, showing the
importance of controlling factors such as scanner, imaging
protocol, reconstruction methods, and time points in a
radiomic analysis.

Therefore, the aim of this study was to specifically assess,
for the first time, the effect of preprocessing—in terms of
resampling voxel size, interpolation algorithm, and bin
width—on radiomic features estimation from CT imaging
in patients with LARC.

2. Material and Methods

2.1. Patients and CT Imaging. Twenty representative patients
with LARC were enrolled in this retrospective study
approved by the internal review board. All patients under-
went clinical CT imaging for preoperative radiotherapy.
CT scanner (manufacturer/model) and acquisition parame-
ters are reported in Table 1.

For each patient, the rectal gross tumor volume (GTV)
was delineated (avoiding the inclusion of air regions) on
CT images by a single experienced radiation oncologist,
using the Eclipse treatment planning system (version 8.6,
Varian, Palo Alto, CA). Then, a binary mask of the GTV
region was created by employing 3D Slicer (version
4.10.2) [46].

2.2. Preprocessing of CT Images. A lower threshold of
-500HU was applied to the CT images, in order to account
for partial volume effect and exclude voxels containing air
from analyses.

The original isotropic voxel size (i.e., the cube root of the
acquisition voxel volume) of CT imaging ranged approxi-
mately from 1.5mm to 2mm across patients. Therefore, in
order to assess any effect of resampling voxel size on radio-
mic features estimation, CT images were resampled to iso-
tropic voxels with size of 1mm, 1.3mm, 1.6mm, 1.9mm,
2.2mm, and 2.5mm. For each resampling voxel size, this
was performed by using 10 different interpolation algo-
rithms available in PyRadiomics (version 3.0) [47] (namely,
BSpline (BS), BlackmanWindowedSinc (BL), CosineWindo-
wedSinc (CWS), Gaussian (G), HammingWindowedSinc
(HWS), LabelGaussian (LG), LanczosWindowedSinc
(LWS), Linear (L), NearestNeighbor (NN), and WelchWin-
dowedSinc (WWS)), at fixed bin width of 5HU.

Table 1: CT scanner and acquisition parameters.

Scanner manufacturer/model GE/LightSpeed RT 16

Scan mode Helical

Tube voltage (kVp) 120

Rotation time (s) 0.7

Tube load (mAs) 140-170

Slice thickness (mm) 5

Pixel size (mm) 0.82-1.27

Matrix 512×512
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Figure 1: The heatmap of each radiomic feature class shows ICC results of effect A analysis, i.e., the assessment of variability in radiomic
features estimate when using different interpolation algorithms, with fixed bin width (i.e., 5HU) and for different isotropic resampling voxel
sizes (i.e., 1, 1.3, 1.6, 1.9, 2.2, and 2.5mm).
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Figure 2: The heatmap of each radiomic feature class shows ICC results of effect B analysis, i.e., the assessment of variability in radiomic
features estimate when using different bin widths, with fixed interpolation algorithm (i.e., BS) and for different isotropic resampling
voxel sizes (i.e., 1, 1.3, 1.6, 1.9, 2.2, and 2.5mm).
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Figure 3: The heatmap of each radiomic feature class shows ICC results of effect C analysis, i.e., the assessment of variability in radiomic
features estimate when using different resampling voxel sizes, with fixed interpolation algorithm (i.e., BS) and for different bin widths (i.e., 3,
4, 5, 6, 7, and 8HU).
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Figure 4: The heatmap of each radiomic feature class shows ICC results of effect D analysis, i.e., the assessment of variability in radiomic
features estimate when using different resampling voxel sizes, with fixed bin width (i.e., 5HU) and for different interpolation algorithms (i.e.,
BS, BL, CWS, G, HWS, LG, LWS, L, NN, and WWS).
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Table 2: CV of radiomic features estimate for each effect of interest (i.e., A, B, C, and D) reported as median (interquartile range) value. The
median (interquartile range) CV was calculated across subjects and resampling voxel sizes, bin widths, and interpolation algorithms, for
effect A/B, C, and D, respectively.

A B C D

Shape

Elongation 0.0 (0.0) 0.0 (0.0) 1.2 (1.2) 1.2 (1.2)

Flatness 0.0 (0.0) 0.0 (0.0) 1.3 (0.7) 1.3 (0.7)

Least axis length 0.0 (0.0) 0.0 (0.0) 1.0 (0.8) 1.0 (0.8)

Major axis length 0.0 (0.0) 0.0 (0.0) 0.6 (0.7) 0.6 (0.7)

Maximum 2D diameter column 0.0 (0.0) 0.0 (0.0) 1.1 (0.5) 1.1 (0.5)

Maximum 2D diameter row 0.0 (0.0) 0.0 (0.0) 0.8 (0.8) 0.8 (0.8)

Maximum 2D diameter slice 0.0 (0.0) 0.0 (0.0) 0.9 (0.7) 0.9 (0.7)

Maximum 3D diameter 0.0 (0.0) 0.0 (0.0) 0.8 (0.4) 0.8 (0.4)

Mesh volume 0.0 (0.0) 0.0 (0.0) 1.7 (1.0) 1.7 (1.0)

Minor axis length 0.0 (0.0) 0.0 (0.0) 0.6 (0.6) 0.6 (0.6)

Sphericity 0.0 (0.0) 0.0 (0.0) 2.8 (0.7) 2.8 (0.7)

Surface area 0.0 (0.0) 0.0 (0.0) 3.1 (0.9) 3.1 (0.9)

Surface volume ratio 0.0 (0.0) 0.0 (0.0) 2.8 (0.7) 2.8 (0.7)

Voxel volume 0.0 (0.0) 0.0 (0.0) 1.6 (0.9) 1.6 (0.9)

First-order

10 percentile 50.5 (103.0) 0.0 (0.0) 9.6 (27.1) 9.8 (27.7)

90 percentile 6.5 (4.0) 0.0 (0.0) 0.9 (0.4) 0.8 (1.0)

Energy 0.6 (0.5) 0.0 (0.0) 97.1 (0.4) 97.1 (0.4)

Entropy 3.1 (1.1) 11.8 (1.6) 0.6 (0.6) 0.6 (0.6)

Interquartile range 8.4 (5.5) 0.0 (0.0) 2.3 (1.1) 2.4 (1.5)

Kurtosis 23.2 (13.6) 0.0 (0.0) 21.8 (24.1) 18.8 (20.8)

Maximum 18.3 (7.0) 0.0 (0.0) 6.5 (1.7) 6.3 (3.8)

Mean absolute deviation 6.4 (4.9) 0.0 (0.0) 2.1 (1.7) 1.9 (1.5)

Mean 11.0 (15.8) 0.0 (0.0) 1.4 (1.8) 1.4 (1.8)

Median 6.8 (5.4) 0.0 (0.0) 1.0 (1.4) 1.2 (1.6)

Minimum 20.1 (11.3) 0.0 (0.0) 20.0 (10.8) 18.0 (12.3)

Range 16.3 (6.7) 0.0 (0.0) 14.8 (8.8) 14.3 (8.9)

Robust mean absolute deviation 7.7 (5.4) 0.0 (0.0) 1.7 (1.1) 1.7 (1.1)

Root mean squared 0.3 (0.3) 0.0 (0.0) 0.0 (0.0) 0.0 (0.0)

Skewness 15.5 (10.5) 0.0 (0.0) 12.3 (13.6) 10.3 (12.5)

Total energy 0.6 (0.5) 0.0 (0.0) 1.5 (0.9) 1.5 (1.0)

Uniformity 10.0 (3.2) 30.6 (0.3) 1.3 (1.1) 1.4 (1.4)

Variance 14.6 (9.5) 0.0 (0.0) 7.8 (5.9) 7.0 (6.2)

glcm

Autocorrelation 27.9 (13.4) 69.8 (0.9) 31.2 (14.6) 30.4 (16.6)

Joint average 16.0 (8.8) 34.4 (0.5) 16.5 (8.9) 15.8 (9.3)

Cluster prominence 36.2 (33.7) 132.6 (0.2) 40.6 (10.9) 39.2 (18.2)

Cluster shade 26.6 (36.4) 104.4 (0.1) 30.4 (9.7) 27.2 (12.2)

Cluster tendency 12.6 (15.7) 70.8 (0.2) 13.2 (4.3) 11.9 (4.7)

Contrast 22.0 (8.9) 70.5 (0.5) 25.6 (8.4) 24.9 (11.2)

Correlation 20.7 (12.1) 0.4 (0.4) 29.8 (4.9) 28.1 (8.6)

Difference average 14.5 (5.9) 35.0 (0.1) 12.7 (3.8) 12.6 (5.0)

Difference entropy 6.5 (3.7) 14.0 (1.9) 5.6 (2.0) 5.5 (2.1)

Difference variance 22.1 (9.0) 70.1 (1.2) 27.1 (9.7) 26.1 (13.1)

Joint energy 39.8 (13.1) 55.0 (1.0) 7.7 (3.0) 8.3 (4.4)

Joint entropy 4.8 (2.0) 12.3 (2.3) 1.3 (0.7) 1.2 (0.8)
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Table 2: Continued.

A B C D

Imc1 36.1 (14.3) 7.3 (6.2) 24.7 (15.3) 23.8 (13.8)

Imc2 8.3 (4.7) 6.0 (5.9) 7.4 (5.2) 7.0 (4.4)

Idm 17.7 (3.7) 23.0 (2.5) 9.3 (3.5) 9.9 (4.0)

Idmn 0.1 (0.2) 0.0 (0.0) 0.2 (0.1) 0.2 (0.1)

Id 12.2 (3.0) 16.2 (1.5) 6.4 (2.3) 6.8 (3.0)

Idn 0.6 (0.6) 0.0 (0.0) 1.0 (0.3) 1.0 (0.4)

Inverse variance 11.9 (4.0) 20.1 (4.2) 6.8 (4.2) 6.8 (3.6)

Maximum probability 46.2 (16.4) 52.2 (3.7) 7.8 (3.5) 8.7 (5.4)

Sum entropy 2.4 (1.0) 10.1 (1.1) 1.6 (0.5) 1.5 (0.5)

Sum squares 14.1 (7.7) 70.7 (0.2) 7.2 (4.3) 6.7 (4.6)

glrlm

Gray level nonuniformity 5.9 (3.2) 25.3 (2.2) 94.1 (1.9) 93.7 (3.3)

Gray level nonuniformity normalized 8.0 (3.1) 29.0 (0.8) 1.4 (1.3) 1.6 (1.5)

Gray level variance 13.0 (12.0) 68.3 (1.1) 8.1 (5.6) 7.4 (5.5)

High gray level run emphasis 28.3 (13.0) 70.0 (0.8) 31.4 (14.8) 30.4 (16.6)

Long run emphasis 26.0 (21.5) 13.6 (6.2) 10.1 (6.5) 10.5 (18.9)

Long run high gray level emphasis 30.5 (21.0) 56.0 (6.7) 36.6 (17.8) 41.8 (19.2)

Long run low gray level emphasis 73.0 (40.4) 52.6 (21.7) 43.2 (28.8) 40.5 (22.6)

Low gray level run emphasis 47.6 (32.6) 40.5 (18.1) 51.4 (26.2) 49.2 (20.3)

Run entropy 2.6 (1.8) 6.8 (0.9) 2.4 (1.2) 2.4 (1.3)

Run length non uniformity 11.4 (7.5) 11.2 (4.3) 90.6 (4.4) 90.1 (6.0)

Run length nonuniformity normalized 7.4 (5.2) 7.0 (2.5) 4.0 (2.2) 3.9 (2.5)

Run percentage 5.1 (3.5) 4.3 (1.8) 2.6 (1.4) 2.6 (2.1)

Run variance 65.8 (26.3) 40.9 (3.3) 35.2 (3.8) 35.2 (9.0)

Short run emphasis 4.0 (2.8) 3.0 (1.2) 1.8 (1.0) 1.8 (1.3)

Short run high gray level emphasis 29.3 (14.2) 72.8 (1.4) 31.1 (14.8) 29.8 (17.2)

Short run low gray level emphasis 44.4 (31.5) 38.4 (17.0) 52.6 (24.8) 51.4 (20.5)

glszm

Gray level nonuniformity 25.6 (10.2) 13.6 (13.7) 58.5 (17.6) 56.6 (16.8)

Gray level nonuniformity normalized 8.6 (3.5) 23.2 (3.3) 6.7 (3.5) 6.3 (3.7)

Gray level variance 19.9 (11.6) 49.4 (6.6) 16.0 (8.9) 13.9 (8.4)

High gray level zone emphasis 30.4 (13.5) 73.0 (1.2) 31.8 (15.4) 31.0 (17.6)

Large area emphasis 72.1 (37.7) 89.9 (12.1) 139.4 (15.1) 138.8 (14.6)

Large area high gray level emphasis 64.1 (51.2) 55.9 (15.9) 146.5 (17.6) 146.4 (12.3)

Large area low gray level emphasis 105.2 (56.7) 115.5 (9.0) 124.0 (25.6) 126.2 (29.4)

Low gray level zone emphasis 49.4 (25.0) 47.5 (13.9) 48.7 (17.8) 46.0 (16.7)

Size zone nonuniformity 39.7 (7.1) 45.5 (14.5) 52.4 (18.7) 52.0 (18.4)

Size zone nonuniformity normalized 22.6 (4.2) 8.5 (5.5) 12.5 (5.0) 13.7 (7.9)

Small area emphasis 32.9 (8.7) 4.4 (2.9) 6.7 (3.0) 7.4 (5.0)

Small area high gray level emphasis 45.3 (12.0) 78.4 (3.3) 29.9 (13.4) 30.3 (17.3)

Small area low gray level emphasis 50.8 (29.5) 45.8 (12.9) 53.5 (16.0) 54.4 (22.7)

Zone entropy 4.5 (1.8) 3.6 (1.7) 6.3 (1.8) 6.0 (1.5)

Zone percentage 29.4 (10.1) 38.0 (13.3) 25.9 (9.8) 26.4 (13.0)

Zone variance 74.8 (38.9) 90.3 (12.4) 140.6 (14.4) 140.2 (13.8)

gldm

Dependence entropy 2.7 (1.4) 2.5 (0.3) 3.6 (0.7) 3.7 (1.1)

Dependence nonuniformity 20.6 (5.7) 26.8 (1.5) 84.6 (5.4) 83.8 (6.9)

Dependence nonuniformity normalized 20.6 (5.7) 26.8 (1.5) 12.7 (4.3) 13.6 (5.5)
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Furthermore, in order to assess any effect of bin width
on radiomic features estimation, different bin width values
of 3HU, 4HU, 5HU, 6HU, 7HU, and 8HU were employed.
Indeed, for all patients, a bin width of 5HU yielded a sug-
gested number of quantization levels between 30 and 130
[4, 33, 48]. Accordingly, only bin width values close to
5HU were considered. This was performed for different
resampling voxel sizes (i.e., 1mm, 1.3mm, 1.6mm,
1.9mm, 2.2mm, and 2.5mm), at a fixed interpolation algo-
rithm (i.e., BS).

All preprocessing of CT images was carried out by using
the open source PyRadiomics library [47] (version 3.0.1)
with Python (version 3.7.3).

2.3. Radiomic Features Estimation. Radiomic features esti-
mation was performed through PyRadiomics (version
3.0.1) [47]. All but 9 radiomic features were calculated in
compliance with the Image Biomarker Standardization Ini-
tiative (IBSI) [49]. For the remaining 9 radiomic features, 7
(namely, voxel volume, mesh volume, maximum probability,
joint energy, sum squares, uniformity, and entropy) were
calculated using IBSI formulas but presented different
names, 1 (i.e., kurtosis) was in accordance with IBSI except
for an offset value (i.e., 3), and 1 (i.e., total energy) was not
defined by IBSI.

For each GTV region and preprocessing parameter
combination (in terms of different resampling voxel sizes,
interpolation algorithms, and bin widths), a total of 105
features, divided into 7 classes, were estimated. In partic-
ular, 14 shape features (shape class), 18 first-order fea-
tures (first-order class), 22 gray level cooccurrence
matrix features (GLCM class), 14 gray level dependence
matrix features (GLDM class, with coarseness parameter
α = 0), 16 gray level run length matrix features (GLRLM

class), 16 gray level size zone features (GLSZM class),
and 5 neighbouring gray tone difference matrix features
(NGTDM class) were estimated. Second-order features
estimation was performed according to the Chebyshev
norm with a distance of 1 pixel. Only 3D versions of fea-
tures were considered. GLCM and GLRLM features were
computed from each 3D directional matrix (i.e., the 13
matrices identified by the 13 unique direction vectors
within the 26 connected neighbouring voxels) and aver-
aged over the 3D directions.

2.4. Statistical Analysis. In this study, four different effects on
radiomic features estimation were assessed:

(a) For each resampling voxel size, with fixed bin width
(i.e., 5HU), effect of using different interpolation
algorithms;

(b) For each resampling voxel size, with fixed interpola-
tion algorithm (i.e., BS), effect of using different bin
widths;

(c) For each bin width, with fixed interpolation algo-
rithm (i.e., BS), effect of using different resampling
voxel sizes;

(d) For each interpolation algorithm, with fixed bin
width (i.e., 5 HU), effect of using different voxel
sizes.

For each aforementioned effect of interest, any variability
in radiomic feature estimate was assessed by means of ICC
analysis [50, 51]. Specifically, the two-way mixed-effect
model, with single rater and absolute agreement options,
was applied to our data [50, 52]. Accordingly, the ICC

Table 2: Continued.

A B C D

Dependence variance 62.8 (12.9) 40.9 (2.4) 21.7 (8.5) 24.2 (9.2)

Gray level nonuniformity 10.0 (3.2) 30.6 (0.3) 97.1 (0.7) 97.0 (0.7)

Gray level variance 14.5 (9.5) 70.8 (0.2) 7.8 (5.9) 7.1 (6.2)

High gray level emphasis 28.0 (13.3) 69.8 (0.9) 31.4 (14.8) 30.4 (16.5)

Large dependence emphasis 57.1 (19.1) 42.4 (1.6) 26.4 (6.5) 27.9 (10.1)

Large dependence high gray level emphasis 55.1 (34.4) 19.6 (2.9) 47.5 (12.9) 50.2 (16.2)

Large dependence low gray level emphasis 98.0 (42.6) 84.3 (3.4) 25.2 (17.5) 25.8 (17.6)

Low gray level emphasis 45.8 (31.2) 40.2 (18.9) 51.0 (26.7) 49.1 (21.4)

Small dependence emphasis 31.8 (6.1) 33.3 (9.7) 22.9 (7.0) 23.1 (6.6)

Small dependence high gray level emphasis 46.1 (12.6) 102.4 (7.9) 31.4 (14.4) 31.4 (15.1)

Small dependence low gray level emphasis 23.6 (13.5) 14.3 (9.7) 67.9 (16.4) 67.6 (16.1)

ngtdm

Busyness 46.2 (35.3) 50.6 (4.1) 51.7 (11.2) 51.8 (14.9)

Coarseness 22.8 (16.7) 0.5 (0.3) 68.1 (5.8) 68.5 (6.4)

Complexity 34.2 (8.6) 89.8 (5.8) 25.9 (13.3) 22.4 (14.2)

Contrast 23.1 (13.8) 48.3 (7.5) 49.7 (10.7) 48.5 (15.9)

Strength 37.2 (19.7) 51.8 (7.5) 31.8 (11.5) 32.0 (17.8)
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Figure 5: Box and whisker plots of CV (%) values for effect A of enrolled subjects. Radiomic features with both median (across subjects and
different resampling voxel sizes) CV ≥ 15% and ICC ≥ 0:75 for each resampling voxel size (i.e., 1, 1.3, 1.6, 1.9, 2.2, and 2.5mm) are shown.
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coefficient was calculated as

ICC = MSR −MSE
MSR + k − 1ð ÞMSE + k/n MSC −MSEð Þ , ð1Þ

where MSR is the mean square for rows, MSE is the mean
square for error, MSC is the mean square for columns, n is
the number of subjects, and k is the number of raters, with
ICC matrices realized considering each resampling voxel size,
interpolation algorithm, or quantization bin width as a rater
and each patient as a subject. ICC, which ranges between 0
(maximum variability) and 1 (minimum variability), expresses
the variability of radiomic feature estimate associated with the
effect of interest (i.e., resampling voxel size, interpolation algo-
rithm, and bin width) with respect to the variance between
subjects. Then, ICC values of radiomic features were nomi-
nally stratified as follows: poor (ICC ≤ 0:5), moderate
(0:5 < ICC ≤ 0:75), good (0:75 < ICC ≤ 0:9), and excellent
(0:9 < ICC ≤ 1) [36, 52, 53].

In order to better characterize the reproducibility of
radiomic features estimation, an additional analysis of the
coefficient of variation (CV) was performed. In particular,
for each radiomic feature and patient, CV was calculated
as the percentage ratio between standard deviation and
mean values of feature estimates obtained by varying each
considered preprocessing item (resampling voxel size, inter-
polation algorithm, or bin width) when the others were kept
fixed.

Any linear correlation between radiomic features esti-
mate and resampling voxel size or bin width was assessed
through a repeated measures correlation analysis, namely,
rmcorr [54]. This statistical technique accounts for noninde-
pendence among observations (i.e., repeated measurements
on the same subject with varying preprocessing) by using
the analysis of covariance (ANCOVA) to adjust for individ-
ual differences.

Statistical analysis was performed by using R Studio
(version 1.2.5033) and R (version 4.0.2) software pack-
ages [55].

3. Results

ICC results for effects A, B, C, and D are reported in detail in
Figures 1–4, respectively. ICC values were excellent for all
features belonging to the shape class. In general, radiomic

features belonging to the first-order class showed good or
moderate ICC values, while features belonging to the other
textural classes (GLCM, GLRLM, GLSZM, GLDM, and
NGTDM) expressed moderate or poor ICC values.

CV of radiomic features estimate for each effect of inter-
est (i.e., A, B, C, and D) is summarized in Table 2, showing
that for a number of features the variability associated with
the four effects of interest can range up to 40% or more.
Moreover, CV of radiomic features estimate for effect A, B,
C, and D is reported in greater detail in Figures 5–8, respec-
tively, showing features with both median (across subjects
and resampling voxel sizes, bin widths, and interpolation
algorithms, for effect A/B, C, and D, respectively) CV ≥ 15
% and ICC ≥ 0:75.

The results of the analysis of the linear correlation
between radiomic features estimate and bin width or resam-
pling voxel size are reported in Tables 3 and 4, respectively.
Most of the textural features (i.e., those belonging to GLCM,
GLRLM, GLSZM, GLDM, or NGTDM classes) were charac-
terized by a significant (p < 0:05, adjusted using Bonferroni
correction) linear correlation with respect to both voxel size
and bin width within the considered range of variation (i.e.,
1-2.5mm and 3-8HU for voxel size and bin width,
respectively).

4. Discussion

Recent studies have suggested a potential role of CT imaging
radiomics in rectal cancer [11–18]. Bibault et al. [12] have
presented a novel approach combining deep learning with
clinical and pretreatment CT imaging radiomic features to
build a model predicting complete pathologic response in a
multicenter cohort of patients with locally advanced rectal
cancer treated with neoadjuvant chemoradiation, followed
by surgery. They have found that this model correctly pre-
dicted complete response after neoadjuvant rectal chemora-
diotherapy in 80% of patients. In another study [14],
pretreatment CT-based radiomic signatures were developed
and validated in two independent cohorts. This imaging bio-
marker has proven to provide a promising way to predict
complete pathologic response and select patients for nonop-
erative management. On the other hand, Hamerla et al. [13]
have reported no evidence of added value of a radiomic
model based on noncontrast CT scans for prediction of
complete pathologic response in locally advanced rectal
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Figure 6: Box and whisker plots of CV (%) values for effect B of enrolled subjects. Radiomic features with both median (across subjects and
different resampling voxel sizes) CV ≥ 15% and ICC ≥ 0:75 for each resampling voxel size (i.e., 1, 1.3, 1.6, 1.9, 2.2, and 2.5mm) are shown.
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Figure 7: Box and whisker plots of CV (%) values for effect C of enrolled subjects. Radiomic features with both median (across subjects and
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cancer. Vandendorpe et al. [15] have aimed to determine
the value of baseline contrast-enhanced CT texture analy-
sis in the prediction of downstaging in patients with
locally advanced rectal cancer, calculating a radiomic score
as a linear combination of radiomic features. By using a
multivariable prognostic score that included this radiomic
score and clinical factors, they have shown that this
approach may lead to more personalized treatment for
each patient. Wang et al. [18] have suggested that, by
supervised modeling, radiomic features from radiotherapy
CT imaging can potentially predict overall survival for
locally advanced rectal cancer patients with neoadjuvant
chemoradiation treatment. Moreover, Huang et al. [17]
have developed and validated a radiomic signature from
contrast-enhanced CT imaging as a complementary tool
to differentiate high-grade from low-grade colorectal ade-
nocarcinoma, with an area under the receiver operating
characteristic curve of 0.725.

There is increasing evidence that preprocessing can
someway impact the estimation of radiomic features derived
from CT imaging [21–23], as well as from MR [25–28] and
NM [31–33] imaging, in various clinical applications [19].

The degree and relevance of this effect can depend on imag-
ing technique/modality and clinical application (e.g., ana-
tomical region and lesion type). In this regard, Traverso
et al. [19] have reviewed radiomic feature reproducibility
and repeatability issues as reported by numerous research
groups for different anatomical sites and various aspects of
the radiomic workflow (i.e., image acquisition and recon-
struction, image preprocessing, and feature extraction). They
have submitted that further investigations are needed on
these issues, possibly expanding the cohort of cancer types
and providing details on feature extraction, image prepro-
cessing, and statistical cutoff values used to distinguish stable
features. To the best of our knowledge, no previous study
has assessed the effect of preprocessing on CT-based radio-
mic features of locally advanced rectal cancer. Moreover,
the effect of the interpolation algorithm was recently
reported worthy of attention both in MR imaging radiomics
of the LARC [25] and in PET imaging radiomics of oesopha-
geal cancer [53]. Thus, we performed a rather comprehen-
sive analysis, which considered multiple preprocessing
elements such as resampling voxel size, interpolation algo-
rithms, and bin widths.
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Figure 8: Box and whisker plots of CV (%) values for effect D of enrolled subjects. Radiomic features with both median (across subjects and
different interpolation algorithms) CV ≥ 15% and ICC ≥ 0:75 for each interpolation algorithm (i.e., BS, BL, CWS, G, HWS, LG, LWS, L, NN,
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13BioMed Research International



Table 3: R coefficient of linear correlation between radiomic features estimates and bin width for different resampling voxel sizes (i.e., 1, 1.3,
1.6, 1.9, 2.2, and 2.5 mm). Significant (p < 0.05, adjusted for Bonferroni correction) correlations are highlighted in bold.

1 1.3 1.6 1.9 2.2 2.5

Shape

Elongation 0.10 -0.11 0.02 0.09 0.05 -0.12

Flatness 0.16 0.15 0.16 0.10 0.11 0.19

Least axis length -0.05 0.15 0.04 0.19 0.15 0.16

Major axis length -0.03 0.19 0.04 0.02 -0.06 0.19

Maximum 2D diameter column 0.13 0.11 0.03 -0.11 -0.07 -0.07

Maximum 2D diameter row 0.15 0.21 -0.09 0.20 0.12 0.01

Maximum 2D diameter slice 0.22 0.00 0.08 0.20 0.19 0.20

Maximum 3D diameter 0.19 0.06 0.09 0.22 -0.02 -0.01

Mesh volume 0.06 0.12 0.02 0.15 0.10 0.07

Minor axis length -0.03 -0.10 0.17 0.10 0.18 0.13

Sphericity -0.17 -0.20 -0.07 0.06 -0.08 -0.10

Surface area 0.01 0.04 0.17 0.10 0.14 0.05

Surface volume ratio -0.03 0.01 0.10 0.12 0.12 -0.18

Voxel volume 0.06 0.01 0.11 0.04 0.04 0.07

First-order

10 percentile 0.01 0.06 0.05 0.05 -0.06 -0.05

90 percentile -0.21 -0.21 -0.23 -0.20 -0.20 -0.20

Energy 0.10 0.17 0.10 0.18 0.13 0.14

Entropy -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

Interquartile range 0.13 -0.20 0.07 0.08 0.01 -0.10

Kurtosis 0.20 0.02 0.08 0.18 0.12 0.20

Maximum -0.11 0.13 0.12 -0.14 -0.07 -0.13

Mean absolute deviation 0.00 0.03 0.05 0.12 -0.16 -0.04

Mean -0.21 -0.18 -0.05 0.09 -0.16 -0.13

Median 0.10 0.09 0.09 0.02 0.13 0.11

Minimum -0.09 -0.21 -0.16 -0.09 -0.08 -0.20

Range -0.04 0.19 -0.07 0.15 0.14 0.08

Robust mean absolute deviation -0.05 0.02 0.08 0.09 -0.18 -0.18

Root mean squared 0.09 0.14 -0.16 -0.15 0.15 0.15

Skewness -0.17 -0.11 0.03 -0.07 -0.10 -0.22

Total energy 0.10 -0.02 0.07 0.12 0.12 0.15

Uniformity 0.98 0.98 0.98 0.98 0.97 0.97

Variance 0.00 -0.03 0.07 -0.09 -0.02 0.09

glcm

Autocorrelation -0.77 -0.76 -0.75 -0.76 -0.71 -0.72

Joint average -0.90 -0.90 -0.89 -0.90 -0.86 -0.89

Cluster prominence -0.55 -0.55 -0.54 -0.56 -0.52 -0.55

Cluster shade 0.62 0.62 0.62 0.63 0.59 0.62

Cluster tendency -0.76 -0.76 -0.78 -0.77 -0.75 -0.77

Contrast -0.81 -0.81 -0.81 -0.80 -0.77 -0.79

Correlation -0.86 -0.82 -0.78 -0.73 -0.64 -0.54

Difference average -0.94 -0.94 -0.93 -0.93 -0.93 -0.93

Difference entropy -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

Difference variance -0.78 -0.78 -0.78 -0.77 -0.74 -0.77

Joint energy 0.94 0.93 0.92 0.92 0.91 0.92

Joint entropy -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

Imc1 -0.93 -0.66 0.14 0.57 0.70 0.76
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Table 3: Continued.

1 1.3 1.6 1.9 2.2 2.5

Imc2 -0.84 -0.85 -0.88 -0.92 -0.94 -0.96

Idm 0.99 0.99 0.99 0.99 0.99 0.99

Idmn -0.13 0.20 0.23 0.19 0.37 0.25

Id 0.99 0.99 0.99 0.99 0.99 0.99

Idn 0.64 0.63 0.63 0.55 0.61 0.53

Inverse variance 0.98 0.99 0.99 0.99 0.99 0.99

Maximum probability 0.95 0.94 0.92 0.93 0.93 0.92

Sum entropy -0.99 -0.99 -0.99 -0.99 -0.99 -0.99

Sum squares -0.77 -0.78 -0.79 -0.78 -0.76 -0.78

glrlm

Gray level nonuniformity 0.75 0.75 0.75 0.75 0.75 0.75

Gray level nonuniformity normalized 0.98 0.98 0.98 0.98 0.98 0.98

Gray level variance -0.77 -0.77 -0.78 -0.77 -0.76 -0.78

High gray level run emphasis -0.77 -0.76 -0.75 -0.76 -0.71 -0.72

Long run emphasis 0.95 0.95 0.94 0.95 0.95 0.95

Long run high gray level emphasis -0.78 -0.77 -0.75 -0.77 -0.71 -0.72

Long run low gray level emphasis 0.69 0.72 0.62 0.68 0.67 0.73

Low gray level run emphasis 0.73 0.74 0.66 0.70 0.67 0.74

Run entropy -0.97 -0.98 -0.98 -0.98 -0.98 -0.98

Run length nonuniformity -0.76 -0.75 -0.75 -0.75 -0.74 -0.74

Run length nonuniformity normalized -0.99 -0.99 -0.99 -0.99 -0.98 -0.98

Run percentage -0.99 -0.98 -0.98 -0.98 -0.98 -0.97

Run variance 0.94 0.94 0.94 0.94 0.94 0.94

Short run emphasis -0.98 -0.98 -0.98 -0.98 -0.98 -0.97

Short run high gray level emphasis -0.77 -0.76 -0.75 -0.76 -0.70 -0.72

Short run low gray level emphasis 0.74 0.74 0.67 0.70 0.66 0.74

glszm

Gray level nonuniformity -0.72 -0.70 -0.66 -0.63 -0.58 -0.51

Gray level nonuniformity normalized 0.95 0.96 0.96 0.97 0.96 0.96

Gray level variance -0.79 -0.80 -0.80 -0.80 -0.78 -0.81

High gray level zone emphasis -0.77 -0.76 -0.75 -0.76 -0.70 -0.71

Large area emphasis 0.53 0.55 0.56 0.56 0.55 0.56

Large area high gray level emphasis 0.63 0.62 0.65 0.57 0.55 0.53

Large area low gray level emphasis 0.44 0.45 0.41 0.44 0.50 0.45

Low gray level zone emphasis 0.80 0.74 0.72 0.75 0.72 0.76

Size zone nonuniformity -0.80 -0.80 -0.80 -0.80 -0.81 -0.80

Size zone nonuniformity normalized -0.94 -0.96 -0.92 -0.90 -0.83 -0.80

Small area emphasis -0.91 -0.95 -0.92 -0.90 -0.84 -0.81

Small area high gray level emphasis -0.76 -0.75 -0.74 -0.75 -0.69 -0.71

Small area low gray level emphasis 0.84 0.70 0.70 0.77 0.72 0.75

Zone entropy -0.95 -0.98 -0.97 -0.97 -0.97 -0.97

Zone percentage -0.93 -0.95 -0.96 -0.97 -0.97 -0.97

Zone variance 0.53 0.55 0.56 0.56 0.54 0.56

gldm

Dependence entropy -0.99 -0.99 -0.99 -0.99 -0.98 -0.98

Dependence nonuniformity -0.79 -0.79 -0.79 -0.80 -0.80 -0.80

Dependence nonuniformity normalized -0.95 -0.95 -0.95 -0.95 -0.96 -0.96

Dependence variance 0.97 0.96 0.95 0.95 0.95 0.95
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We found that preprocessing can substantially bias the
estimation of several CT imaging radiomic features in
patients with LARC. In particular, the estimate of most tex-
tural features (i.e., features of GLCM, GLDM, GLRLM,
GLSZM, and NGTDM classes) showed a relevant depen-
dence (ICC ≤ 0:5) on interpolation algorithm (Figure 1),
resampling voxel size (Figures 3 and 4), or bin width
(Figure 2). Notably, except for a limited number of radiomic
features, results of Figures 1–3 show that the degree of vari-
ability in radiomic features estimation due to interpolation
algorithm/bin width and resampling voxel size is rather
independent of resampling voxel size and bin width, respec-
tively. However, in Figure 4, the heatmaps present a more
pixelated appearance, indicating that the effect of resampling
voxel size on textural features estimation can be more appre-
ciably modulated by the used interpolation algorithm. Fur-
thermore, for numerous textural features, a significant
linear correlation between their estimates and bin width or
resampling voxel size was observed (Tables 3 and 4).

As expected, based on ICC analysis, shape radiomic fea-
tures did not show a relevant dependence on preprocessing
(ICC ≥ 0:9), with median CVs for different resampling voxel
sizes within 0.6%-3.1% (Table 2). Moreover, first-order
radiomic features were characterized in general by higher
ICC values than textural features when varying preprocess-
ing. In this regard, we note that, except for entropy and uni-
formity features, PyRadiomics—according to IBSI
recommendations [49]—calculates intensity-based first-
order features using original images without discretization,
as indicated by the null median CVs for different bin widths
(see Table 2).

ICC analysis allows only to assess how relevant is the
variability in radiomic features estimation due to prepro-
cessing with respect to intersubject variability. Therefore,
we also calculated the CV for each effect of interest (i.e., A,
B, C, and D), in order to obtain additional information on

absolute variation in radiomic features estimate due to dif-
ferent resampling voxel sizes, interpolation algorithms, and
bin widths. We found that several textural features showed
median CVs greater than 40% or more (Table 2). Further-
more, we revealed that even some radiomic features with
high ICC values (≥0.75) can have a nonnegligible variabil-
ity in terms of CV (≥15%) (Figures 5–8). In particular, for
some effects of interest, CV values of single subjects can
range up to 60% or more—this should be considered when
comparing radiomic data from different studies. The
results of Figure 8, regarding a small number of only 6
radiomic features, might suggest a potential reduction in
median CV values across subjects when using the Gauss-
ian interpolation algorithms with respect to the other
interpolation algorithms. The explanation of this potential
effect, which however does not necessarily hold true for all
radiomic features (data not shown), appears not straight-
forward. Indeed, the use of different interpolation algo-
rithms for resampling voxel size can modify radiomic
characteristics of images in a manner rather complex and
not easily predictable [56, 57].

In radiomic analyses, image interpolation at the same
voxel size is a common and recommended practice (espe-
cially in retrospective studies) to reduce any heterogeneity
in acquisition voxel size, while image discretization is
required to make texture features estimation computation-
ally less burdensome [31, 49]. Nonetheless, it should be
noted that these preprocessing steps modify de facto
acquired image data and likely their radiomic characteris-
tics. In particular, the alteration of acquired image data
due to preprocessing can actually yield a possible variation
in the estimates of radiomic features when using different
resampling voxel sizes and bin widths. Therefore, profes-
sionals and researchers executing or planning clinical or
research studies should be aware of this important aspect
of radiomics.

Table 3: Continued.

1 1.3 1.6 1.9 2.2 2.5

Gray level nonuniformity 0.74 0.74 0.74 0.74 0.74 0.74

Gray level variance -0.76 -0.77 -0.78 -0.77 -0.75 -0.78

High gray level emphasis -0.77 -0.76 -0.75 -0.76 -0.71 -0.72

Large dependence emphasis 0.96 0.95 0.94 0.94 0.94 0.94

Large dependence high gray level emphasis -0.82 -0.79 -0.77 -0.80 -0.73 -0.71

Large dependence low gray level emphasis 0.68 0.70 0.58 0.65 0.64 0.67

Low gray level emphasis 0.73 0.74 0.65 0.69 0.66 0.73

Small dependence emphasis -0.95 -0.96 -0.97 -0.97 -0.97 -0.97

Small dependence high gray level emphasis -0.70 -0.71 -0.70 -0.71 -0.67 -0.69

Small dependence low gray level emphasis 0.81 0.62 0.63 0.71 0.48 0.68

ngtdm

Busyness 0.56 0.55 0.55 0.53 0.61 0.61

Coarseness -0.74 -0.38 0.14 0.28 0.25 0.38

Complexity -0.70 -0.69 -0.68 -0.68 -0.67 -0.69

Contrast -0.84 -0.83 -0.83 -0.75 -0.80 -0.81

Strength -0.78 -0.79 -0.77 -0.78 -0.78 -0.82
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Table 4: R coefficient of linear correlation between radiomic feature estimates and resampling voxel sizes for different bin widths (i.e., 3, 4, 5,
6, 7, and 8HU). Significant (p < 0:05, adjusted for Bonferroni correction) correlations are highlighted in bold.

3 4 5 6 7 8

Shape

Elongation -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

Flatness -0.09 -0.09 -0.09 -0.09 -0.09 -0.09

Least axis length -0.04 -0.04 -0.04 -0.04 -0.04 -0.04

Major axis length 0.03 0.03 0.03 0.03 0.03 0.03

Maximum 2D diameter column -0.23 -0.23 -0.23 -0.23 -0.23 -0.23

Maximum 2D diameter row -0.21 -0.21 -0.21 -0.21 -0.21 -0.21

Maximum 2D diameter slice -0.32 -0.32 -0.32 -0.32 -0.32 -0.32

Maximum 3D diameter -0.27 -0.27 -0.27 -0.27 -0.27 -0.27

Mesh volume -0.06 -0.06 -0.06 -0.06 -0.06 -0.06

Minor axis length 0.06 0.06 0.06 0.06 0.06 0.06

Sphericity 0.95 0.95 0.95 0.95 0.95 0.95

Surface area -0.85 -0.85 -0.85 -0.85 -0.85 -0.85

Surface volume ratio -0.86 -0.86 -0.86 -0.86 -0.86 -0.86

Voxel volume 0.12 0.12 0.12 0.12 0.12 0.12

First-order

10 percentile 0.06 0.06 0.06 0.06 0.06 0.06

90 percentile 0.09 0.09 0.09 0.09 0.09 0.09

Energy -0.69 -0.69 -0.69 -0.69 -0.69 -0.69

Entropy -0.41 -0.34 -0.30 -0.25 -0.23 -0.20

Interquartile range 0.04 0.04 0.04 0.04 0.04 0.04

Kurtosis -0.15 -0.15 -0.15 -0.15 -0.15 -0.15

Maximum -0.43 -0.43 -0.43 -0.43 -0.43 -0.43

Mean absolute deviation -0.07 -0.07 -0.07 -0.07 -0.07 -0.07

Mean 0.12 0.12 0.12 0.12 0.12 0.12

Median -0.02 -0.02 -0.02 -0.02 -0.02 -0.02

Minimum 0.57 0.57 0.57 0.57 0.57 0.57

Range -0.60 -0.60 -0.60 -0.60 -0.60 -0.60

Robust mean absolute deviation 0.05 0.05 0.05 0.05 0.05 0.05

Root mean squared 0.12 0.12 0.12 0.12 0.12 0.12

Skewness 0.17 0.17 0.17 0.17 0.17 0.17

Total energy 0.13 0.13 0.13 0.13 0.13 0.13

Uniformity 0.15 0.08 0.05 0.06 0.07 0.04

Variance -0.12 -0.12 -0.12 -0.12 -0.12 -0.12

glcm

Autocorrelation -0.53 -0.53 -0.53 -0.53 -0.53 -0.53

Joint average -0.56 -0.56 -0.57 -0.56 -0.56 -0.56

Cluster prominence -0.52 -0.52 -0.52 -0.52 -0.52 -0.52

Cluster shade 0.56 0.56 0.56 0.56 0.55 0.56

Cluster tendency -0.69 -0.69 -0.69 -0.69 -0.69 -0.69

Contrast 0.77 0.77 0.77 0.77 0.76 0.76

Correlation -0.98 -0.98 -0.98 -0.98 -0.98 -0.98

Difference average 0.89 0.89 0.89 0.89 0.88 0.88

Difference entropy 0.92 0.92 0.92 0.92 0.92 0.92

Difference variance 0.73 0.73 0.73 0.73 0.73 0.73

Joint energy -0.45 -0.68 -0.72 -0.76 -0.73 -0.77

Joint entropy -0.36 -0.02 0.24 0.42 0.51 0.58

Imc1 0.01 0.43 0.64 0.74 0.80 0.83
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Table 4: Continued.

3 4 5 6 7 8

Imc2 0.01 -0.35 -0.56 -0.68 -0.76 -0.81

Idm -0.93 -0.93 -0.93 -0.93 -0.92 -0.92

Idmn -0.76 -0.76 -0.76 -0.75 -0.76 -0.77

Id -0.93 -0.93 -0.93 -0.93 -0.93 -0.93

Idn -0.81 -0.82 -0.82 -0.81 -0.82 -0.82

Inverse variance -0.92 -0.92 -0.91 -0.91 -0.89 -0.87

Maximum probability 0.17 -0.29 -0.44 -0.42 -0.46 -0.64

Sum entropy -0.92 -0.91 -0.90 -0.90 -0.89 -0.89

Sum squares -0.21 -0.21 -0.21 -0.21 -0.21 -0.21

glrlm

Gray level nonuniformity -0.66 -0.66 -0.66 -0.66 -0.67 -0.67

Gray level nonuniformity normalized 0.24 0.22 0.23 0.27 0.30 0.32

Gray level variance -0.17 -0.19 -0.22 -0.23 -0.25 -0.27

High gray level run emphasis -0.53 -0.53 -0.53 -0.53 -0.53 -0.52

Long run emphasis -0.92 -0.91 -0.91 -0.91 -0.90 -0.90

Long run high gray level emphasis -0.63 -0.66 -0.68 -0.70 -0.71 -0.73

Long run low gray level emphasis 0.73 0.68 0.62 0.54 0.49 0.43

Low gray level run emphasis 0.74 0.72 0.68 0.63 0.62 0.59

Run entropy -0.93 -0.94 -0.95 -0.95 -0.95 -0.95

Run length nonuniformity -0.71 -0.71 -0.72 -0.72 -0.73 -0.73

Run length nonuniformity normalized 0.94 0.94 0.95 0.95 0.95 0.95

Run percentage 0.94 0.94 0.95 0.95 0.95 0.95

Run variance -0.91 -0.90 -0.90 -0.90 -0.89 -0.89

Short run emphasis 0.94 0.94 0.94 0.94 0.94 0.94

Short run high gray level emphasis -0.50 -0.50 -0.49 -0.48 -0.47 -0.46

Short run low gray level emphasis 0.75 0.72 0.69 0.64 0.64 0.60

glszm

Gray level nonuniformity -0.75 -0.78 -0.81 -0.83 -0.84 -0.85

Gray level nonuniformity normalized 0.78 0.85 0.86 0.86 0.86 0.87

Gray level variance -0.55 -0.59 -0.63 -0.64 -0.66 -0.65

High gray level zone emphasis -0.51 -0.50 -0.49 -0.48 -0.47 -0.46

Large area emphasis -0.42 -0.44 -0.46 -0.44 -0.44 -0.44

Large area high gray level emphasis -0.50 -0.50 -0.51 -0.51 -0.51 -0.51

Large area low gray level emphasis -0.38 -0.39 -0.40 -0.39 -0.39 -0.39

Low gray level zone emphasis 0.76 0.73 0.71 0.66 0.65 0.61

Size zone nonuniformity -0.81 -0.82 -0.81 -0.79 -0.77 -0.74

Size zone nonuniformity normalized 0.95 0.93 0.92 0.93 0.93 0.93

Small area emphasis 0.94 0.91 0.90 0.90 0.90 0.90

Small area high gray level emphasis -0.36 -0.34 -0.31 -0.27 -0.24 -0.22

Small area low gray level emphasis 0.75 0.73 0.73 0.67 0.68 0.64

Zone entropy -0.97 -0.97 -0.97 -0.97 -0.97 -0.97

Zone percentage 0.96 0.96 0.96 0.96 0.95 0.95

Zone variance -0.42 -0.44 -0.46 -0.44 -0.44 -0.44

gldm

Dependence entropy -0.97 -0.97 -0.98 -0.97 -0.98 -0.98

Dependence nonuniformity -0.73 -0.72 -0.72 -0.72 -0.72 -0.72

Dependence nonuniformity normalized 0.94 0.94 0.93 0.92 0.92 0.91

Dependence variance -0.92 -0.92 -0.93 -0.93 -0.92 -0.93
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Given the revealed nonnegligible effect of preprocessing
on the estimate of CT radiomic features in LARC, some cau-
tion regarding this aspect is recommended in clinical studies
[23, 33, 37], mostly when considering textural radiomic fea-
tures [58]. This emphasizes the importance of clearly identi-
fying, assessing, and reporting all the processes involved in
the applied radiomic workflow [3–5, 11, 19, 31].

5. Conclusions

In patients with LARC, the estimate of CT imaging-derived
texture radiomic features, as well as of intensity-based first-
order radiomic features to a lesser extent, is appreciably
biased by resampling voxel size, interpolation algorithm,
and bin width. Accordingly, toward optimization and stan-
dardization of radiomic methods, this should be taken into
account when planning a clinical study, as well as when per-
forming multicenter studies.
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