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Background. This study is aimed at constructing a risk signature to predict survival outcomes of ORCA patients. Methods. We
identified differentially expressed autophagy-related genes (DEARGs) based on the RNA sequencing data in the TCGA
database; then, four independent survival-related ARGs were identified to construct an autophagy-associated signature for
survival prediction of ORCA patients. The validity and robustness of the prognostic model were validated by
clinicopathological data and survival data. Subsequently, four independent prognostic DEARGs that composed the model were
evaluated individually. Results. The expressions of 232 autophagy-related genes (ARGs) in 127 ORCA and 13 control tissues
were compared, and 36 DEARGs were filtered out. We performed functional enrichment analysis and constructed protein–
protein interaction network for 36 DEARGs. Univariate and multivariate Cox regression analyses were adopted for searching
prognostic ARGs, and an autophagy-associated signature for ORCA patients was constructed. Eventually, 4 desirable
independent survival-related ARGs (WDR45, MAPK9, VEGFA, and ATIC) were confirmed and comprised the prognostic
model. We made use of multiple ways to verify the accuracy of the novel autophagy-related signature for survival evaluation,
such as receiver-operator characteristic curve, Kaplan–Meier plotter, and clinicopathological correlational analyses. Four
independent prognostic DEARGs that formed the model were also associated with the prognosis of ORCA patients.
Conclusions. The autophagy-related risk model can evaluate OS for ORCA patients independently since it is accurate and
stable. Four prognostic ARGs that composed the model can be studied deeply for target treatment.

1. Background

Death rates are increasing for oropharyngeal cancer overall
by 0.5% per year from 2009 to 2018. There is an estimated
number of 54,010 new cases of oropharyngeal cancer
(accounting for about 2.8% of new cancers), and 10,850 will
die of it (accounting for about 1.8% of all deaths from
cancer) in 2021 in the United States [1]. Among all oropha-
ryngeal cancer patients, approximately half of those occur
specifically in the oral cavity and were called oral cancer
(ORCA) [2]. All over the world, 377,713 people were diag-
nosed with oral cancer in 2020, and the cancer caused
177,757 deaths; it means there was one person who died
due to ORCA every 3 minutes [3]. The treatment and prog-

nosis of ORCA patients relied on the staging system and
conventional prognostic factors used in clinical practice,
for example, the tumor-node-metastasis (TNM) staging
system was the most important and well-known prognostic
factor for ORCA patients [4], but the staging system was
not accurate enough and prognostic factors were inadequate
and nonspecific, leading to discouraging overall prognosis.
Recent statistics show that the overall 5-year survival rate
for ORCA patients was 52.0% in China [5]. Therefore,
searching molecular prognostic markers which could be
incorporated into the prognostic system is significant; they
can benefit predicting clinical outcomes and targeted ther-
apy. This study attempts to refine the prognostic signature
of ORCA and used it in the clinical setting.
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Autophagy is a process that can circulation and reuse
cellular components; it is nonspecific. Autophagy-related
genes (ARGs) are molecules that participate in autophagy.
In recent studies, many researchers deemed that autophagy
is an important process in ORCA [6–8]. Most of the molec-
ular mechanisms which are involved in autophagy regula-
tion deeply participate in signaling pathways that assumed
significant roles in ORCA control [9, 10]. For example,
autophagy is a significant AKT/mTOR pathway target, and
the antioncogene that negatively regulates mTOR (such as
AMPK and PTEN) will activate autophagy. In addition,
many autophagy-inducing proteins are either oncoproteins
or tumor suppressor proteins [11]. Some studies have
proven that the autophagy inhibitor can enhance efficacy
against aggressive ORCA [12, 13]. However, how to predict
the prognosis of ORCA patients by several ARGs is still
unclear. Therefore, our study utilized several screened ARGs
to establish the prognostic risk model of ORCA. In this
study, the relationship between prognostic ARGs and clini-
copathological features in 127 ORCA patients were evalu-
ated, and an autophagy-related signature was constructed
to predict survival for ORCA patients. The risk score model
had been verified from several aspects, and we proved its
accuracy; we also verified the prognosis value of each ARG
that comprised the autophagy-related risk model and proved
them as prognostic biomarkers in ORCA; our report may
shed light on evaluating the prognosis and targeting treat-
ment of ORCA.

2. Methods

2.1. Data Acquisition. In total, 232 genes presently known as
autophagy-related genes (ARGs) were downloaded from
HADb (Human Autophagy Database, http://autophagy.lu/
). RNA-seq data and clinical features of 127 ORCA patients
and 13 nontumor samples were obtained from the TCGA
website (The Cancer Genome Atlas database, https://tcga-
data.nci.nih.gov/tcga/).

2.2. Identification of DEARGs and Functional Annotation.
The “limma” package in R was applied to compare differen-
tial expressions between ORCA and nontumor counterparts;
the criteria is false discovery rate ðFDRÞ < 0:05 and ∣log2Fo
ldChange∣ ð∣log2FC ∣ Þ > 1. Then, we performed enrichment
analyses of Gene Ontology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) for DEARGs to find the
major biological attributes. The R packages of ClusterProfiler
and org.Hs.eg.db were used to perform GO and KEGG func-
tion enrichment analyses. The visualization of results was
implemented with the R “ggplot2” package. STRING database
(https://string-db.org/) was used to construct the protein–pro-
tein interaction (PPI) network of DEARGs. Cytoscape soft-
ware visualized the interaction of the PPI network.

2.3. Construction and Verification of ARG-Based Prognostic
Risk Model. Univariate Cox proportional risk regression
analysis was performed to screen prognostic ARGs. All
statistically significant prognostic ARGs were selected as
candidates for multivariate Cox regression analysis and used

to construct the prognostic risk model. The multivariate
analysis provided the regression coefficient of prognostic
ARGs in the risk score model.

The risk score = 〠
i=1,2,⋯,n

regression coefficient geneið Þ

× expression value of geneið Þ:
ð1Þ

The median risk score was determined as the threshold
to divide the ORCA patients into the high- or low-risk
group. Four risk genes comprising the risk model were used
to construct the nomogram. We constructed a nomogram
based on 4 independent prognosis-related ARGs to predict
survival rates of patients at 1, 2, and 3 years via the rms
package in R 4.0.1.

The predictive accuracy of the risk models was evaluated
by the receiver-operator characteristic (ROC) analysis;
besides, we compared survival probability of high-risk and
low-risk groups using the “ggplot2” package in R. We also
assessed the association between the prognostic risk model
and classical clinical parameters (such as tumor grade, path-
ological stage, and T/N classification) by Cox proportional
hazard regression analysis.

2.4. Validation for Prognostic Value of 4 Risk ARGs which
Formed the Model. The relationships between expressions
of 4 independent prognostic-related ARGs (WDR45,
MAPK9, VEGFA, and ATIC) and OS of ORCA patients were
evaluated individually by Kaplan–Meier survival curves. We
also observed the mRNA expression pattern of the 4 genes in
ORCA and normal tongue tissues via the Oncomine data-
base (https://www.oncomine.org/).

To explore the roles of 4 risk ARGs in ORCA, a single-
gene gene set enrichment analysis (GSEA) was performed.
GSEA was conducted using a molecular signature database’s
(MSigDB’s) c2.cp.kegg.v7.0.symbols.gmt gene sets in GSEA
3.0 software to identify gene sets that were significantly
correlated with the expression of risk genes. We exhibited
the top 10 biological processes most associated with the
expression of the 4 risk genes.

3. Results

3.1. Identification of DEARGs. The expression profile of 232
ARGs in 127 ORCA tissue samples and 13 normal mouth
samples were compared and analyzed. Finally, there were
36 differentially expressed ARGs including 29 upregulated
ARGs and 7 downregulated ARGs with a threshold of ∣log2
FoldChange ∣ >1. The volcano plot, heat map, and box plot
visualized the expression pattern of all DEARGs between
ORCA and normal tissues (Figures 1(a)–1(c)). We listed all
DEARGs in Table 1, including the log2FoldChange and
statistical significance.

3.2. Functional Annotation for All DEARGs. In Figure2(a),
all DEARGs are linked to form a protein-protein interaction
network. The DEARGs are enriched in several biological
processes (BP) such as autophagy and protein localization.
In the molecular function (MF) term of GO analysis, some
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protein binding-related functions including “protease bind-
ing,” “integrin binding,” and “ubiquitin protein ligase bind-
ing” were significant roles these DEARGs played. For
cellular components (CC), “focal adhesion,” “vacuolar mem-
brane,” and “cell substrate” were significantly enriched
(Figure2(b)). KEGG analysis exhibited that the DEARGs
were significantly associated with apoptosis, platinum drug
resistance, and hepatitis C (Figure2(c)).

3.3. Establishment of Prognosis Prediction Model with ARGs.
We performed the univariate Cox proportional hazard
analysis on all ARGs; a total of 13 ARGs were significantly
associated with the prognosis of ORCA patients (p < 0:05)

(Figure 3(a)). Then, these prognostic ARGs entered the multi-
variate Cox regression analysis, and finally, 4 of them (WDR45,
MAPK9, VEGFA, and ATIC) were screened as independent
prognostic genes to construct the prognosis prediction model
(Figure 3(b)). For each ORCA patient, the risk score = ð−
0:5801 × expression value of WDR45Þ + ð0:8974 × expression
value of MAPK9Þ + ð0:2978 × expression value of VEGFAÞ +
ð0:6182 × expression value of ATICÞ. We divided the 126
ORCA cases into high- or low-risk groups according to the
median values of the risk score. In Figure 3(c), the above 4 inde-
pendent prognostic ARGs were incorporated into a nomogram
model for predicting the individualized probability of survival
times in clinical practice in ORCA patients. The score of every
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Figure 1: Differentially expressed autophagy-related genes (DEARGs) in ORCA tissues. (a) Volcano plot of autophagy-related genes
(ARGs) in ORCA. Green: downregulated genes; red: upregulated genes. (b, c) Heat map and boxplot of the expression levels of 36
DEARGs in ORCA. ORCA: oral cancer.
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ARG can be found through the point scale located at the top of
the nomogram. Then, the points of each ARG were summed,
thereby estimating survival probability at 1, 2, and 3 years.

3.4. Testing the Risk Model. Patients with ORCA were strat-
ified into high- and low-risk groups based on the median
risk score, and Kaplan-Meier plots indicated that patients
in the low-risk group had a significantly better prognosis
(p = 4:425E − 05) (Figure 4(a)). The results of ROC curves
revealed that this prognostic risk model had good predictive
performance in predicting the overall survival of ORCA
patients with areas under the ROC curve (AUCs) of 0.742
(Figure 4(b)). Figures 4(c)–4(e) indicate the risk distribution
of patients, survival time of patients in high- and low-risk

groups, and expression profile heat map of the 4 ARGs that
formed the risk model.

We grouped the patients by age, sex, histological grade,
clinical stage, and T/N classification to explore the associa-
tion between the risk model and clinicopathological features.
In Figure 5, we can find a trend of risk scores which were
higher in patients classified with high grade, advanced path-
ologic stage, and terminal T/N stage (Figure 5(a)). The
expressions of MAPK9, VEGFA, and ATIC all had a trend
of being upregulated in patients with high grade, advanced
pathologic stage, and terminal T/N stage; in addition, the
expressions of WDR45 had an opposite trend
(Figures 5(b)–5(e)). The expression regularity of 4 indepen-
dent prognostic ARGs that comprised the risk model in

Table 1: All DEARGs, screened between normal mouth tissues and oral cancer tissues with criteria of FDR < 0:05 and ∣log2FoldChange ∣ >1.

Gene Log2FC p value FDR

IFNG 1.69529 0.02038 0.03289

PRKN -1.97667 5.69E-06 5.30E-05

SERPINA1 1.87471 0.00030 0.00100

TP63 1.07599 0.00015 0.00058

ITGB4 1.73712 6.51E-07 9.53E-06

NLRC4 1.25024 6.76E-05 0.00031

FOS -1.27976 0.00098 0.00276

NRG3 -3.00689 0.00871 0.01666

DRAM1 1.46342 1.35E-06 1.69E-05

SPNS1 1.13948 1.15E-05 9.07E-05

TNFSF10 1.44512 0.00015 0.00059

CTSB 1.04712 4.40E-05 0.00021

ITGA6 2.50098 1.04E-07 2.99E-06

EGFR 1.76767 0.00033 0.00109

HSPB8 -1.07785 0.00166 0.00420

APOL1 2.08150 1.27E-05 9.30E-05

NKX2-3 -2.06465 3.12E-07 4.92E-06

BAK1 1.13452 2.07E-05 0.00013

IRGM 2.29365 0.00536 0.01098

BID 1.23911 2.67E-05 0.00015

SPHK1 1.54880 3.17E-06 3.61E-05

ITGB1 1.46611 1.11E-05 9.07E-05

RGS19 1.27753 9.97E-08 2.99E-06

NRG2 -3.60739 9.26E-09 1.90E-06

NRG1 2.20708 1.23E-05 9.30E-05

VMP1 1.13398 1.88E-05 0.00012

BIRC5 2.00367 1.17E-07 2.99E-06

ARSB 1.22169 7.62E-05 0.00035

CTSL 1.85491 2.84E-07 4.92E-06

CDKN2A 3.39449 0.00511 0.01069

IL24 4.48142 7.85E-08 2.99E-06

MAP1LC3C -2.03068 8.33E-05 0.00037

HIF1A 1.17363 4.80E-06 5.01E-05

ITGA3 2.34824 1.04E-07 2.99E-06

FADD 2.08295 1.12E-07 2.99E-06

EIF2AK2 1.61684 6.43E-08 2.99E-06
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Figure 2: Continued.
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patients with different clinicopathological features was in
accordance with their expression trend in different risk
groups. The expressions ofMAPK9, VEGFA, and ATIC were
higher in the high-risk group, and the expressions of
WDR45 was higher in the low-risk group (Figure 4(e)). It
proved that the risk prognostic model was better than any
other clinicopathological features for predicting the progno-
sis for ORCA patients.

The results in Table 2 suggested that our prognostic risk
model could independently predict the prognosis of ORCA.
Although T classification was also significantly associated
with survival, ROC analysis demonstrated that T classifica-
tion (AUC = 0:681) was not as reliable as the risk score
(AUC = 0:742).

3.5. Validation of 4 Risk Genes that Comprised the Risk
Model. WDR45, MAPK9, VEGFA, and ATIC were 4
prognostic-related ARGs which formed the prognostic risk
model. As shown in Figure 6(a), upregulation of WDR45
was strongly correlated with longer patient survival, and
MAPK9, VEGFA, and ATIC overexpression reduced OS in

patients with ORCA. We also verified the expression of 4
risk genes in the Oncomine database (Figure 6(b)) and
found that the expression trend of 4 prognostic ARGs is in
accordance with their expression patterns in ORCA, and
there are no tumor tissues in previous results in this paper
in the TCGA database as shown in Figure 4(e) and
Figures 5(b)–5(e). Single-gene GSEA of the 4 risk genes
revealed their potential function in ORCA (Figure 7).

4. Discussion

Autophagy is a conserved and dynamic process whose func-
tion maintains cellular homeostasis [14]. Multiple studies
had confirmed that autophagy played a significant role in
many cancers [15–17]. Important experimental evidences
had proven autophagy’s potential as a therapeutic target
for ORCA [18–20]. Hence, we constructed an autophagy-
related prognostic risk model in this paper for prognosis
prediction for ORCA patients.

The autophagy-related prognostic model is formed by 4
ARGs, including WDR45, MAPK9, VEGFA, and ATIC.
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According to our risk model, the expressions of MAPK9,
VEGFA, and ATIC in the high-risk group were higher than
those in the low risk-group; it is worth noting that their
expressions in ORCA tissues were higher than those in the
control, and their expressions all had a trend of upregulation
in patients with advanced pathologic stage and high grade;
in addition, high expressions of the 3 genes were signifi-
cantly related to worse OS. What this means is that MAPK9,
VEGFA, and ATIC were indeed high-risk factors in ORCA.

The expression law of WDR45 was opposite to MAPK9,
VEGFA, and ATIC and proved it was a low-risk factor in
ORCA. The risk score model is significantly associated with
clinicopathological indicators of ORCA patients. Our paper
proved that the risk model comprised of WDR45, MAPK9,
VEGFA, and ATIC for evaluating the prognosis of ORCA
patients is clinically practicable.

MAPK9 is also called JNK2; recent studies have high-
lighted the oncogenic potential of MAPK9 in several human
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Figure 5: Clinical correlations between traditional clinicopathological indicators (age, gender, grade, pathological stage, T classification, and
N classification) and the risk score (a). The association between expression of 4 prognostic ARGs [(b)WDR45, (c)MAPK9, (d) VEGFA, and
(e) ATIC] and clinicopathological features.
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Table 2: Univariate and multivariate Cox regression analyses of risk score and clinicopathologic features in the TCGA group oral cancer
patients.

Variables
Univariate analysis Multivariate analysis

HR (95% CI) p value HR (95% CI) p value

Risk score 1.622(1.354−1.942) <0.001 1.628(1.327−1.997) <0.001
Age 1.006(0.979−1.035) 0.647 1.002(0.967−1.038) 0.916

Gender 0.798(0.408−1.561) 0.510 0.604(0.300−1.215) 0.157

Grade 2.043(1.146−3.643) 0.015 1.510(0.770−2.960) 0.230

Pathologic stage 1.547(1.047−2.285) 0.028 0.851(0.356−2.031) 0.716

T classification 1.724(1.214−2.447) 0.002 1.715(1.014−2.902) 0.044

N classification 1.481(1.023−2.143) 0.037 1.356(0.712−2.583) 0.355
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Figure 6: The correlation between 4 risk ARGs (WDR45, MAPK9, VEGFA, and ATIC) and overall survival of ORCA patients (a). The
expressions of 4 risk genes (WDR45, MAPK9, VEGFA, and ATIC) between normal mouth and ORCA tissues were compared in
Oncomine database (b).
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cancer cells, such as lung [21] and glioblastoma [22]. The
role of MAPK9 in oral cancer is still controversial [23].
VEGFA encoded vascular endothelial growth factor A; many
researchers reported that it was upregulated in oral squa-
mous cell carcinomas [24, 25]. ATIC was considered an
effective target for chemoradiosensitization [26]. Although
there are some researches about independent prognostic
ARGs in recent years, they are not incorporated into a prog-
nostic evaluation system in the right proportions and ways,
so exploring an effective prognostic risk model and novel
targets for ORCA therapy is necessary.

Functional enrichment analysis showed that 36 DEARGs
were mainly involved in apoptosis and inflammation-
associated pathways. Dwivedi et al. reported that to regulate
apoptosis may be the best way against ORCA [27]. A lot of
reports deemed that oral inflammation promotes ORCA
[28, 29]. Hence, clinical doctors maybe should pay more
attention to the effect of inflammation on ORCA patients.

In this paper, we demonstrated that the novel prognostic
risk model had excellent potential as a prognostic predictor
which is even better than traditional clinicopathological
indicators in ORCA. It can be incorporated into the clinical
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Figure 7: Single-gene GSEA analysis of 4 prognostic ARGs which formed the prognostic risk model in ORCA.
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evaluation indicators to better predict clinical outcomes.
Individual assessment of 4 risk genes that comprised the risk
model in ORCA further proved that WDR45, MAPK9,
VEGFA, and ATIC all play important parts in ORCA.

5. Conclusions

A novel autophagy-related model based on the expression
levels of 4 risk genes was explored for survival prediction
for ORCA patients. The 4 risk genes can benefit the under-
lying molecular mechanisms of ORCA and be utilized as
potential therapeutic targets.
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