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Background. Bladder cancer (BLCA) is one of the most common urological malignancies globally, posing a severe threat to public
health. In combination with protein-protein interaction (PPI) network analysis of proteomics, Gene Set Variation Analysis
(GSVA) and “CancerSubtypes” package of R software for transcriptomics can help identify biomarkers related to BLCA
prognosis. This will have significant implications for prevention and treatment. Method. BLCA data were downloaded from
The Cancer Genome Atlas (TCGA) database and GEO database (GSE13507). GSVA analysis converted the gene expression
matrix to the gene set expression matrix. “CancerSubtypes” classified patients into three subtypes and established a prognostic
model based on differentially expressed gene sets (DEGSs) among the three subtypes. For genes from prognosis-related DEGSs,
functional and pathway enrichment analyses and PPI network analysis were carried out. The Human Protein Atlas (HPA)
database was used for validation. Finally, the proportion of tumor-infiltrating immune cells (TIICs) was determined using the
CIBERSORT algorithm. Results. In total, 414 tumor samples and 19 adjacent-tumor samples were obtained from TCGA, with
145 samples belonging to subtype A, 126 samples belonging to subtype B, and 136 samples belonging to subtype C. Then, we
identified 83 DEGSs and constituted a prognostic signature with two of them: “GSE1460_CD4_THYMOCYTE_VS_THYMIC_
STROMAL_CELL_DN” and “MODULE_253.” Finally, five subnets of two PPI networks were established, and nine core
proteins were obtained: CDH2, COL1A1, EIF2S2, PSMA3, NAA10, DNM1L, TUBA4A, KIF11, and KIF23. The HPA database
confirmed the expression of the nine core proteins in BLCA tissues. Furthermore, EIF2S2, PSMA3, DNM1L, and TUBA4A
could be novel BLCA prognostic biomarkers. Conclusions. In this study, we discovered two gene sets linked to BLCA
prognosis. PPI analysis confirmed the network’s core proteins, and several newly discovered biomarkers of BLCA prognosis
were identified.

1. Introduction

Bladder cancer (BLCA) is one of the most common urologi-
cal malignancies globally and a leading cause of cancer
deaths [1]. According to studies, the incidence of bladder
cancer has been increasing in recent years [2]. This implies
that BLCA poses a serious threat to public health. According
to epidemiological studies, cigarette smoking is the leading
risk factor for BLCA; however, tobacco cessation interven-
tions do not appear clinically effective for mortality [3].

The mechanisms underlying the phenomena must be
understood. As a heterogeneous tumor, BLCA has variable
prognosis influenced by different subtypes. BLCA is com-
posed of two major subtypes: nonmuscle-invasive bladder
cancer (NMIBC) and muscle-invasive bladder cancer
(MIBC) [4]. Most patients are confirmed with NMIBC con-
fined to the mucosa or lamina propria, which is associated
with a better prognosis.

Meanwhile, 25% of patients have MIBC that invades the
detrusor muscle and also has the potential to metastasize to
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lymph nodes or distant organs [5, 6]. These differences could
account for the large prognostic gap between NMIBC and
MIBC. BLCA can also be classified into several subtypes
based on tissue morphology phenotypes, including urothe-
lial carcinoma, squamous cell carcinoma, and adenocarci-
noma [7], but the effect of tissue morphology phenotypes
on prognosis remains debated [8].

Based on transcriptomic data from The Cancer Genome
Atlas (TCGA) database, bioinformatics analysis can reclas-
sify BLCA more reasonably and reveal the mechanism dif-
ferent underlying prognosis. To analyze TCGA RNA-seq
data, we used gene set variation analysis (GSVA), a nonpara-
metric unsupervised method. GSVA could be used to assess
the gene expression at the pathway level rather than at the
gene level. This method outperforms single-gene analysis
in terms of feature dimension and noise interference, as well
as biological interpretability [9]. Furthermore, the “Cancer-
subtypes” R software package has been developed to reveal
molecular subtypes of cancer patients from public databases
using multiomics data: gene expression, DNA methylation,
and miRNA expression [10]. This R package has recently

been used in several human cancer studies [11–13], demon-
strating the feasibility of this new method. However, no
studies have been conducted to classify BLCA using the
“Cancersubtypes” package. Protein-protein interaction (PPI)
network analysis could build a protein network and then
analyze their interactions [14]. In this study, RNA-seq data
from the TCGA-BLCA cohort was analyzed by bioinformatics
using GSVA and “Cancersubtypes.” The results were com-
bined with proteomic analysis to reach a more convincing
conclusion. Exploring the potential mechanisms influencing
prognosis among different BLCA subtypes and the prog-
nostic marker is critical for improving BLCA patient sur-
vival outcomes.

2. Materials and Methods

2.1. Data Collection and Processing. Transcriptome data and
clinical characteristics from BLCA patients were obtained
from the TCGA database (https://portal.gdc.cancer.gov/)
and used as a training set. The testing set was composed of
GSE13507 datasets obtained from the GEO database
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Figure 1: Heat map of the BLCA gene set expression in the TCGA database. The color blue to red represents the expression level from low
to high.
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(https://www.ncbi.nlm.nih.gov/geo/). For further analysis,
only samples with complete prognostic data were extracted.

2.2. Gene Set Variation Analysis. The GSVA algorithm was
used with R language’s “GSVA” package to reveal biological
correlations between training and testing set genes. GSVA is
a nonparametric, unsupervised method for identifying
closely related pathways to essential genes [9]. By inputting
gene expression matrix of training and testing sets, and a
collection of gene sets, including “hallmark gene sets,”

“KEGG subset of Canonical pathways,” and “immunologic
signature gene sets” downloaded from the GSEA database
(http://www.gsea-msigdb.org/gsea/index.jsp) for GSVA anal-
ysis, the gene expression matrix could be transformed to the
matrix of gene set expression to explain the corresponding
biological meaning.

2.3. Identification of BLCA Subtypes. The R package “Can-
cerSubtypes” helps infer cancer subtypes from input gene
sets, using a consensus clustering algorithm to determine
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Figure 2: Classification of BLCA subtypes using “CancerSubtypes” in the TCGA. (a) Kaplan–Meier survival analysis of three subtypes.
(b) Clustering heat map. (c) Average silhouette width represents the coherence of clusters.
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the number of subtypes, and uncover potential differences
among varying subtypes [10]. The relationship between clin-
ical characteristics (age, gender, grade, stage, TNM stage)
and classification was investigated. The R software’s “limma”
package was used to identify DEGSs within each subtype.
DEGSs with a |log2 fold change| of 0.1 and an adjusted
P < 0:05 were excluded from further analysis.

2.4. Construction of BLCA Prognostic Signature. Univariate
Cox analysis and Kaplan–Meier survival analysis were per-
formed in R software using the “survival” and “survminer”
packages to obtain prognostic DEGSs. Then, using the
“glmnet” R package, LASSO Cox regression analysis was
used to establish the BLCA prognostic signature. The associ-
ated expression of these prognostic DEGSs and their corre-
lated coefficient were used to calculate the risk score (RS)
of the prognostic DEGSs for each sample. The median value
of RS was used to group BLCA samples.

2.5. Functional and Pathway Enrichment Analysis. Pathways
with gene symbols were downloaded from KEGG (https://
www.kegg.jp/kegg/) and GO (http://geneontology.org/).
Functional and pathway enrichment analysis on these
prognosis-related genes was performed using the R packages
“Cluserprofiler.”

2.6. Establishment of Protein-Protein Interaction Network.
The PPI network was created using the Search Tool for the
Retrieval of Interacting Genes (STRING) database (https://
string-db.org/). Furthermore, the Cytoscape software was
used to search for meaningful modules in the PPI network
(degree cutoff = 2, maximumdepth = 100, k − core = 2, and
node score cutoff = 0:2).

2.7. Validation of the Core Protein Expression. Several core
proteins were chosen from the PPI network. We used the
HPA database (http://www.proteinatlas.org/) to obtain the
expression level of selected core proteins for further validation.

2.8. Tumor-Infiltrating Immune Cell (TIICs) Analysis. The
CIBERSORT algorithm was used to estimate the composi-
tion of 22 immune cells in the BLCA prognostic signature
between high- and low-RS groups. The relative abundance
of each immune cell was calculated based on the gene
expression.

2.9. Statistical Analysis. All statistical analyses were con-
ducted using R v4.0.3 (https://www.r-project.org/) and Perl
v5.32.1.1 (https://strawberryperl.com/). OS was defined as
the time between intervals from the date of diagnosis and
the date of death by any cause. The prognostic value of gene

Table 1: The clinical information of BLCA.

Covariates Cluster Total C1 C2 C3 P value

Age <=65 160 (39.31%) 51 (35.17%) 44 (34.92%) 65 (47.79%) 0.0459

Age >65 247 (60.69%) 94 (64.83%) 82 (65.08%) 71 (52.21%)

Gender Female 107 (26.29%) 39 (26.9%) 37 (29.37%) 31 (22.79%) 0.4723

Gender Male 300 (73.71%) 106 (73.1%) 89 (70.63%) 105 (77.21%)

Grade High grade 383 (94.1%) 142 (97.93%) 125 (99.21%) 116 (85.29%) 0

Grade Low grade 21 (5.16%) 1 (0.69%) 0 (0%) 20 (14.71%)

Grade Unknown 3 (0.74%) 2 (1.38%) 1 (0.79%) 0 (0%)

Stage Stage I 2 (0.49%) 0 (0%) 0 (0%) 2 (1.47%) 0

Stage Stage II 130 (31.94%) 41 (28.28%) 17 (13.49%) 72 (52.94%)

Stage Stage III 140 (34.4%) 58 (40%) 48 (38.1%) 34 (25%)

Stage Stage IV 133 (32.68%) 45 (31.03%) 61 (48.41%) 27 (19.85%)

Stage Unknown 2 (0.49%) 1 (0.69%) 0 (0%) 1 (0.74%)

T T0 1 (0.25%) 0 (0%) 0 (0%) 1 (0.74%) 0

T T1 3 (0.74%) 1 (0.69%) 0 (0%) 2 (1.47%)

T T2 119 (29.24%) 40 (27.59%) 20 (15.87%) 59 (43.38%)

T T3 193 (47.42%) 72 (49.66%) 81 (64.29%) 40 (29.41%)

T T4 58 (14.25%) 20 (13.79%) 23 (18.25%) 15 (11.03%)

T Unknown 33 (8.11%) 12 (8.28%) 2 (1.59%) 19 (13.97%)

N N0 237 (58.23%) 90 (62.07%) 59 (46.83%) 88 (64.71%) 8.00E-04

N N1 46 (11.3%) 17 (11.72%) 20 (15.87%) 9 (6.62%)

N N2 75 (18.43%) 23 (15.86%) 38 (30.16%) 14 (10.29%)

N N3 7 (1.72%) 3 (2.07%) 2 (1.59%) 2 (1.47%)

N Unknown 42 (10.32%) 12 (8.28%) 7 (5.56%) 23 (16.91%)

M M0 196 (48.16%) 70 (48.28%) 37 (29.37%) 89 (65.44%) 0.0678

M M1 11 (2.7%) 4 (2.76%) 5 (3.97%) 2 (1.47%)

M Unknown 200 (49.14%) 71 (48.97%) 84 (66.67%) 45 (33.09%)
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sets was assessed by Cox regression analysis. P < 0:05 was
considered statistically significant.

3. Results

3.1. The GSVA Analysis for BLCA. Four hundred thirty-three
samples were obtained from the TCGA, including 414
tumor samples and 19 adjacent-tumor samples. Using the
R package “GSVA,” these sample gene expression matrices
were subjected to the GSVA algorithm of hallmark gene sets,
KEGG subsets of canonical pathways, and immunologic sig-
nature gene sets. We also conducted the GSVA algorithm in
GEO datasets GSE13507 for subsequent validation. This step
condenses gene-level RNA-seq expression profiles into gene
sets used in subsequent analyses. The expression of gene sets
in TCGA samples is depicted as a heat map (Figure 1).

3.2. Identification of BLCA Subtypes. The classification of
BLCA was conducted through an unsupervised consensus
clustering of the “CancerSubtypes” package in 414 tumor
samples of TCGA. The samples with incomplete clinical
information were discarded, leaving 407 samples. The K

value determined the optimal number of clusters. In our
study, the area under the cumulative distribution function
(CDF) curve increased with no significance when K = 3; so,
a three-cluster solution (K = 3) was chosen (Figure S1A).
The results showed that 145 samples were cluster I
matching subtype A, 126 were cluster II matching subtype
B, and 136 were cluster III matching subtype C. Obviously,
samples classified as subtype C had a better prognosis than
samples classified as subtype A and subtype B (P = 0:00182).
(Figure S1B; Figure 2). The clinical data show distinct
characteristics of each BLCA subtype (Table 1), with
significant age, grade, and stage differences. The heat map
for gene sets with classified features shows how different
gene sets express themselves across multiple subtypes
(Figure 3). Similar classified results could be obtained when
the GSE13507 dataset was analyzed similarly (Figure S2A-B;
Figure 4). Based on the survival curve trend, cluster I
matched subtype A, cluster II matched subtype C, and
cluster III matched subtype B were significant (P < 0:001).

3.3. Identification of DEGSs.We separately tested for the dif-
ferential gene set expression among each subtype, including
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subtype C− subtype A, C− subtype B, and B− subtype A.
Then, we compared the gene sets that were differentially
expressed in these three groups. Finally, 83 DEGSs were
obtained (Figure 5(a)), and their representation of these
DEGSs in the three subtypes was markedly different, as
shown in Figure 5(b).

3.4. Construction of Prognostic Signature. We applied the
univariate cox regression model in 83 DEGSs to identify

gene sets that influence patient’s overall survival (OS). A
total of 24 DEGSs were obtained (P < 0:05) (Table 2). After
that, a Lasso regression model (Figure 6(a)) was established
to reveal the log (Lambda) value of the 24 screened gene sets.
And, after performing crossvalidation (Figure 6(b)), the gene
sets with the slightest crossvalidation error were chosen.
Finally, we discovered two DEGSs linked to prognosis:
“GSE1460_ CD4_THYMOCYTE_ VS_THYMIC_STRO-
MAL_CELL_DN” and “MODULE_253.”
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Figure 4: Classification of BLCA subtypes using “CancerSubtypes” in GEO. (a) Kaplan–Meier survival analysis of three subtypes. (b)
Clustering heat map. (c) Average silhouette width represents the coherence of clusters.
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Figure 5: DEGSs among three subtypes. (a) Venn diagram of DEGSs. (b) Heat map for three subtypes with classified features.
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3.5. Verification of Prognostic Signature Using TCGA and
GEO Databases. The RS of BLCA samples in the TCGA
was calculated, and the calculation formula used was RS =
expression ðGSE1460 CD4 THYMOCYTE VS THYMIC

STROMAL CELL DNÞ ∗ 5:569 + expression ðMODULE
253Þ ∗ 2:604.

According to the median value of RS, the samples were
divided into high- and low-RS groups. Kaplan–Meier

Table 2: Getting DEGSs were affecting patient’s OS by the univariate cox regression model.

ID HR HR.95L HR.95H P value

MODULE_47 24.32049 3.300069 179.2345 0.001739

MODULE_234 36.33057 3.704609 356.2887 0.002041

HALLMARK_EPITHELIAL_MESENCHYMAL_TRANSITION 23.6657 3.364531 166.4617 0.001478

MODULE_122 19.64907 2.166845 178.1789 0.008112

KEGG_ECM_RECEPTOR_INTERACTION 85.10793 5.200854 1392.725 0.001832

GNF2_CDH11 17.45797 3.186617 95.64398 0.000982

MODULE_419 434.2375 12.08736 15599.95 0.000888

GSE6259_CD4_TCELL_VS_CD8_TCELL_UP 16777.27 78.41224 3589705 0.00038

ESC_V6.5_UP_EARLY.V1_DN 149.1306 3.299492 6740.413 0.010056

GSE1460_INTRATHYMIC_T_PROGENITOR_VS_THYMIC_STROMAL_CELL_DN 3467.784 45.39216 264925.2 0.000229

KEGG_ARRHYTHMOGENIC_RIGHT_VENTRICULAR_CARDIOMYOPATHY_ARVC 1561.694 15.57548 156585.1 0.001761

CAHOY_ASTROGLIAL 79.00986 2.572787 2426.38 0.012391

GSE4748_CTRL_VS_LPS_AND_CYANOBACTERIUM_LPSLIKE_STIM_DC_3H_UP 3983.537 19.1654 827980 0.002331

GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN 31770.46 229.1448 4404910 3.80E-05

GSE4748_CTRL_VS_LPS_STIM_DC_3H_UP 4760.126 37.39764 605888.6 0.000616

CORDENONSI_YAP_CONSERVED_SIGNATURE 306.0277 10.18114 9198.675 0.000979

GSE3982_DC_VS_BCELL_UP 718.9345 3.175757 162753.9 0.017423

MODULE_385 28.34798 1.799017 446.6927 0.017436

PRC2_EZH2_UP.V1_UP 2167.861 16.44887 285710.8 0.00204

GSE36891_UNSTIM_VS_POLYIC_TLR3_STIM_PERITONEAL_MACROPHAGE_UP 75.70309 1.315493 4356.509 0.036387

MODULE_196 804.3902 11.05547 58527.01 0.002224

MODULE_253 1622.789 24.20709 108788.1 0.000571

MODULE_298 5.929103 1.155028 30.43587 0.032953

MODULE_153 5.274827 1.186505 23.45022 0.028916
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Figure 6: Establishment of BLCA prognostic signature. (a) Lasso coefficient profile of DEGSs with nonzero coefficients determined by the
optimal lambda. (b) The crossvalidation of prognostic signature.

8 BioMed Research International



survival analysis indicated that the OS of the patients was
worse in the high-RS group than in the low-RS group in
the TCGA-BLCA cohort (P < 0:001; Figure 7(a)). Similar
results were confirmed using GSE13507 datasets in GEO
databases (P < 0:001; Figure 7(b)). These results illustrate
that the prognostic signature has effective predictive power
in OS. Aside from that, we conducted survival analysis for
the two DEGSs. The results suggested that having a high
expression level of both DEGSs is associated with having a
low OS (Figures 8(a) and 8(b)).

3.6. GO and KEGG of Prognostic Signature. Table 3 contains
the gene list for two DEGSs. GO and KEGG analysis for
“GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_
CELL_DN” (199 genes) and “MODULE_253” (21 genes) was
performed, respectively. The GSEA database contains a
detailed gene list. The former included 417 GO terms of biolog-
ical process, 34 GO terms of cellular component, and 50 GO
terms of molecular function (P < 0:05). The top 30 GO terms
are shown in Figure 9(a). In addition, 234 GO terms of biolog-
ical process, 64 GO terms of cellular component, and 31 GO
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Figure 7: Kaplan–Meier survival analysis of prognostic signature. (a) The OS of the patients was worse in the high-RS group than in the
low-RS group in the TCGA-BLCA cohort. (b) The results were validated using GSE13507.
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Table 3: The list of genes of “GS460_CD4_THYM E1OCYTE_VS_
THYMIC_STROMAL_CELL_DN” and “MODULE_253”.

GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN

MODULE_253

GLIPR1 DNM1

NAV2 KIF5C

PON2 STMN1

AKR1B10 KIF11

CD59 MAPRE1

BAALC ARSB

UAP1 KIF3B

LRIG1 MAP2

SLIT2 KIF14

BPNT2 KIF2C

NUDT15 TUBB3

SEPTIN2 TUBB4B

PTGS1 TUBA4A

COL1A1 SNTB2

NAA10 MAP1B

SS18 KIF23

ANXA3 CENPE

DUSP14 DYNLL1

COPZ2 KIF5A

SYNDIG1 DCTN2

BHLHE40 DYNC1LI2

ZC2HC1A

PNPLA4

NTAQ1

KCNK1

FARP1

TPST1

KIAA1549L

MT1E

DLG5

COPB2

STK3

CTSK

ATXN1

RAD23B

TWIST1

SLC6A8

LCMT1

COPS7A

SMUG1

ELOVL1

TMEM100

TMEFF1

EMC3

CDC42BPA

RRAS

DENND5A

Table 3: Continued.

GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN

MODULE_253

DACT1

CREG1

CDH2

BEX1

SRPX2

TFG

DPY19L1

BCL2L2

SLC16A1

MCFD2

ACTN1

CALR

LARGE1

GCLM

NME7

RBCK1

TBK1

HAS2

POLR2L

DHRS7

TNFRSF12A

EIF2S2

ADAMTS3

ADORA2B

PCDH7

TARS1

UTP25

RTL8C

PLXNA1

MMP1

EMILIN1

CRTAP

DNAJC6

DNM1L

PDGFRL

KLF4

INA

YARS2

RECK

MEIS3P1

UST

GULP1

TLE1

SLC39A7

ASL

ZBED8

EOGT

TMCO3

10 BioMed Research International



Table 3: Continued.

GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN

MODULE_253

DERL1

ZCCHC24

PDHX

CPQ

ARHGEF40

TFPI

PPP2R3A

ATF3

TFPI2

SFRP1

IPO7

BNC2

PF4V1

MAP2K2

SPA17

SLC25A3

TFE3

GSTT2

RABIF

MYG1

PHLDA1

MEST

RBP1

TUBB2A

BMERB1

OLFML2A

RPS6KA2

NT5DC2

COL6A2

DOK5

UCK2

OLFML3

RXRA

KATNBL1

BEX3

IGFBP5

TGFBR3

RNF2

KALRN

ARMCX1

DKK1

TNFAIP1

ANTKMT

FGF2

GAS1

SRD5A1

ADAM19

POMP

Table 3: Continued.

GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN

MODULE_253

PHLDA3

LIMS1

TNFRSF10B

SLC24A1

SLC6A1

CHCHD3

BACE1

SAP30

TMA16

SEC13

SLC25A4

CRYBG3

SLC31A2

MFAP5

LDOC1

ARHGAP29

GYG2

GLT8D2

TRIM2

NID1

PDLIM5

SAMD4A

TENM4

RRBP1

PRRG1

SIL1

EIF4G1

CREB3L1

FNBP1L

STAM2

TSR3

COPS6

MLLT11

STRAP

C11orf24

ITSN1

EYA1

SCG5

PSMA3

PTOV1

FKBP9

MTMR2

PDLIM2

LRRC15

EXT1

LTBP1

FST

SSH1
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terms of molecular function were discovered in the latter
(P < 0:05). The top 30 significantly enriched GO terms are
shown in Figure 9(b). Furthermore, genes from the former
were enriched considerably into four KEGG pathways
(P < 0:05; Figure 9(c)), while genes from the latter were signif-
icantly enriched into fifteen KEGG pathways (P < 0:05;
Figure 9(d)).

3.7. PPI Network of Prognostic Signature. The PPI network
analysis was carried out separately for each DEGS via
String software. We found a PPI network with 138 nodes
and 184 edges from “GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN” (Figure 10(a)) and a
network with 19 nodes and 78 edges from “MODULE_
253” (Figure 10(b)). In addition, for further analysis, we
used the Cytotype software’s MCODE app. The former’s
PPI network generated three functional subnet modules
(subnet 1, subnet 2, and 3). The hub nodes, CDH2,
FGF2, and COL1A1, had higher node degrees in subnet
1 (Figure 11(a)), EIF2S2, PSMA3, and NAA10 were hub
nodes in subnet 2 (Figure 11(b)), and DNM1L was the
hub node in subnet 3 (Figure 11(c)). Meanwhile, we
obtained two functional subnet modules, namely, subnets
1 and 2. KIF2C, TUBA4A, KIF5A, KIF11, and KIF23 were
filtered as hub nodes in subnet 1 (Figure 12(a)), while
KIF5C was filtered as a node in subnet 2 (Figure 12(b)).
To validate these findings, we referred to the HPA
(https://www.proteinatlas.org/) database. We discovered
that most of the proteins were observed in cancer-
adjacent normal tissues and cancer tissues. Still, it was dif-
ficult to detect significant differences between normal and
cancer tissue (Figures 13(a) and 13(b)).

3.8. Relation between Tumor-Infiltrating Immune Cells and
RS. The CIBERSORT algorithm was used to depict the
composition of TIICs in all BLCA samples. As shown in
the results, high-RS groups had higher fractions of CD8
T cells, M0 macrophages, M2 macrophages, activated den-
dritic cells, and neutrophils than low-RS groups. In con-
trast, low-RS groups had lower fractions of resting
memory CD4 T cells, memory B cells, plasma cells, follic-
ular helper T cells, regulatory T cells, and monocytes
(Figure 14).

4. Discussion

Different BLCA subtypes have different invasive properties,
which are also associated with different aggressiveness and
prognoses [15]. We were able to identify DEGSs among multi-
ple subtypes thanks to the help of GSVA analysis and the “Can-
cersubtypes” package. The “Cancersubtypes” package classified
BLCA samples into three subtypes based on the gene set expres-
sion, and the prognosis differed significantly among the three
subtypes. The significant differences in age, grade, and stage,
on the other hand, may reflect the fact that the three subtypes
of BLCA are at different stages of cancer progression. However,
with the assistance of this advanced algorithm, we could still
investigate the mechanism underlying BLCA progression. The
combination of differential expression analysis and PPI network
analysis can identify critical nodes influencing prognosis. Given
the current state of treatment for BLCA, these critical nodes
may be significant determinants of prognosis.

We discovered two DEGSs associated with prognosis in
this study: “GSE1460_CD4_THYMOCYTE_VS_THYMIC_
STROMAL_CELL_DN” and “MODULE_253.” Higher
levels of both were linked to a lower OS rate. According to
the GSVA database, the former is represented as differen-
tially expressed genes between CD4 thymocytes and thymic
stromal cells, implying that CD4+ T cells may play an essen-
tial role in BLCA progression, and the latter is defined as
intracellular transport. We pursued this further to mine the
biological significance. Following functional analysis, it was
discovered that these DEGSs were primarily enriched in an
extracellular matrix organization, MHC II antigen presenta-
tion, and the microtubule-associated pathway. This result
was consistent with the GSVA database’s description of
DEGSs. The next step was to analyze the PPI network to find
the corresponding proteins playing important roles. We ana-
lyzed both gene sets separately, resulting in several subnets and
hub proteins. By comparing information about the protein
expression in HPA, we discovered the following core proteins
expressed in human BLCA tissue: CDH2, COL1A1, EIF2S2,
PSMA3, NAA10, DNM1L, TUBA4A, KIF11, and KIF23.

CDH2, also known as N-cadherin, is a mesenchymal cell
development regulator that was thought to be a discrimina-
tory marker for interstitial cells in the human bladder and a
critical biomarker of epithelial-mesenchymal transition
(EMT) [16–18]. The EMT commonly thought to be a dys-
regulation of wound healing mechanisms is essential in can-
cer invasion and metastasis. The CDH2 expression is
increasing, indicating a shift toward a mesenchymal pheno-
type. In summary, CDH2 may be involved in the progres-
sion of BLCA through the EMT. In subnet 1, COL1A1
(collagen type I alpha 1) is one of the hub nodes, along with
CDH2. COL1A1 may also contribute to tumor progression
by promoting EMT [19]. Many studies have shown that
COL1A1 is a crucial factor in the invasion and metastasis
of BLCA. The COL1A1 expression was higher in MIBC than
in NMIBC, and the increased expression was associated with
a poor prognosis in NMIBC.

Meanwhile, the low COL1A1 expression was thought to
inhibit tumor proliferation and metastasis [19–21]. EIF2S2,
PSMA3, and NAA10 were core proteins in “GSE1460_

Table 3: Continued.

GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN

MODULE_253

C6orf120

NUDC

ME1

HOMER3

RPL39L

ADGRL2

COX17

IQCK

12 BioMed Research International

https://www.proteinatlas.org/


Synapse organization
Extracellular matrix organization

Extracellular structure organization
Regulation of synapse organization

Extrinsic apoptotic signaling pathway
Regulation of synapse structure or activity

Negative regulation of cellular component movement
Regulation of cellular response to growth factor stimulus

Negative regulation of cellular response to growth factor stimulus
Epithelial to mesenchymal transition

BP

Collagen-containing extracellular matrix
Endoplasmic reticulum lumen

Integral component of organelle membrane
Intrinsic component of organelle membrane

Microfibril
Fascia adherens

Integral component of endoplasmic reticulum membrane
Golgi-associated vesicle membrane

Intrinsic component of endoplasmic reticulum membrane
Endoplasmic reticulum-Golgi intermediate compartment membrane

CC

Extracellular matrix structural constituent
Proteoglycan binding

Collagen binding
Sulfur compound binding

Heparin binding
Fibronectin binding

Extracellular matrix binding
Laminin binding

Protein tyrosine phosphatase activity
BH domain binding

M
F

151050

p value

0.004

0.006

0.002

(a)

Microtubule-based movement
Antigen processing and presentation of exogenous peptide antigen via MHC class II

Antigen processing and presentation of peptide antigen via MHC class II
Antigen processing and presentation of peptide or polysaccharide antigen via MHC class II

Antigen processing and presentation of exogenous peptide antigen
Antigen processing and presentation of exogenous antigen

Establishment of organelle localization
Antigen processing and presentation of peptide antigen

Golgi vesicle transport

Microtubule
Microtubule associated complex

Kinesin complex
Spindle

Mitotic spindle
Kinetochore

Spindle microtube
Growth cone

Site of polarized growth

Motor activity
Tubulin binding

Microtubule plus-end binding
GTPase activity

0 5 10 15 20

Microtubule binding
Microtubule motor activity

ATP-dependent microtubule motor activity, plus-end-directed
ATP-dependent microtubule motor activity

ATPase activity
Structural constituent of cytoskeleton

Chromosome, centromeric region

BP
CC

M
F

1e–04

2e–04

3e–04

4e–04

p value

(b)

Figure 9: Continued.
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Figure 9: Gene functional enrichment analysis. (a) GO function enrichment of “GSE1460_CD4_THYMOCYTE_VS_THYMIC_
STROMAL_CELL_DN.” BP: biological process; CC: cellular component; MF: molecular function. (b) GO function enrichment of
“MODULE_253.” (c) KEGG analysis of “GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN.” (d) KEGG analysis of
“MODULE_253”.
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CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN”
subnet 2.

EIF2S2 is an RNA binding protein that regulates the gene
expression. Its regulatory effects were reported to play a role
in the occurrence and development of many cancers, but these

did not involve BLCA. One of EIF2S2’s carcinogenic pathways
is through long noncoding RNA. EIF2S2 activated theWnt sig-
naling pathways to drive cancer development by regulating the
interaction of LINC01600 with Myc protein. The other is glu-
cose metabolism regulation. Typically, cancer cells rely on

(a) (b)

Figure 10: Protein-protein interaction network analysis. (a) Protein-protein interaction network analysis of “GSE1460_CD4_
THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN.” (b) Protein-protein interaction network analysis of “MODULE_253”.

(a) (b) (c)

Figure 11: Subnet of “GSE1460_CD4_THYMOCYTE_VS_THYMIC_STROMAL_CELL_DN.” (a) Subnet 1. (b) Subnet 2. (c) Subnet 3.

(a) (b)

Figure 12: Subnet of “MODULE_253.” (a) Subnet 1. (b) Subnet 2.
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aerobic glycolysis (theWarburg effect) for energy, and knocking
out EIF2S2 reduces the expression of glycolysis-related genes
[22–24]. Although previous research has not addressed the car-
cinogenesis of BLCA, our findings suggest that EIF2S2 as a dif-

ferential expression gene among three subtypes may play an
essential role in BLCA development, which is supported by
transcriptomics and proteomics analysis. PSMA3 participates
in forming the 26S proteasome complex, which is involved in

CDH2 FGF2 COLIA1 EIF2S2 PSMA3 NAA10 DNM1L

NORMAL

TUMOR

(a)

KIF2C TUBA4A KIF5A KIF11 KIF23 KIF5C

NORMAL

TUMOR

(b)

Figure 13: Verification of the hub protein expression using the HPA database. (a) Hub proteins of “GSE1460_CD4_THYMOCYTE_VS_
THYMIC_STROMAL_CELL_DN.” (b) Hub proteins of “MODULE_253”.
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the degradation of several proteins [25]. There is currently no
direct evidence that PSMA3 participates in tumor invasion
and metastasis; however, some studies have suggested that the
proteasome complex may play a role in cancer aggravation
[26, 27]. PSMA3 was found to correlate with BLCA in our
study, implying that we may have discovered an undiscovered
biomarker that predicts BLCA progression, but further research
is needed in follow-up studies. NAA10 catalyzes acetylation and
is involved in cell proliferation [28]. More importantly, the
NAA10 expression has been found in tumors from various
organs, including the urinary bladder, cervix, liver, bone, lung,
breast, colon, and prostate [29, 30]. However, the pathway by
which NAA10 induces tumorigenesis varies depending on the
target proteins in different cancer tissues. The NAA10–AR
(androgen receptor) axis is essential for prostate cancer cell
growth [31]. Considering the gender differences in BLCA epi-
demiology, we made the bold assumption that the NAA10–
AR axis also promotes BLCA progression.

DNM1L, also known as dynamin-related protein 1, is a
GTPase that functions in the cytosol of dynamins [32]. Mito-
chondria are the primary sites of cellular respiration, and their
fragmentation is a typical phenotype in many cancers. DNM1L
is an essential regulator of mitochondrial fission [33]. This
could be why DNM1L has been linked to a poor prognosis.

The PPI network of “MODULE_253” is centered on
TUBA4A, KIF11, and KIF23. They could be related to intracel-
lular substance transport. TUBA4A (tubulin alpha 4a) is the
gene that encodes -tubulin. TUBA4A mutations have been
linked to neurodegenerative diseases such as amyotrophic lat-
eral sclerosis (ALS) and frontotemporal dementia (FTD) [34,
35]. Little articles concern TUBA4A in cancer, and only lung
cancer was mentioned [36–38]. TUBA4A could be a potential
biomarker for BLCA prognosis prediction, but specific mecha-
nismsmust be investigated. The kinesin superfamily (KIFs) was
a group of proteins that functioned as microtubule-based
motors and served as the foundation for intracellular substance
transport [39]. KIF11, also known as kinesin spindle protein, is
important during mitogenesis and cell proliferation [40]. Fur-
thermore, KIF11 is upregulated in various human cancers,
including bladder cancer, renal clear cell carcinomas, prostate
carcinomas, meningiomas, breast cancer, and gastric ccancer
[41, 42]. Because high levels of the KIF11 expression indicate
robust cell proliferation, anti-KIF11 therapy is emerging as a
promising cancer therapy approach. KIF11 inhibitors were
more effective at inhibiting the growth of gemcitabine-
resistant bladder cancer cell lines [43]. Similarly, by regulating
mitogenesis, KIF23 can influence cancer cell proliferation. Cell
and animal experiments [44] confirmed the link between
KIF23 and bladder cancer. According to the GSVA analysis
and consensus clustering algorithm of “CancerSubtypes,” the
high expression of gene set “GSE1460_CD4_THYMOCYTE_
VS_THYMIC_STROMAL_CELL_DN” contributes to the
poor prognosis of BLCA patients. As a result, we used the
CIBERSORT algorithm to determine the composition of
TIICs. We discovered that the fraction of resting memory
CD4 T cells, memory B cells, plasma cells, follicular helper T
cells, regulatory T cells, and monocytes was lower in the
low-RS groups than in the high-RS groups. This finding sug-
gests that these TIICs may play a role in antitumor immunity.

5. Conclusion

In this study, we identified two gene sets related to the prog-
nosis of BLCA, and GO and KEGG analyses were performed
based on the genes they contained. Further PPI analysis con-
firmed the network’s core proteins as the most known thera-
peutic targets of BLCA or other cancers, while others were
newly discovered biomarkers. In the HPA database, these
proteins were partially validated. Given that BLCA is fre-
quently multifocal, the tumor could have been embedded
within the adjacent normal tissues. Further experimental val-
idation will necessitate the collection of valuable donor trans-
plant samples to rule out such effects.
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