
Research Article
Integrative Modeling of Multiomics Data for Predicting Tumor
Mutation Burden in Patients with Lung Cancer

Jun Wang ,1 Peng Chen,1 Mingyang Su,1 Guocheng Zhong,2 Shasha Zhang,1

and Deming Gou 1

1Shenzhen Key Laboratory of Microbial Genetic Engineering, Vascular Disease Research Center, College of Life Sciences
and Oceanography, Guangdong Provincial Key Laboratory of Regional Immunity and Diseases, Carson International
Cancer Center, Shenzhen University, Nanhai Ave 3688, Shenzhen, 518060 Guangdong, China
2Department of Hematology and Oncology, Shenzhen University General Hospital, Shenzhen University Clinical Medical Academy,
Xueyuan Ave 1098, Shenzhen, 518055 Guangdong, China

Correspondence should be addressed to Deming Gou; dmgou@szu.edu.cn

Received 23 October 2021; Accepted 24 November 2021; Published 20 January 2022

Academic Editor: Gerard M. Moloney

Copyright © 2022 Jun Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Immunotherapy has been widely used in the treatment of lung cancer, and one of the most effective biomarkers for the prognosis
of immunotherapy currently is tumor mutation burden (TMB). Although whole-exome sequencing (WES) could be utilized to
assess TMB, several problems prevent its routine clinical application. To develop a simplified TMB prediction model, patients
with lung adenocarcinoma (LUAD) in The Cancer Genome Atlas (TCGA) were randomly split into training and validation
cohorts and categorized into the TMB-high (TMB-H) and TMB-low (TMB-L) groups, respectively. Based on the 610
differentially expressed genes, 50 differentially expressed miRNAs and 58 differentially methylated CpG sites between TMB-H
and TMB-L patients, we constructed 4 predictive signatures and established TMB prediction model through machine learning
methods that integrating the expression or methylation profiles of 7 genes, 7 miRNAs, and 6 CpG sites. The multiomics model
exhibited excellent performance in predicting TMB with the area under curve (AUC) of 0.911 in the training cohort and 0.859
in the validation cohort. Besides, the significant correlation between the multiomics model score and TMB was observed. In
summary, we developed a prognostic TMB prediction model by integrating multiomics data in patients with LUAD, which
might facilitate the further development of quantitative real time-polymerase chain reaction- (qRT-PCR-) based TMB
prediction assay.

1. Introduction

Lung cancer is one of the most common malignancies
worldwide, and it is the first leading cause of tumor-related
mortality with an increasing incidence in recent years [1].
It was reported that 2.1 million new cases of lung cancer
were diagnosed around the world in 2018, which accounted
for 11.6% of all new cancer patients [2, 3]. Despite the
improvements in chemotherapy and targeted therapy, the
5-year overall survival (OS) for patients with lung cancer
remained poor [1, 4]. Nevertheless, immunotherapy, espe-
cially the application of immune checkpoint inhibitors
(ICIs), had made a great breakthrough in the treatment of

cancer and dramatically increased survival rate and quality
of life for patients with lung cancer [5–9].

As the most successful representative of immunotherapy,
programmed cell death-1/programmed cell death ligand-1
(PD-1/PD-L1) inhibitor had shown better performance over
conventional chemotherapy in terms of OS, response rate,
and progression-free survival (PFS) for the treatment of lung
cancer [10, 11]. Furthermore, a large amount of clinical
research had also demonstrated that immunotherapy alone
or in combination with chemotherapy could be used for the
first-line treatment of patients with metastatic lung cancer
[12–15]. It was reported that patients with higher PD-L1
expression had better outcomes compared to patients with
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lower or no PD-L1 expression using anti-PD-L1 antibody
clone 22C3 [16]. Unfortunately, only 10%-20% of non-
small-cell lung cancer (NSCLC) patients have considerable
curative effects, and most patients cannot benefit from immu-
notherapy [17–19]; therefore, biomarkers are urgently needed
to rationalize the utilization of immunotherapy for patients.

Tumor mutation burden (TMB) emerged recently as a
reliable biomarker that significantly correlated with immu-
notherapy efficacy across a wide spectrum of tumor types.
TMB is defined as the number of somatic mutations per
megabase (Mb) of the genome examined. Previous studies
found that higher TMB was associated with improved objec-
tive response, durable clinical benefit, and PFS in NSCLC
patients under immunotherapy [20]. It had been reported
that PFS among stage IV patients with high TMB was signifi-
cantly longer with PD-1/PD-L1 plus cytotoxic T-lymphocyte-
associated protein 4 (CTLA-4) treatment than with chemo-
therapy [21]. Moreover, through analyzing 7,033 patients with
different types of cancer, TMB was found to be a useful bio-
marker for predicting response of ICIs across different types
of cancer, and higher TMB (highest 20% in each histology)
was associated with better OS [22].

Whole-exome sequencing (WES) is considered the gold
standard for evaluating TMB, but it is time-consuming and
carries high cost [23]. Thus, targeted next generation
sequencing (NGS) has been adopted as an alternative
approach for predicting TMB. Memorial Sloan Kettering-
Integrated Mutation Profiling of Actionable Cancer Targets
(MSK-IMPACT) (468 genes) and FoundationOne compan-
ion diagnostic (CDx) (324 genes) are two extensively utilized
targeted NGS methods, and both of them have been
approved by the U.S. Food and Drug Administration
(FDA) for clinical application. Despite the fact that targeted
NGS is effective in predicting TMB, various problems arise
for its routine clinical application, such as the limit of detec-
tion, germline mutation exclusion, and standard cutoff
threshold determination [24]. Moreover, targeted NGS is
still time-consuming and expensive compared with other
clinical molecular tests [24]. In an effort to establish a sim-
plified, cost-effective approach to predict TMB in patients
with lung adenocarcinoma (LUAD), we intended to inte-
grate a multiomics data to develop a predicting model for
TMB.

In this study (Figure 1), patients with lung adenocarci-
noma (LUAD) in The Cancer Genome Atlas (TCGA) were
first split into training and validation cohorts. Then patients
in training cohort were divided as TMB-high (TMB-H) and
TMB-low (TMB-L), and the differentially expressed genes,
miRNAs, and differentially methylated CpG sites were iden-
tified. Subsequently, a multiomics TMB prediction model
(TPM) involving expression profiles of selected genes, miR-
NAs, and methylation profiles of CpG sites was established.
Finally, patients from the validation cohort were used to ver-
ify the performance of TPM.

2. Materials and Methods

2.1. Multiomics Dataset Acquisition from TCGA. Somatic
mutation profiles of 567 samples, gene expression profiles

of 594 samples, DNA methylation profiles of 507 samples,
and miRNA expression profiles of 495 samples were obtained
from TCGA database using either GDC tool (https://portal
.gdc.cancer.gov/) or TCGAbiolinks R package (Supplementary
Table S1) [25, 26]. The somatic mutation profiles (mutation
annotation format, MAF) were processed by Mutect
software. Missense mutations, nonsense mutations, splice-
site mutations, frameshift insertions, frameshift deletions,
in-frame insertions, or in-frame deletions identified in
the samples were regarded as positive mutations. Gene
expression profiles of 594 samples were annotated through
g:Profiler website [27] and normalized using the scale
method in limma package [28]. The low abundance profiles
were eliminated. DNA methylation profiles were annotated
using IlluminaHumanMethylation450kanno.ilmnl12.hg19
R package. Quality control for DNA methylation profiles
was conducted through minfi R package to eliminate
certain CpG sites [29], in which the single-nucleotide
polymorphisms (SNPs) existed [30], multiple mapping to
human reference genome was found [31], and the
methylation information of any samples was not available.
In addition, CpG sites located in sex chromosomes were
excluded for analysis [32]. miRNA expression profiles of 495
samples including 450 samples from LUAD tissue and 45
samples from matched normal lung tissue in TCGA database
were downloaded from the University of California Santa
Cruz (UCSC) Xena database (https://xena.ucsc.edu/public).
Then, the miRNA expression profiles were transformed
into reads per million (RPM), and miRNAs expressed in
more than 10% of patients with LUAD were extracted. The
clinical information of 522 patients with LUAD from TCGA
database was obtained using TCGAbiolinks R package [25],
which covered id, age, gender, tumor stage, state, weight,
Body Mass Index (BMI), alcohol history, height, days to last
follow-up, years smoked, and race (Table 1).

2.2. TMB Calculation and Classification of Patients. Somatic
mutation profiles were processed by Mutect software, and
the identified somatic mutations, including base substitu-
tion, deletions, and insertions, were filtered according to
the following criteria: (1) the minimum sequencing coverage
for mutations should be greater than or equal to 10; (2) the
variant allelic fraction should be greater than or equal to
5%. TMB was calculated as the total count of somatic muta-
tions identified divided by 38Mb, which is the length of
exons in human genome. According to previously reported
cutoff threshold of 10 in patients with LUAD [21, 33],
patients were divided into TMB-H (TMB ≥ 10) and TMB-L
(TMB < 10). Density plot of TMB-distribution for all
patients with LUAD and boxplot of correlation between
tumor stage and TMB was drawn by ggplot2 R package.

2.3. Tumor-Infiltrating Immune Analysis. Tumor-infiltrating
immune analysis was performed through Tumor Immune
Estimation Resource (TIMER) tool [34]. The estimated
abundances of six immune infiltrates (B cells, CD4(+) T
cells, CD8(+) T cells, neutrophils, macrophages, and den-
dritic cells) were compared between TMB-H and TMB-L
patients.
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2.4. Multiomics Analysis between TMB-H and TMB-L
Patients. Differentially expressed genes between TMB-H
and TMB-L patients in training cohort were identified
through limma R package with -log10 adj.p value > 2
(adj.p value < 0.01) and log2 FoldChange > 3 [28] and then
illustrated in volcano plot and heatmap by ggplot2 and
pheatmap R package, respectively. Differentially expressed
miRNAs between TMB-H and TMB-L patients in training
cohort were identified through limma R package with
-log10 adj.p-value > 1.30 (adj.p-value < 0.05) and log2
FoldChange > 0:35 [28] and then illustrated in volcano plot
and heatmap by ggplot2 and pheatmap R package, respec-
tively. In addition, target genes of the differentially expressed
miRNAs were searched and analyzed through miRWalk
website tool (http://mirwalk.umm.uni-heidelberg.de/) [35].
Differentially methylated CpG sites between TMB-H and
TMB-L patients in training cohort were identified through
limma R package with -log10 adj.p value > 1.30 (adj.p value
< 0.05) and log2 FoldChange > 0:15 [28] and then illustrated
in volcano plot and heatmap by ggplot2 and pheatmap R
package, respectively.

2.5. Functional Enrichment Analysis.We first converted gene
symbols into ENTREZ ID via org.Hs.eg.db R package, and
then Gene Ontology (GO) and Kyoto Encyclopedia of Genes
(KEGG) analysis of differentially expressed genes were
implemented using ggplot2, enrichplot, and clusterProfiler
R packages [36]. Meanwhile, GO and KEGG enrichment
analysis were conducted for target genes of differentially
expressed miRNAs using the same method described above.

2.6. Construction of TPM. We constructed 4 possible predic-
tion biomarker signatures: gene signature (45 genes), miRNA
signature (45 miRNAs), CpG site signature (45 CpG sites),
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TMB prediction model

Regression analysisROC
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miRNAs

Differentially expressed
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Vs
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Figure 1: Flowchart of the analysis process in this study. TMB: tumor mutation burden; TMB-H: TMB-high; TMB-L: TMB-low; PCA:
principal component analysis; LASSO: least absolute shrinkage and selection operator; ROC: receiver operating characteristic.

Table 1: Clinical information of 522 TCGA-LUAD patients.

Variables Statistics

Gender

Male (%) 242 (46.4%)

Female (%) 280 (53.6%)

Age

80~89 (%) 30 (5.8%)

70~79 (%) 150 (28.7%)

60~69 (%) 146 (28.0%)

50~59 (%) 83 (16.0%)

40~49 (%) 25 (4.8%)

30~39 (%) 2 (0.4%)

Not reported (%) 86 (16.3%)

Race

White (%) 393 (75.3%)

Black or African American (%) 53 (10.2%)

Asian (%) 8 (1.5%)

American Indian or Alaska native (%) 1 (0.2%)

Not reported (%) 67 (12.9%)

Status

Alive (%) 334 (64.0%)

Dead (%) 188 (36.0%)

Tumor stage

I (%) 279 (53.4%)

II (%) 124 (23.8%)

III (%) 85 (16.3%)

IV (%) 26 (5.0%)

Not reported (%) 8 (1.5%)

LUAD: lung adenocarcinoma.
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Figure 2: Division of patients with LUAD into TMB-H and TMB-L subgroups. (a) The distribution of TMB in patients with LUAD; (b) the
number of TMB-H and TMB-L patients with LUAD; (c) the distribution of TMB across different tumor stages. TMB: tumor mutation
burden; LUAD: lung adenocarcinoma; TMB-H: TMB-high; TMB-L: TMB-low; OS: overall survival.
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Figure 3: Multiomics data obtained from TCGA for patients with LUAD. (a) 440 patients with LUAD were found having coupled WES,
DNA methylation, RNA-seq and miRNA-seq data; (b) 148 patients were classified as TMB-H and 292 patients were classified as TMB-L.
WES: whole-exome sequencing; TMB-H: TMB-high; TMB-L: TMB-low.
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and multiomics signature (15 genes + 15miRNAs + 15CpG
sites) using differentially expressed genes, miRNAs, and differ-
entially methylated CpG sites between TMB-H and TMB-L
patients in the training cohort. Next, the least absolute shrink-
age and selection operator (LASSO) logistic regression model
analysis was performed to select the optimal biomarker signa-
ture for predicting TMB through glmnet R package [37]. The
predictive performance for each biomarker signature was eval-
uated by lambda.min and matched area under curve (AUC).
Finally, differentially expressed or methylated genes, miRNAs,
and CpG sites identified with nonzero regression coefficients
were used to construct the TPM. The TPM score was calcu-
lated using the regression coefficients from LASSO analysis
to weigh the expression or methylation of the chosen biomark-
ers. The validation cohort was used to evaluate the perfor-
mance of the TPM through assessing the predicting
sensitivity, specificity, positive predictive value (PPV), nega-
tive predictive value (NPV), and AUC.

2.7. Principal Component Analysis (PCA). Differentially
expressed genes, miRNAs, and differentially methylated
CpG sites identified through LASSO analysis were used to
perform PCA. Expression or methylation profiles of the
genes, miRNAs, and CpG sites were extracted from each
patient, and ggfortify R package was utilized to conduct the
PCA.

2.8. ROC Analysis. ROC curve analysis was conducted using
pROC R package to investigate the performance of TPM in
predicting TMB [38].

2.9. Correlation Analysis and Regression Analysis. Correla-
tion between TPM score and TMB was analyzed by cor.test
R function with the two-side Pearson’s method. Samples
were plotted in two-dimensional plots with the TPM score
and TMB value. Regression analysis between TPM score
and TMB was performed using lm R function.

3. Results

3.1. TMB-Based Division of Patients with LUAD. WES data
of tumor tissue from a total of 567 patients were acquired
from TCGA-LUAD database, and clinical characteristics of
the patients were summarized (Table 1); the mean age of
the patients was 65.8, among which 242 individuals were
males and 280 individuals were females (Table 1). TMB
was calculated as the number of somatic mutations identi-
fied per megabase (Mb) in tumor tissue of each patient. It
was found that most of patients with LUAD had a TMB
ranging from 0 to 40 (Figure 2(a)). According to cutoff
threshold of TMB = 10, 184 patients were classified as
TMB-H and 383 patients were classified as TMB-L
(Figure 2(b)). The TMB-H and TMB-L patients were found
evenly distributed in different tumor stages as expected
(Figure 2(c)). Furthermore, tumor samples from 440
patients were found also having RNA-seq, miRNA-seq,
and DNA methylation datasets (Figure 3(a), Supplementary
Table S1), among which 148 patients belong to the TMB-H
group and 292 patients belong to the TMB-L group
(Figure 3(b)). Patients were then randomly split into a
training cohort (70%, 103 TMB-H patients vs. 204 TMB-L
patients) and a validation cohort (30%, 45 TMB-H patients
vs. 88 TMB-L patients) without overlap for developing a
multiomics model to predict TMB.

3.2. Landscape of Tumor-Infiltrating Immune Cells in Patients
with LUAD. Proportions of different tumor-infiltrating
immune cells between TMB-H patients and TMB-L patients
were calculated and summarized (Figure 4(a), Supplementary
Figure S1), in which the abundance of CD4 (+) T cells
(p = 0:030) showed more abundant density in TMB-L
patients compared with TMB-H patients, whereas the B cell,
CD8 (+) T cell, dendritic cell, macrophage cell, and
neutrophil cell had similar density between TMB-H patients
and TMB-L patients (Supplementary Figure S1, Figure 4(a)).
Meanwhile, correlations among different tumor-infiltrating
immune cell types were moderate or weak (Figure 4(b)).
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immune cells in TMB-H patients and TMB-L patients; (b) correlation matrix of all the proportions of 6 detected immune cell types. TMB-H:
TMB-high; TMB-L: TMB-low.
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These results suggested that TMBmight be associated with the
abundance of CD4 (+) T cell in patients with lung cancer.

3.3. Multiomics Analysis of Transcriptome, miRNAome, and
Methylome between TMB-H and TMB-L Patients. To
explore differences in a tumor microenvironment between
TMB-H and TMB-L patients, differentially expressed genes,
miRNAs, and differentially methylated CpG sites between
TMB-H patients and TMB-L patients in the training cohort
were identified. In summary, 480 genes and 36 miRNAs
were upregulated in TMB-H patients, whereas 130 genes
and 14 miRNAs were downregulated in TMB-H patients
(Figures 5(a)–5(d)). Moreover, 10 CpG sites were hyper-
methylated and 48 CpG sites were hypomethylated in
TMB-H patients (Figures 5(e) and 5(f)). GO-enrichment
analysis suggested that the differentially expressed genes
were mainly involved in the biological processes including
nuclear division, chromosome segregation, and organelle fis-
sion (Supplementary Figure S2A). KEGG pathway enrich-
ment analysis suggested that the differentially expressed
genes were mainly related to pyrimidine metabolism
(Supplementary Figure S2B). These results demonstrated
that differentially expressed genes might be correlated
with carcinogenesis-related processes [39]. In addition,
GO and KEGG enrichment analysis were also performed
for the target genes of differentially expressed miRNAs,
which were found to be mainly enriched in netrin-activated
signaling pathway, DNA-binding transcription activator, and
single-stranded RNA binding (Supplementary Figure S3A,

Figure S3B). In addition, most of the differentially
methylated CpG sites were found to locate in gene body
regions (Supplementary Figure S4), and 5 CpG sites were
found to locate in the TSS1500 (sequence region from -200
to -1500 nt upstream of the transcription start site) and
TSS200 (sequence region -200nt upstream of the
transcription start site) region of genes (Supplementary
Figure S4, Supplementary Table S2).

3.4. Machine Learning-Based Construction of TMB
Prediction Model. To develop TPM based on the differences
identified through multiomics analysis, we firstly generated 4
possible prediction biomarker signatures including gene sig-
nature, miRNA signature, CpG site signature, and multio-
mics signature, which were composed of expression
profiles of top 45 differentially expressed genes, top 45 differ-
entially expressed miRNAs and top 45 differentially methyl-
ated CpG sites between TMB-H and TMB-L patients,
respectively (Supplementary Table S3). To further compare
predicting efficacy of the four signature, we implemented
LASSO logistic analysis to select the optimal signature from
training cohort. The optimal biomarkers for the 4 prediction
signature were obtained with nonzero regression coefficients
(Figure 6, Table 2), and as a result, the multiomics signature
with maximum measure (0.868) was selected as the optimal
biomarker signature for predicting TMB (Figure 6(d),
Table 2). PCA using the shrunk multiomics signature
suggested that TMB-H patients and TMB-L patients could
be separated obviously (Supplementary Figure S5). Based on
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Figure 5: Characterization of the top50 differential expressed genes, miRNAs, and differential methylated CpG sites between TMB-H and
TMB-L patients. Volcano plot showed the differentially expressed genes (a) and miRNAs (c) or differentially methylated CpG sites (e)
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L: TMB-low.
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the multiomics signature, we finally constructed TPM by
weighing expression or methylation of the genes, miRNAs,
and CpG sites through regression coefficients from the
LASSO analysis (Table 3). The TPM was showed as the
following math formula: TPM score = − 1:555696454 ∗ cg
02031308 − 0:939485314 ∗ cg03286742 − 0:532855695 ∗ cg
04046889 − 1:603385472 ∗ cg12095807 − 1:171295176 ∗ cg
16794961 − 1:341848062 ∗ cg24553235 + 0:203290638 ∗
YBX2 + 0:000323171 ∗HLTF + 0:355814358 ∗ KLC3 +
0:017454209 ∗ WRNIP1 + 0:010739241 ∗ CKS1B +
0:013056543 ∗ RNF26 + 0:039397451 ∗ ZYG11A +
0:582628142 ∗ hsa −miR − 571 + 3:954182602 ∗ hsa −miR
− 586 + 0:068239671 ∗ hsa −miR − 151b + 0:000724033 ∗
hsa −miR − 378i + 0:25824073 ∗ hsa −miR − 6727 − 5p −
0:731679875 ∗ hsa −miR − 502 − 3p − 0:007119299 ∗ hsa −
miR − 6798 − 3p. The AUC of the constructed TPM in the
training cohort was 0.911 showing its superior predictive
accuracy (Figure 7(a)). Besides, the p value of a two-side t-test
was 3:40e − 48 between TPM score and TMB (Figure 7(b)),

which suggested that TPM score was highly correlated with
TMB in patients with LUAD.

3.5. Evaluation of the Predicting Accuracy of TPM in the
Validation Cohort. To evaluate the predicting efficacy of
TPM constructed in training cohort, expression or methyla-
tion profiles of genes, miRNAs, and CpG sites in patients
from validation cohort were used as input parameters for
calculating TPM score. According to the threshold of
-3.366, 41 patients from the TMB-H group were predicted
as TMB-H, and 66 patients from the TMB-L group were
predicted as TMB-L. In summary, the TPM has a sensitivity
of 0.911, a specificity of 0.750, and an accuracy of 0.805 in
predicting TMB in the validation cohort, and the PPV was
0.651 and NPV was 0.943 (Supplementary Table S4). ROC
analysis revealed the AUC of the TPM in validation cohort
was 0.859 (Figure 8(a)), and p value of the two-side t-test
was 1:19e − 14 between the TPM score and TMB
(Figure 8(b)). These results suggested that the TPM
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Figure 6: LASSO regression analysis for 4 possible prediction biomarker signatures. 10-fold cross-validation in LASSO regression analysis
for gene signature (a), miRNA signature (b), CpG site signature (c), and multiomics signature (d). LASSO: least absolute shrinkage and
selection operator; AUC: area under curve.
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performed relatively high TMB-predicting accuracy in an
independent validation cohort.

4. Discussion

Immunotherapy has been demonstrated particularly suc-
cessful in NSCLC treatment and is being adopted as a first-
line treatment option worldwide [12, 21, 40]. Nevertheless,
only a small portion of unselected patients can benefit from
immunotherapy [24, 41]. Therefore, biomarkers for patient
selection become important to achieve effective therapy.
TMB has been recognized as the effective prognostic bio-
marker in NSCLC patients according to the results from
numerous clinical trials [21, 22, 42, 43]. Although targeted
NGS has been proved to be an alternative approach of
WES for the prediction of TMB, the accuracy and simplicity
of targeted NGS remain challenging as various parameters
should be taken into consideration [44]. In this study, we
developed a mathematic multiomics model that could pre-
cisely predict TMB in patients with LUAD, and the predic-
tion accuracy of the model was validated in an
independent cohort with high sensitivity and specificity.
Furthermore, as the input parameter in this model includes
expression profiles of 7 genes, 7 miRNAs, and the methyla-
tion profiles of 6 CpG sites, which could be obtained through
quantitative real time-polymerase chain reaction (qRT-
PCR). This model paved the way for further development
of the simplified qRT-PCR-based clinical assay for TMB
prediction.

The tumor microenvironment refers to the network of
cells and structures surrounding a tumor cell, and it consists
of immune cells, mesenchymal cells, endothelial cells, extra-
cellular matrix (ECM) molecules, and inflammatory media-
tors [45]. High TMB indicates the presence of more
neoantigens in tumor microenvironment, which promotes
the inflammatory response and results in the alteration of
transcriptomic and epigenetic changers [45]. It has been

Table 2: The performance of 4 optimal biomarker signatures obtained by LASSO regression analysis.

Biomarker
signature

Optimal biomarkers lambda.min Measure

Gene
GTF2IRD1, FTSJ1, CHMP4B, KLC3, DMAC2, GIT1, SOHLH2, SYNGR3, SAP130, LRRC1,
FN3KRP, POU4F1, ZNF526, KRT80, UBE2C, FOXE1, MEX3D, CIDECP1, PRR19, DHX16,

FANCG, AC010632.1, AC019171.1
0.018 0.884

miRNA

hsa-miR-22-5p, hsa-miR-486-5p, hsa-miR-492, hsa-miR-561-5p, hsa-miR-151b, hsa-miR-3677-
5p, hsa-miR-3923, hsa-miR-4425, hsa-miR-4434, hsa-miR-4536-5p, hsa-miR-4679, hsa-miR-5702,
hsa-miR-6727-5p, hsa-miR-6858-5p, hsa-miR-7107-5p, hsa-let-7 g-3p, hsa-miR-136-3p, hsa-miR-
155-3p, hsa-miR-371a-3p, hsa-miR-491-3p, hsa-miR-432-3p, hsa-miR-574-3p, hsa-miR-3074-3p,
hsa-miR-3622b-3p, hsa-miR-3679-3p, hsa-miR-3150b-3p, hsa-miR-4639-3p, hsa-miR-4655-3p,

hsa-miR-6798-3p, hsa-miR-6847-3p

0.017 0.734

CpG site
cg01862650, cg02031308, cg02916472, cg07184316, cg07729440, cg10120778, cg10488199,
cg11002952, cg20151576, cg20297017, cg20671274, cg21827634, cg22773522, cg23049130,

cg25841348
0.015 0.845

Multiomics

cg01862650, cg07729440, cg20671274, cg21827634, cg22773522, GTF2IRD1, FTSJ1, TTI1,
CHMP4B, KLC3, HNRNPUL1, UBE2S, BCL2L12, SYNGR3, KRT80, FOXE1, AC006213.3, hsa-
miR-22-5p, hsa-miR-492, hsa-miR-4536-5p, hsa-miR-6727-5p, hsa-miR-7107-5p, hsa-miR-136-

3p, hsa-miR-3679-3p, hsa-miR-6816-3p

0.010 0.938

LASSO: least absolute shrinkage and selection operator: TMB: tumor mutation burden.

Table 3: Coefficient of each biomarker of multiomics signature in
LASSO model analysis.

Biomarkers Coefficient

Multiomics

cg01862650 -1.818730262

cg07729440 -6.256940647

cg20671274 -0.911730577

cg21827634 -3.867697524

cg22773522 -2.460934084

GTF2IRD1 0.039415926

FTSJ1 0.012286235

TTI1 0.042479337

CHMP4B 0.009500278

KLC3 0.454704618

HNRNPUL1 0.015834511

UBE2S 0.014978452

BCL2L12 0.078730525

SYNGR3 0.192724739

KRT80 0.017563239

FOXE1 0.011660062

AC006213.3 0.175314579

hsa-miR-22-5p 1.230322969

hsa-miR-492 -0.185026622

hsa-miR-4536-5p 7.457452192

hsa-miR-6727-5p 0.560095048

hsa-miR-7107-5p -0.131067725

hsa-miR-136-3p 0.93577811

hsa-miR-3679-3p -0.007961529

hsa-miR-6816-3p 1.359432308

LASSO: least absolute shrinkage and selection operator.
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proved that gene expression signatures in the tumor micro-
environment were associated with the prognosis in NSCLC
[46–49]. In agreement with previous studies, the differen-
tially expressed genes between TMB-H and TMB-L patients
identified in this study were found to enrich in the immune-
related damaged DNA binding, nuclear division, nuclear
chromosome segregation, organelle fission, single-stranded
DNA binding, ribonucleoprotein complex binding, and
pyrimidine metabolism (Supplementary Figure S2)
[50–54]. The 7 genes used in constructing TPM might be
involved in carcinogenesis; for instance, Y box binding
protein 2 (YBX2) was differentially expressed between
different subtypes of breast cancer and was one of RNA
processing factors which contribute to subtype-specific
splicing [55]. Meanwhile, it was found that LINC00958

promoted cell proliferation and migration in oral
squamous cell carcinoma through the miR-627-5p/YBX2
axis [56]. Moreover, it was reported that the wild type
alleles of kinesin light chain 3 (KLC3) Lys751Gln were
significantly correlated with greater smoking intensity, and
genetic variations may influence the progression of lung
cancer [57]. In addition, the expression of CDC28 protein
kinase regulatory subunit 1 (CKS1B) in lung cancer cells
developed the chemoresistance through the Hsp90 and
MEK1/2 pathway [58].

miRNA expression in tumor microenvironment plays a
crucial role in mediating and controlling several immune
and cell interactions and convolutes in the regulation of
immune checkpoints, PD1 and PD-L1 [59]. It was reported
that a 25 miRNA-based signature classifier could predict
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Figure 7: The performance of TPM in the training cohort. (a) ROC analysis of the TPM score in the training cohort; (b) the TPM score is
highly correlated with TMB. TPM: TMB prediction model; AUC: area under curve.
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the TMB level with high accuracy [60]. A cluster of highly
expressed miRNA including hsa-miR-492, hsa-miR-498,
and hsa-miR-320 were found to be correlated with tumori-
genesis of retinoblastoma [61]. Moreover, the invasion, pro-
liferation, and migration of cervical cancer cells were found
to be promoted by hsa-miR-6727-5p, which might play an
important role in cervical cancer progress [62]. In this study,
we mapped the differentially expressed miRNAs between
TMB-H and TMB-L patients to their target genes, and
enrichment analysis of the target genes suggested that
DNA-binding transcription activator, single-stranded RNA
binding, MAP kinase activity, and glycerolipid metabolism
that related to lung cancer were affected in a tumor microen-
vironment. The 7 miRNAs used in constructing the TPM in
this study include hsa-miR-571, hsa-miR-586, hsa-miR-
151b, hsa-miR-378i, hsa-miR-6727-5p, hsa-miR-502-3p,
and hsa-miR-6798-3p, among which hsa-miR-378i and
miR-502-3p were demonstrated to be important for colorec-
tal cancer carcinoma metastasis [63, 64].

Changes in DNA methylation are one of the most
important epigenetic alterations in a tumor microenviron-
ment. A multicenter study in 15 hospitals suggested epige-
nomic profile based on a microarray DNA methylation
signature (EPIMMUNE) could serve as an effective bio-
marker in predicting the outcomes of NSCLC patients
treated with PD-1 inhibitors [65], and the FOXP1 could be
a predictive biomarker for better-selecting patients to benefit
with immunotherapy [65]. The CpG site signature also had a
relatively high predictive performance (measure = 0:861) of
TMB in our study, suggesting its great value in NSCLC prog-
nosis. cg02849937 located in the TSS1500 region of C7orf13
and its expression level were negatively associated with pro-
moter methylation using whole-genome integrative analysis
[66]. In addition, cg27281030 is located in the TSS1500
region of NLRP12, which has been demonstrated regulate
inflammation, and it is believed that hepatocellular carci-
noma was negatively regulated by NLRP12 through suppres-
sion of inflammation and proliferation of hepatocytes [67].

Through multiomics analysis, we integrated gene/
miRNA expression and DNA methylation data to reflect
subtle alterations of the tumor microenvironment to pre-
cisely predict TMB for better prognosis of patients with
LUAD in immunotherapy. Fragments per kilobase per mil-
lion mapped reads (FPKM) of YBX2, HLTF, KLC3,
WRNIP1, CKS1B, RNF26, ZYG11A, and RPM of hsa-
miR-571, hsa-miR-586, hsa-miR-151b, hsa-miR-378i, hsa-
miR-6727-5p, hsa-miR-502-3p, and hsa-miR-6798-3p as
well as beta-value of cg02031308, cg03286742, cg04046889,
cg12095807, cg16794961, and cg24553235 were extracted
from RNA-seq, miRNA-seq and Illumina HumanMethyla-
tion450 BeadChip, respectively, for calculating TPM score.
Although the FPKM, RPM, and beta value involved in the
TPM were based on high-throughput sequencing or chip
analysis, it is feasible to convert them to cycle threshold
(Ct) value in qRT-PCR analysis and thus simplify the predic-
tion of TMB by using benchtop qRT-PCR instrument. The
conversion of FPKM in different samples to Ct values could
be probably through comparison of the targeted gene expres-
sion to reference gene expressions, such as actin and eukary-

otic elongation factor (eEF), which have relative consistent
expression under different tumor microenvironment, and
beta value of CpG sites could also be converted into Ct value
though the quantitative MethyLight technology [68]. To our
best knowledge, this is the first time to construct the TPM for
patients with LUAD from multiomics view.

5. Conclusion

In summary, the present study developed a multiomics risk
model with high specificity and sensitivity in predicting
TMB for patients with LUAD and laid the base for establish-
ing a more simplified and cost-effective TMB test assay.
Nevertheless, this study was solely bioinformatics research,
and clinical sample validation for the TPM had not been
implemented. The training cohort and the validation cohort
used in this study were relatively small in size and required
further expansion to increase the accuracy.

Data Availability

Somatic mutation profiles of 567 samples, gene expression
profiles of 594 samples, DNA methylation profiles of 507
samples, and miRNA expression profiles of 495 samples
were obtained from TCGA database.

Conflicts of Interest

The author(s) declare(s) that they have no conflicts of
interest.

Authors’ Contributions

Jun Wang and Peng Chen contributed equally to this work.

Acknowledgments

This work was supported by National Natural Science Founda-
tion of China (91739109, 81970053, 81570046, 81870045, and
81700054); Guangdong Provincial Key Laboratory of Regional
Immunity and Diseases (2019B030301009); Shenzhen Munic-
ipal Basic Research Program (JCYJ20190808123219295 and
JCYJ20170818144127727); and Interdisciplinary Innovation
Team Project of Shenzhen University (843-00000325) and
the start-up funds from Shenzhen University (to J.W.). We
would like to thank TCGA project organizers as well as all
study participants.

Supplementary Materials

Supplementary Table S1: summary of TCGA-LUAD data.
Supplementary Table S2: five CpG sites located in the
TSS1500 and TSS200 region of the genes. Supplementary
Table S3: different biomarker signatures used in the training
cohort. Supplementary Table S4: the performance of TPM in
the validation cohort. Supplementary Figure S1: the differ-
ences in the abundance of tumor-infiltrating immune cells
between TMB-H and TMB-L patients. Student’s t-test was
used; error bars indicated standard deviation; ∗p < 0:05.
TMB-H: TMB-high; TMB-L: TMB-low. Supplementary

11BioMed Research International



Figure S2: GO and KEGG analysis for the differentially
expressed genes. Supplementary Figure S3: GO and KEGG
analysis for the target genes of differentially expressed miR-
NAs. Supplementary Figure S4: distribution of differentially
methylated CpG sites in genes. Supplementary Figure S5:
principal component analysis (PCA) for the multiomics sig-
nature after LASSO variable reduction. (Supplementary
Materials)

References

[1] R. L. Siegel, K. D. Miller, and A. Jemal, “Cancer statistics,
2019,” CA: a Cancer Journal for Clinicians, vol. 69, no. 1,
pp. 7–34, 2019.

[2] W. Chen, K. Sun, R. Zheng et al., “Cancer incidence and mor-
tality in China, 2014,” Chinese Journal of Cancer Research,
vol. 30, no. 1, pp. 1–12, 2018.

[3] F. Bray, J. Ferlay, I. Soerjomataram, R. L. Siegel, L. A. Torre,
and A. Jemal, “Global cancer statistics 2018: GLOBOCAN esti-
mates of incidence and mortality worldwide for 36 cancers in
185 countries,” CA: a Cancer Journal for Clinicians, vol. 68,
no. 6, pp. 394–424, 2018.

[4] R. Siegel, E. Ward, O. Brawley, and A. Jemal, “Cancer statistics,
2011,” CA: a Cancer Journal for Clinicians, vol. 61, no. 4,
pp. 212–236, 2011.

[5] S. Takamori, G. Toyokawa, K. Takada, F. Shoji, T. Okamoto,
and Y. Maehara, “Combination Therapy of Radiotherapy
and Anti-PD-1/PD-L1 Treatment in Non- Small-cell Lung
Cancer: A Mini-review,” Clinical Lung Cancer, vol. 19, no. 1,
pp. 12–16, 2018.

[6] D. E. Meyers, P. M. Bryan, S. Banerji, and D. G. Morris, “Tar-
geting the PD-1/PD-L1 axis for the treatment of non-small-
cell lung cancer,” Current oncology, vol. 25, no. 4, pp. 324–
e334, 2018.

[7] W. Luo, Z.Wang, P. Tian, andW. Li, “Safety and tolerability of
PD-1/PD-L1 inhibitors in the treatment of non-small cell lung
cancer: a meta-analysis of randomized controlled trials,” Jour-
nal of Cancer Research and Clinical Oncology, vol. 144, no. 10,
pp. 1851–1859, 2018.

[8] J. X. Li, J. M. Huang, Z. B. Jiang et al., “Current clinical prog-
ress of PD-1/PD-L1 immunotherapy and potential combina-
tion treatment in non-small cell lung cancer,” Integrative
Cancer Therapies, vol. 18, 2019.

[9] M. Khunger, P. Jain, S. Rakshit et al., “Safety and efficacy of PD-
1/PD-L1 inhibitors in treatment-naive and chemotherapy-
refractory patients with non-small-cell lung cancer: a systematic
review and meta-analysis,” Clinical Lung Cancer, vol. 19, no. 3,
pp. e335–e348, 2018.

[10] J. Brahmer, K. L. Reckamp, P. Baas et al., “Nivolumab versus
docetaxel in advanced squamous-cell non-small-cell lung can-
cer,” The New England Journal of Medicine, vol. 373, no. 2,
pp. 123–135, 2015.

[11] R. S. Herbst, P. Baas, D. W. Kim et al., “Pembrolizumab versus
docetaxel for previously treated, PD-L1-positive, advanced
non-small-cell lung cancer (KEYNOTE-010): a randomised
controlled trial,” The Lancet, vol. 387, no. 10027, pp. 1540–
1550, 2016.

[12] E. J. Aguilar, B. Ricciuti, J. F. Gainor et al., “Outcomes to first-
line pembrolizumab in patients with non-small-cell lung can-
cer and very high PD-L1 expression,” Annals of Oncology,
vol. 30, no. 10, pp. 1653–1659, 2019.

[13] M. Reck, D. Rodríguez-Abreu, A. G. Robinson et al., “Pembro-
lizumab versus chemotherapy for PD-L1-positive non-small-
cell lung cancer,” The New England Journal of Medicine,
vol. 375, no. 19, pp. 1823–1833, 2016.

[14] T. Landre, G. Des Guetz, K. Chouahnia, C. Taleb,
A. Vergnenegre, and C. Chouaid, “First-line PD-1/PD-L1
inhibitor plus chemotherapy vs chemotherapy alone for nega-
tive or < 1% PD-L1-expressing metastatic non-small-cell lung
cancers,” Journal of Cancer Research and Clinical Oncology,
vol. 146, no. 2, pp. 441–448, 2020.

[15] P. Martinez, S. Peters, T. Stammers, and J. C. Soria, “Immuno-
therapy for the first-line treatment of patients with metastatic
non-small cell lung cancer,” Clinical Cancer Research, vol. 25,
no. 9, pp. 2691–2698, 2019.

[16] J. R. Brahmer, R. Govindan, R. A. Anders et al., “The Society
for Immunotherapy of Cancer consensus statement on immu-
notherapy for the treatment of non-small cell lung cancer
(NSCLC),” Journal for Immunotherapy of Cancer, vol. 6,
no. 1, p. 75, 2018.

[17] A. Rittmeyer, F. Barlesi, D. Waterkamp et al., “Atezolizumab
versus docetaxel in patients with previously treated non-small-
cell lung cancer (OAK): a phase 3, open-label, multicentre ran-
domised controlled trial,” Lancet, vol. 389, no. 10066, pp. 255–
265, 2017.

[18] L. Fehrenbacher, A. Spira, M. Ballinger et al., “Atezolizumab
versus docetaxel for patients with previously treated non-
small- cell lung cancer (POPLAR): a multicentre, open-label,
phase 2 randomised controlled trial,” The Lancet, vol. 387,
no. 10030, pp. 1837–1846, 2016.

[19] R. Hui, E. B. Garon, J. W. Goldman et al., “Pembrolizumab as
first-line therapy for patients with PD-L1-positive advanced
non-small cell lung cancer: a phase 1 trial,” Annals of Oncol-
ogy, vol. 28, no. 4, pp. 874–881, 2017.

[20] N. A. Rizvi, M. D. Hellmann, A. Snyder et al., “Mutational land-
scape determines sensitivity to PD-1 blockade in non-small cell
lung cancer,” Science, vol. 348, no. 6230, pp. 124–128, 2015.

[21] M. D. Hellmann, T. E. Ciuleanu, A. Pluzanski et al., “Nivolu-
mab plus ipilimumab in lung cancer with a high tumor muta-
tional burden,” The New England Journal of Medicine, vol. 378,
no. 22, pp. 2093–2104, 2018.

[22] R. M. Samstein, C. H. Lee, A. N. Shoushtari et al., “Tumor
mutational load predicts survival after immunotherapy across
multiple cancer types,”Nature Genetics, vol. 51, no. 2, pp. 202–
206, 2019.

[23] M. Allgäuer, J. Budczies, P. Christopoulos et al., “Implementing
tumor mutational burden (TMB) analysis in routine
diagnostics-a primer for molecular pathologists and clinicians,”
Transl Lung Cancer Res, vol. 7, no. 5, pp. 703–715, 2018.

[24] R. Buttner, J. W. Longshore, F. Lopez-Rios et al., “Imple-
menting TMB measurement in clinical practice: consider-
ations on assay requirements,” ESMOOpen, vol. 4, no. 1, 2019.

[25] A. Colaprico, T. C. Silva, C. Olsen et al., “TCGAbiolinks: an R/
Bioconductor package for integrative analysis of TCGA data,”
Nucleic Acids Research, vol. 44, no. 8, 2016.

[26] C. Peng, W. Jun, S. Mingyang, Z. Guocheng, Z. Shasha, and
G. Deming, “Integrative modeling of multi-omics data for pre-
dicting tumor mutation burden in lung cancer patients,”
Research Square, 2021.

[27] J. Reimand, T. Arak, P. Adler et al., “G:profiler-a web server for
functional interpretation of gene lists (2016 update),” Nucleic
Acids Research, vol. 44, no. W1, pp. W83–W89, 2016.

12 BioMed Research International

https://downloads.hindawi.com/journals/bmri/2022/2698190.f1.docx
https://downloads.hindawi.com/journals/bmri/2022/2698190.f1.docx


[28] M. E. Ritchie, B. Phipson, D. Wu et al., “Limma powers differ-
ential expression analyses for RNA-sequencing and microar-
ray studies,” Nucleic Acids Research, vol. 43, no. 7, 2015.

[29] J. P. Fortin, T. J. Triche Jr., and K. D. Hansen, “Preprocessing,
normalization and integration of the Illumina HumanMethy-
lationEPIC array with minfi,” Bioinformatics, vol. 33, no. 4,
pp. 558–560, 2017.

[30] J. Sandoval, J. Mendez-Gonzalez, E. Nadal et al., “A prognostic
DNA methylation signature for stage I non-small-cell lung
cancer,” Journal of Clinical Oncology, vol. 31, no. 32,
pp. 4140–4147, 2013.

[31] M. E. Price, A. M. Cotton, L. L. Lam et al., “Additional anno-
tation enhances potential for biologically-relevant analysis of
the Illumina Infinium HumanMethylation450 BeadChip
array,” Epigenetics & Chromatin, vol. 6, no. 1, 2013.

[32] Y. A. Chen, M. Lemire, S. Choufani et al., “Discovery of cross-
reactive probes and polymorphic CpGs in the Illumina Infi-
nium HumanMethylation450 microarray,” Epigenetics, vol. 8,
no. 2, pp. 203–209, 2013.

[33] N. Ready, M. D. Hellmann, M. M. Awad et al., “First-line nivo-
lumab plus ipilimumab in advanced non-small-cell lung can-
cer (CheckMate 568): outcomes by programmed death
ligand 1 and tumor mutational burden as biomarkers,” Journal
of Clinical Oncology, vol. 37, no. 12, pp. 992–1000, 2019.

[34] T. Li, J. Fan, B. Wang et al., “TIMER: a web server for compre-
hensive analysis of tumor-infiltrating immune cells,” Cancer
Research, vol. 77, no. 21, pp. e108–e110, 2017.

[35] C. Sticht, C. De La Torre, A. Parveen, and N. Gretz, “miRWalk:
an online resource for prediction of microRNA binding sites,”
PLoS One, vol. 13, no. 10, 2018.

[36] G. Yu, L. G. Wang, Y. Han, and Q. Y. He, “clusterProfiler: an R
package for comparing biological themes among gene clus-
ters,” OMICS, vol. 16, no. 5, pp. 284–287, 2012.

[37] J. Friedman, T. Hastie, and R. Tibshirani, “Regularization
paths for generalized linear models via coordinate descent,”
Journal of Statistical Software, vol. 33, no. 1, pp. 1–22, 2010.

[38] X. Robin, N. Turck, A. Hainard et al., “pROC: an open-source
package for R and S+ to analyze and compare ROC curves,”
BMC Bioinformatics, vol. 12, no. 1, 2011.

[39] D. Hanahan and R. A. Weinberg, “The hallmarks of cancer,”
Cell, vol. 100, no. 1, pp. 57–70, 2000.

[40] S. Gettinger, N. A. Rizvi, L. Q. Chow et al., “Nivolumab mono-
therapy for first-line treatment of advanced non-small-cell
lung cancer,” Journal of Clinical Oncology, vol. 34, no. 25,
pp. 2980–2987, 2016.

[41] D. P. Carbone, M. Reck, L. Paz-Ares et al., “First-line nivolu-
mab in stage IV or recurrent non-small-cell lung cancer,”
The New England Journal of Medicine, vol. 376, no. 25,
pp. 2415–2426, 2017.

[42] D. R. Gandara, S. M. Paul, M. Kowanetz et al., “Blood-
based tumor mutational burden as a predictor of clinical
benefit in non-small-cell lung cancer patients treated with
atezolizumab,” Nature Medicine, vol. 24, no. 9, pp. 1441–
1448, 2018.

[43] C. Kandoth, M. D. McLellan, F. Vandin et al., “Mutational
landscape and significance across 12 major cancer types,”
Nature, vol. 502, no. 7471, pp. 333–339, 2013.

[44] A. S. D. Patel, D. Soneji, P. Parikh, and M. Kumar, “Biomark-
ers in immuno-oncology: a review article,” International Jour-
nal of Molecular & Immuno Oncology, vol. 4, no. 2, pp. 41–49,
2019.

[45] N. K. Altorki, G. J. Markowitz, D. Gao et al., “The lung micro-
environment: an important regulator of tumour growth and
metastasis,” Nature Reviews. Cancer, vol. 19, no. 1, pp. 9–31,
2019.

[46] G. Chen, Z. Dong, D. Wu, and Y. Chen, “Profiles of immune
infiltration in lung adenocarcinoma and their clinical signifi-
cant: a gene-expression-based retrospective study,” Journal of
Cellular Biochemistry, vol. 121, no. 11, pp. 4431–4439, 2020.

[47] C. Yue, H. Ma, and Y. Zhou, “Identification of prognostic gene
signature associated with microenvironment of lung adeno-
carcinoma,” PeerJ, vol. 7, 2019.

[48] J. Li, X. Li, C. Zhang, C. Zhang, and H. Wang, “A signature of
tumor immune microenvironment genes associated with the
prognosis of non‑small cell lung cancer,” Oncology Reports,
vol. 43, no. 3, pp. 795–806, 2020.

[49] J. Sun, Z. Zhang, S. Bao et al., “Identification of tumor immune
infiltration-associated lncRNAs for improving prognosis and
immunotherapy response of patients with non-small cell lung
cancer,” Journal for Immunotherapy of Cancer, vol. 8, no. 1,
2020.

[50] B. K. Slowikowski, B. Galecki, W. Dyszkiewicz, and P. P.
Jagodzinski, “Decreased expression of cytochrome p450 1B1
in non-small cell lung cancer,” Biomedicine & Pharmacother-
apy, vol. 95, pp. 339–345, 2017.

[51] C. A.Wassenaar, Y. Ye, Q. Cai et al., “CYP2A6 reduced activity
gene variants confer reduction in lung cancer risk in African
American smokers—findings from two independent popula-
tions,” Carcinogenesis, vol. 36, no. 1, pp. 99–103, 2015.

[52] D. Veale, N. Kerr, G. J. Gibson, P. J. Kelly, and A. L. Harris,
“The relationship of quantitative epidermal growth factor
receptor expression in non-small cell lung cancer to long term
survival,” British Journal of Cancer, vol. 68, no. 1, pp. 162–165,
1993.

[53] G. V. Scagliotti, G. Selvaggi, S. Novello, and F. R. Hirsch, “The
biology of epidermal growth factor receptor in lung cancer,”
Clinical Cancer Research, vol. 10, no. 12, pp. 4227s–4232s,
2004.

[54] J. Ogawa, M. Iwazaki, H. Inoue, S. Koide, and A. Shohtsu,
“Immunohistochemical study of glutathione-related enzymes
and proliferative antigens in lung cancer. Relation to cisplatin
sensitivity,” Cancer, vol. 71, no. 7, pp. 2204–2209, 1993.

[55] T. P. Stricker, C. D. Brown, C. Bandlamudi et al., “Robust strat-
ification of breast cancer subtypes using differential patterns of
transcript isoform expression,” PLoS Genetics, vol. 13, no. 3,
2017.

[56] F. Chen, M. Liu, Y. Yu et al., “LINC00958 regulated miR-627-
5p/YBX2 axis to facilitate cell proliferation and migration in
oral squamous cell carcinoma,” Cancer Biology & Therapy,
vol. 20, no. 9, pp. 1270–1280, 2019.

[57] Z. Verde, L. Reinoso, L. M. Chicharro et al., “Are SNP-
smoking association studies needed in controls? DNA repair
gene polymorphisms and smoking intensity,” PLoS One,
vol. 10, no. 5, 2015.

[58] H. Wang, M. Sun, J. Guo et al., “3-O-(Z)-coumaroyloleanolic
acid overcomes Cks1b-induced chemoresistance in lung can-
cer by inhibiting Hsp90 and MEK pathways,” Biochemical
Pharmacology, vol. 135, pp. 35–49, 2017.

[59] M. A. Iqbal, S. Arora, G. Prakasam, G. A. Calin, and M. A.
Syed, “MicroRNA in lung cancer: role, mechanisms, pathways
and therapeutic relevance,” Molecular Aspects of Medicine,
vol. 70, pp. 3–20, 2019.

13BioMed Research International



[60] Y. Lv, Z. Huang, Y. Lin et al., “MiRNA expression patterns are
associated with tumor mutational burden in lung adenocarci-
noma,” Oncoimmunology, vol. 8, no. 10, 2019.

[61] J. J. Zhao, J. Yang, J. Lin et al., “Identification of miRNAs
associated with tumorigenesis of retinoblastoma by miRNA
microarray analysis,” Child's Nervous System, vol. 25, no. 1,
pp. 13–20, 2009.

[62] H. Liu, G. Pei, M. Song, S. Dai, and Y.Wang, “Influence of hsa-
miR-6727-5p on the proliferation, apoptosis, invasion and
migration of Caski, Hela and SiHa cervical cancer cells,” Jour-
nal of BUON, vol. 22, no. 4, pp. 973–978, 2017.

[63] D. F. Pellatt, J. R. Stevens, R. K. Wolff et al., “Expression profiles
of miRNA subsets distinguish human colorectal carcinoma and
normal colonic mucosa,” Clinical and Translational Gastroen-
terology, vol. 7, no. 3, 2016.

[64] Y. P. Hu, Y. P. Jin, X. S. Wu et al., “LncRNA-HGBC stabilized
by HuR promotes gallbladder cancer progression by regulating
miR-502-3p/SET/AKT axis,” Molecular Cancer, vol. 18, no. 1,
p. 167, 2019.

[65] M. Duruisseaux, A. Martínez-Cardús, M. E. Calleja-Cervantes
et al., “Epigenetic prediction of response to anti-PD-1 treat-
ment in non-small-cell lung cancer: a multicentre, retrospec-
tive analysis,” Respiratory Medicine, vol. 6, no. 10, pp. 771–
781, 2018.

[66] A. Etcheverry, M. Aubry, M. de Tayrac et al., “DNA methyla-
tion in glioblastoma: impact on gene expression and clinical
outcome,” BMC Genomics, vol. 11, no. 1, 2010.

[67] S. N. Udden, Y. T. Kwak, V. Godfrey et al., “NLRP12 sup-
presses hepatocellular carcinoma via downregulation of cJun
N-terminal kinase activation in the hepatocyte,” eLife, vol. 8,
2019.

[68] C. A. Eads, K. D. Danenberg, K. Kawakami et al., “MethyLight:
a high-throughput assay to measure DNA methylation,”
Nucleic Acids Research, vol. 28, no. 8, pp. 32e–320, 2000.

14 BioMed Research International


	Integrative Modeling of Multiomics Data for Predicting Tumor Mutation Burden in Patients with Lung Cancer
	1. Introduction
	2. Materials and Methods
	2.1. Multiomics Dataset Acquisition from TCGA
	2.2. TMB Calculation and Classification of Patients
	2.3. Tumor-Infiltrating Immune Analysis
	2.4. Multiomics Analysis between TMB-H and TMB-L Patients
	2.5. Functional Enrichment Analysis
	2.6. Construction of TPM
	2.7. Principal Component Analysis (PCA)
	2.8. ROC Analysis
	2.9. Correlation Analysis and Regression Analysis

	3. Results
	3.1. TMB-Based Division of Patients with LUAD
	3.2. Landscape of Tumor-Infiltrating Immune Cells in Patients with LUAD
	3.3. Multiomics Analysis of Transcriptome, miRNAome, and Methylome between TMB-H and TMB-L Patients
	3.4. Machine Learning-Based Construction of TMB Prediction Model
	3.5. Evaluation of the Predicting Accuracy of TPM in the Validation Cohort

	4. Discussion
	5. Conclusion
	Data Availability
	Conflicts of Interest
	Authors’ Contributions
	Acknowledgments
	Supplementary Materials

