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AIM. Previous studies have provided insights into complex immune system changes caused by ischemic stroke (IS), while detailed
reports are lacking especially in peripheral blood. Here, we sought to identify genetic biomarkers in immune system which
significantly associated with the occurrence of IS and explore candidate drugs that can regulate the process. We also
investigated whether gene expression alternation of immune genes contributed to differential distribution of immune cells in
peripheral blood following IS. Method. 108 IS samples and 47 matched controls were obtained from the GEO database.
Immune-related genes (IRGs) and their associated drugs were collected from the ImmPort and PharmGBK databases,
respectively. Random forest (RF) regression and least absolute shrinkage and selection operator (LASSO) logistic regression
were applied to identify immune-related genetic biomarkers (IRGBs) of IS, and accuracy was verified using neural network
models. Finally, proportion changes of various immune cells in peripheral blood of IS patients were evaluated using
CIBERSORT and xCell and correlation analyses were performed between IRGBs and differentially distributed immune cells.
Results. A total of 537 genes were differentially expressed between IS and control samples. Four immune-related differential
expressed genes identified by regression analysis presented strong predictive power (AUC = 0:909) which we suggeseted them
as immune-related genetic biomarkers (IRGBs). We also demonstrated six immune-related genes targeted by known drugs. In
addition, post-IS immune system presented an increase in the proportion of innate immune cells and a decrease in adaptive
immune cells in the peripheral circulation, and IRGBs showing significance were associated with this process.Conclusion. The
study identified CARD11, ICAM2, VIM, and CD19 as immune-related genetic biomarkers of IS. Six immune-related DEGs
targeted by known drugs were found and provide new candidate drug targets for modulating the post-IS immune system. The
innate immune cells and adaptive immune cells are diversified in the post-IS immune system, and IRGBs might play
important role during this process.

1. Introduction

Stroke is the second leading cause of death and the main
cause of disability among adults worldwide [1]. When an
acute stroke (particularly ischemic stroke (IS)) is followed
by a severe inflammatory attack, immune cells (such as
microglia) inside the central nervous system (CNS) are acti-
vated and exert macrophage-like effects [2, 3]. More impor-
tantly, as the blood-brain barrier is disrupted, immune cells

in the peripheral blood circulation can invade the CNS [4].
Proinflammatory signals from immune-mediators not only
activate immune cells in situ but also recruit inflammatory
cells (neutrophils, monocytes, macrophages, various types
of T cells, and other inflammatory cells) from the peripheral
blood to the ischemic area and induce a systemic inflamma-
tory response [5]. Conversely, this early activation of the
immune system is quickly replaced by a state of systemic
immunosuppression that predisposes individuals to
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poststroke infections [4, 6]. In patients with stroke, the
incidence of infectious complications, pneumonia, urinary
tract infections, and other organ system infections is
approximately 30%, and these symptoms are strongly asso-
ciated with death and high recurrence rates in stroke sur-
vivors [7, 8].

Although changes in the immune system are relevant
to the occurrence and development of IS, the pathogenesis
underlying their variation is still unclear. Previous studies
have reported that damaged brains can remodel peripheral
immunity and inhibit the function of the peripheral
immune system, leading to lymphopenia, reduced levels
of inflammatory cytokines, and secondary lymphoid organ
atrophy [3, 4, 9, 10]. The CNS can cause variations in
immune function through complex humoral and neural
pathways, including the sympathetic nervous system, vagus
nerve, and hypothalamic-pituitary-adrenal (HPA) axis [9].
However, it remains unclear which signals and mecha-
nisms trigger the sympathetic nervous system and the
HPA axis to regulate the immune system following IS
[6]. Comprehensive elucidation of the alteration in each
component of the poststroke immune system is lacking,
and studies on the molecular mechanisms underlying the
changes are limited.

In this study, we identified immune-related genes whose
expression highly associated with ischemic stroke and ana-
lyzed the correlation between these genes and different com-
ponents of immune cells, in an attempt to understand the
molecular mechanisms of immune system changes following
IS and provide more evidence for the development of drugs
for immune response in the future.

2. Materials and Methods

2.1. Microarray Data and Clinical Information. The micro-
array datasets used in this study were obtained from the
GEO database (http://www.ncbi.nlm.nih.gov/geo/). The cri-
teria for retrieving the datasets were (A) human peripheral
whole blood samples, (B) all case samples were collected
within acute phase of ischemic stroke, (C) gene expression
profiling, (D) datasets containing both patients and healthy
people without a history of stroke, where all patients were
clinically diagnosed with ischemic stroke using medical
imaging techniques (magnetic resonance imaging or X-ray
computed tomography), and (E) datasets of patients with
hemorrhagic stroke were excluded.

To ensure consistency and completeness of the datasets,
we manually identified relevant literature using keyword fil-
ters. Finally, two datasets (GSE16561 [11–13] and GSE58294
[14]) were included and treated as “traning set.” These data-
sets were merged, and batch-effects between different data-
sets were corrected using the “combat” function in the
SVA package (version: 3.38.0) [11]. Next, we normalized
the merged dataset and completed covariate adjustment,
using the “Normalizebetweenarrays”and “removeBatchEf-
fect” function in the limma package (version: 3.46.0) [15,
16]. For validation of biomarker genes, we downloaded
GSE22255 [17], GSE37587 [18], and GSE46480 [19] datasets

which satisfied most criterions while only containing IS or
normal cohorts (Table 1).

2.2. Identification of Differential Expressed Genes and
Functional Annotation. To identify differentially expressed
genes (DEGs) in peripheral blood samples from ischemic
stroke patients and controls, we performed differential
expression analysis using the limma package (version:
3.46.0), controlling for age. The threshold for screening
DEGs was jlog 2 FC ðfold changeÞj > 0:5 and FDR < 0:001.
Enrichment analysis of Gene Ontology (GO) and Disease
Ontology (DO) was performed on DEGs using the cluster-
profiler package (version: 3.18.1) [20]. Reference to the
Kyoto Encyclopedia of Genes and Genomes (KEGG) data-
base (http://www.genome.jp/kegg/) and gene set enrichment
analysis (GSEA) was carried out on the gene expression
matrix [21, 22]. The significance of KEGG signaling path-
ways was set at FDR < 0:05.

2.3. Immune-Related Genes and Drug Targets. Immune-
related genes (IRGs) and “variant, gene, and drug relation-
ship” datasets were downloaded from the ImmPort database
(https://www.immport.org/shared/genelists) and PharmGBK
database (https://www.pharmgkb.org/downloads), respec-
tively [23, 24]. The intersection of DEGs, IRGs, and drug tar-
get genes (DTGs) was then used to generate immune-related
DEGs targeted by drugs and potential drugs that may contrib-
ute to the changes in the post-IS immune system.

2.4. Selection and Validation of Immune-Related Genetic
Biomarkers. Four IRGBs in IS, namely, CARD11, ICAM2,
VIM, and CD19, were identified from the immune-related
DEGs using LASSO logistic regression and random forest
(RF) regression algorithms with training datasets. The
LASSO algorithm was derived from the glmnet package
(version: 4.1-1) [25]. The neural network was built using
tensorflow2 framework (version: 2.3.0) using Python lan-
guage and based on the merged dataset [26, 27]. GSE37587
and GSE46480 were used as test sets to verify the sensitivity
and efficiency of IRGBs in IS diagnosis. Although the data
sample is derived from peripheral blood mononuclear cells
(PBMCs), GSE22255 was also used as an independent test
set for additional validation.

2.5. Immune Cell Infiltration Evaluation. CIBERSORT
immune system analysis tool and the deconvolute_Xcell
function in the immunedeconv package (version: 2.0.4) were
used to generate immune cell composition profiles for all
samples [28, 29]. The CIBERSORT immune system analysis
tool results in an expression matrix of 22 immune cells in all
samples of the merged dataset, while the deconvolute_Xcell
function results in an expression matrix of 67 immune-
related variables versus all samples. We then used t-test to
analyze the differences in immune cell components between
IS patients and healthy people. Finally, Spearman’s correla-
tion analysis was performed between IRGBs and signifi-
cantly differentiated immune cells using the ggstatsplot
package (version: 0.7.2). The ggplot2 package (version:
3.3.3) was used to generate visual heatmaps [30].
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3. Result

3.1. DEGs Enriched in Immune-Related Biological Process.
We first generated an independent dataset of 155 samples
consisting of 108 IS patients and 47 matched controls, by
merging two datasets: GSE16561 and GSE58294 (Tables 1
and 2, Materials and Methods). To ensure data consistency,
batch-effect was controlled and the different subsets were
normalized. The results showed that data preprocessing
was effective and reliable (Figures 1(a)–1(d), Figure S1).
Next, we performed differential analysis of gene expression
by controlling age and 537 DEGs between IS patients and
healthy controls were identified. (Figure 1(e)).

GO enrichment analysis showed that DEGs were mainly
associated with immune receptor activation, pattern recog-
nition receptor activation, and NAD+ nucleotidase activa-
tion (Figure 1(f)), while DO enrichment analysis showed
that the diseases enriched within DEGs included mainly
arteriosclerosis, atherosclerosis, arteriosclerotic cardiovascu-
lar disease, myocardial infarction, obesity, nutritional dis-
eases, and coronary artery disease (Figure S2A). These
diseases are intimately associated with IS, indicating that
the DEGs are involved in the occurrence and development
of IS.

Furthermore, the GSEA results showed that the molecu-
lar pathways enriched with DEGs were complement and
coagulation cascades, neutrophil extracellular trap formation
(NETs), lipid and atherosclerosis, tumor necrosis factor (TNF)
signaling pathway, Toll-like receptor signaling pathway, and
NOD-like receptor signaling pathway (Figure S2B). Of these,
the Toll-like receptor signaling pathway, NOD-like receptor
signaling pathway, and TNF-α signaling pathways play

important roles in innate immunity (Figure S2C), consistent
with the results of the GO enrichment analysis. These results
provide evidence that immune-related biological processes
might play important roles in IS.

3.2. Four Immune-Related Genetic Biomarkers Perform Well
in IS Diagnosis. To further determine which kinds of
immune genes are dramatically altered and associated with
the occurrence of IS, we performed LASSO logistic regres-
sion analysis on immune-related DEGs generated from the
intersection of IRGs and DEGs and found five genetic
markers in peripheral blood (Figure 2(a), Materials and
Methods). Among them, VIM was positively correlated with
the occurrence of stroke, while CARD11, ICAM2, CD19, and
CCR7 were negatively correlated with the occurrence of
stroke (Figure 2(b)). Meanwhile, ten genetic markers that
reached significance were discovered using the RF algorithm
(Figure 2(c), Materials and Methods). Surprisingly, four
genes, VIM, CARD11, ICAM2, and CD19, were identified
by both methods and we suggested them as immune-
related genetic biomarkers (IRGBs) which might be used
for auxiliary diagnosis of the disease. In order to eliminate
the effect of age difference between the two groups, we con-
trolled participants’ age during analysis. The results demon-
strated that gene expression of IRGBs showed no correlation
with age and confirmed that our findings are truly between
patients and healthy controls (Figure S3).To further verify
the sensitivity and accuracy of these four genes in IS
diagnosis, GSE37587 and GSE46480 were used as validation
datasets, and a neural network model was used to examine
the prediction performance (Figure S4). The results were
excellent (AUC = 0:909; 95%CI = ½0:861, 0:953�, Figure 2(d)).

Table 1: All datasets used in this study contain a total of 361 samples, among which there were 196 cases and 165 controls. All case samples
were collected acute phase of ischemic stroke.

Datasets (GEO
ID)

Data Sample type/
source

References Category GPL
Case Control

GSE16561 39 24 Peripheral blood
(Barr et al., 2010; O’Connell et al., 2016; O’Connell et al., 2017)

[11–13]
Train GPL570

GSE58294 69 23 Peripheral blood (Stamova et al., 2014) [14] Train GPL570

GSE37587 68 0 Peripheral blood (Barr et al., 2015) [18] Test GPL6883

GSE46480 0 98 Peripheral blood (Issa et al., 2016) [19] Test GPL570

GSE22255 20 20 PBMCs (Krug et al., 2012) [17] Test GPL570

Table 2: Clinical characters of the merged data set.

Total sample,
N(%)

Stroke
N = 62 (56.9%),

N(%)

Control,
N = 47 (43.1%),

N(%)
Statistics/df P value

Gender (% female) 58(53.2%) 33(53.2%) 25(53.2%) X2 0.000013/1 0.9972

Age, y, mean ± SD 66.7± 16.86 72.6± 12.09 58.9± 7.51 t-13.90302/107 <0.001
Race (% white) 97(89.0%) 54(87.1%) 43(91.5%) X2 0.526507/1 0.4681

Hypertension 64(58.7%) 41(66.1%) 23(48.9%) X2 3.26002/1 0.07099

Diabetes 22(20.2%) 15(24.2%) 7(14.9%) X2 1.43527/1 0.2309

Dyslipidemia 40(36.7%) 24(38.7%) 16(34.0%) X2 0.250672/1 0.6166
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We also randomly selected four DEGs and performed the
same analysis. The prediction performance of these
randomly selected DEGs was poor (AUC = 0:654;95%CI =
½0:577, 0:739�, Figure 2(e)), demonstrating that the our
IRGBs were significantly associated with the occurrence of
IS. To further verify the conclusion, we select another
dataset whose samples derived from PBMCs, and the
diagnostic ability of the IRGBs is still good (AUC = 0:835;
95%CI = ½0:701, 0:951�, Figure S5).

Considering that immune-related genes present signifi-
cant changes after the onset of stroke (Figure 1(f)), we
sought to explore whether there are drugs that can mitigate
the process. We identified overlapping genes across three
gene sets, DEGs, IRGs, and DTGs, and found six immune-
related DEGs with known drug targets, including PLCG1,
TLR2, GSK3B, TLR4, ADM, and PTGS2 (Figure 3(a)). Drugs
targeting these six genes include aspirin, pyrazolone (e.g.,
phenylbutazone), propionate derivatives (e.g., ibuprofen),
diclofenac, paracetamol, and TNF-α inhibitors such as prav-
astatin (Figures 3(b) and 3(c)). Aspirin is already recom-
mended for early treatment of stroke. In addition to acting
as an antiplatelet, it plays an important role in modulating
the post-IS immune environment [31]. TLR2 and TLR4 are

pattern recognition receptors (Figure 3(b)) and reveal the
pattern recognition function of the Toll-like receptor signal-
ing pathway in regulating the post-IS immune system.

3.3. IRGBs Are Associated with the Change of Immune
System following IS. We applied the CIBERSORT classifica-
tion algorithm to the merged dataset to demonstrate changes
of the immune system after IS. Interestingly, the proportion
of naive B cells, M0-type macrophages, monocytes, neutro-
phils, CD8+ T cells, and CD4+ naive T cells was significantly
different between IS patients and healthy controls
(Figure 4(a)). M0-type macrophages and monocytes were
significantly enriched in the peripheral blood of IS patients,
while naive B cells, CD8+ T cells, and naive CD4+ T cells
were significantly decreased. In addition, using the xCell
deconvolution algorithm to compute enrichment scores for
67 immune-related factors, we found that 12 immune cells
represented significantly different constituent components
between IS patients and healthy controls (Figure 4(b)). More
specifically, neutrophils, macrophages, and monocytes were
significantly enriched in the peripheral blood of IS patients
compared with healthy controls, consistent with the results
of the CIBERSORT classification algorithm. Additionally,
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Figure 1: (a) The ridge plot of the merged dataset before eliminating the batch effect. (b) The ridge plot of the merged dataset after
eliminating the batch effect. (c) The Principal Component Analysis (PCA) plot of the merged dataset before normalization. (d) The PCA
plot of the stroke group and control group of the merged dataset after normalization. Note: In PCA analysis, all genes were used to
observe the effect of normalization. (e) Volcano map of DEGs; red represents significant differential genes, grey represents no significant
difference genes, pink represents genes with differential log2FC, and purple represents genes with differential P value. (f) GO enrichment
analysis, where the horizontal axis represents the number of DEGs under the GO term.
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there were 9 immune cells with enrichment fractions signif-
icantly lower than in healthy controls, including multiple
types of B cells and T cells.

Correlation analysis indicated a close relationship
between IRGBs and 18 differentially distributed immune
cells (Figure 4(c)). CARD11 was positively correlated with
CD8+ effective memory T cells (r = 0:47, P < 0:001,
Figure 4(c)) and negatively correlated with macrophages
(r = −0:48, P < 0:001); ICAM2 was positively correlated with
CD8+ T cells (r = 0:46, P < 0:001) and negatively correlated
with neutrophils (r = 0:61, P < 0:001); VIM was slightly cor-
related with neutrophils (r = 0:32, P < 0:001) and macro-
phages (r = 0:3, P < 0:001); and CD19 was positively
correlated with B cells (r = 0:84, P < 0:001), naive B cells
(r = 0:8, P < 0:001), and memory B cells (r = 0:78, P <
0:001). Our analysis showed that IRGBs are significantly
associated with changes in the immune environment after
IS, demonstrating an important role in IS diagnosis and
therapy.

4. Discussion

Acute stroke (mainly IS) is followed by severe inflammatory
episodes. With the blood-brain barrier being disrupted,
immune cells in the peripheral circulation invade the CNS.
Many studies have demonstrated that neutrophils, mono-
cytes, macrophages, and various types of T cells in the
peripheral blood infiltrate the ischemic area and induce sys-
temic inflammatory responses [32–35]. However, this early
activation of the immune system is present only for a short
period and is generally replaced by a state of systemic immu-
nosuppression that predisposes one to poststroke infection

rapidly after stroke. Both morbidity and mortality due to
infectious diseases are much higher in IS patients than in
the normal population, and the alteration in the immune
system is closely associated with a high recurrence rate in
stroke survivors [7, 8].

In this study, 537 DEGs were found between IS patients
and healthy controls. Four significantly differential
expressed immune-related genes, namely, CARD11, ICAM2,
VIM, and CD19, were identified by both LASSO logistic
regression and RF algorithm analysis. Furthermore, these
four genes were used to construct a neural network predic-
tion model and presented excellent predictive value and
accuracy in validation datasets.

CARD11 is a scaffold protein composed of 1154 amino
acids and belongs to the membrane-associated guanylate
kinase (MAGUK) superfamily [36]. CARD11 is expressed
in peripheral leukocytes and is an important component of
the antigen inducible NF-κB signaling pathway in T cells
[37]. Intercellular adhesion molecule-2 (ICAM2) belongs
to the ICAM family of adhesion proteins [38]. It is widely
expressed in vascular endothelial cells and peripheral blood
cells and plays a key role in cell-cell interactions, promoting
neutrophil binding to, and transmigration across, the vascu-
lar endothelium [39]. ICAM2 is also a key gene in platelet
leukocyte interaction and participates in IS by regulating
the platelet leukocyte aggregation process [40]. VIM protein
(vimentin) is part of the intermediate membrane system,
which plays an important role in maintaining cell shape,
resisting mechanical stress, transmitting cytoskeletal cross-
talk, and organizing signaling molecules [41]. Vimentin also
has an important role in maintaining plasticity in the ner-
vous system, and several studies have demonstrated that its
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expression is upregulated after ischemic stroke [42–45].
CD19 is widely expressed during B cell development and is
a key coreceptor for B cell antigen receptor signal transduc-
tion [46]. Courties et al. showed that cerebral ischemic
injury leads to an organismal stress response that activates
the HPA axis and mediates B lymphopoiesis deficiency,
which could explain the downregulated expression of CD19
in the peripheral blood of IS patients [9]. The neural net-
work prediction model exhibited excellent accuracy and sen-
sitivity using these four IRGBs.

GO enrichment analysis showed that DEGs were mainly
associated with immune receptor activation, pattern recogni-
tion receptor activation, and NAD+ nucleotidase activation.
The diseases enriched by DO were mainly atherosclerosis,
myocardial infarction, obesity, nutritional diseases, and coro-
nary artery disease. The results of GO enrichment analysis
indicated that the immune response plays an important role
in IS, and the diseases enriched via DO are highly correlated
with IS. Moreover, the pathways enriched in GSEA mainly
involved complement and lectin cascades, NETs, lipid and
atherosclerosis, TNF signaling pathway, Toll-like receptor sig-
naling pathway, and NOD-like receptor signaling pathway.
Previous studies have demonstrated that the signaling path-
ways of complement and coagulation cascades, lipids, and ath-
erosclerosis are the core factors of IS [47–49]. Laridan et al.
showed that neutrophils and NETs are important components
of cerebral thrombi and are more abundant in thrombi for
longer, suggesting that NETs play an important role in the
progression of IS [50]. TNF-α is one of the typical proinflam-
matory cytokines. Cui et al. suggested that it plays an impor-
tant role in the development of IS, and the activation of
microglia induces TNF-α expression and activation and

recruitment of circulating neutrophils, monocytes, and lym-
phocytes into the CNS [51]. Toll-like receptors, key pattern
recognition receptors in innate immunity, are also crucial for
NET formation by neutrophils as well as infiltration by mono-
cytes, contributing to thrombus formation [52]. NOD-like
receptor proteins containing nucleotide-binding oligomeri-
zation domains can recognize damage-associated molecular
patterns in sterile inflammation [53]. Yang et al. found that
NADPH oxidase-mediated NLRP3 signaling contributed to
cerebral ischemic injury by aggravating inflammation and
neurovascular injury [54]. The above findings were consis-
tent with our analysis results.

In addition to differential expressed genes, six immune-
related DEGs were found to be targeted by drugs: PLCG1,
TLR2, GSK3B, TLR4, ADM, and PTGS2. Drugs targeting these
six genes include aspirin, pyrazolone (e.g., phenylbutazone),
propionate derivatives (e.g., ibuprofen), diclofenac, paraceta-
mol, and the TNF-α inhibitor, pravastatin. Aspirin and statins,
alone or in combination, have been shown to modulate the
secretome profile of peripheral blood monocyte macrophages
after stroke [55]. Toll-like receptor signaling pathway is
important in mediating the formation of immune system after
stroke, and previous animal experiments have shown that
TLR2 or TLR4 deficient mice have less brain tissue damage
after stroke than wild-type mice [56].

To further explore immune cell changes after IS, we per-
formed immune cell enrichment analysis on the merged
dataset using CIBERSORT and xCell tools. The results
showed that the enrichment fractions of neutrophils, macro-
phages, and monocytes increased while the enrichment frac-
tions of various types of B cells and T cells decreased, which
may be due to the occurrence and development of IS.
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Previous studies have shown that neutrophils are one of the
first blood-derived immune cells to enter and be stationed in
brain tissue in most experimental stroke models [32, 33].
Weston et al. reported that neutrophil infiltration was ele-
vated on the first day, peaked on the third day, and began
to decline, but was still present at 7 and 15 days after cerebral
ischemia, with the degree of increase positively correlated
with infarct volume and functional deficits [34]. Kaito et al.
found an increase in the total monocyte-macrophage num-
bers in the human peripheral blood circulation early after
brain injury [32]. In the chronic phase of IS, 3–7 days after
the onset of ischemia, monocyte-derived macrophages from
the peripheral blood circulation peak at the injured site [4].
GöKhan et al. found that, in contrast to neutrophils, mono-
cytes, and macrophages, patients with ischemic stroke have a
reduced number of lymphocytes in the peripheral blood and
consequently an increased neutrophil/lymphocyte ratio [33].
Previous studies have shown that after IS, B cell develop-
ment in the bone marrow is severely impaired at the pro-B
cell stage and that this impairment leads to peripheral lym-
phopenia [9]. During this period, there is evidence of a shift
in CD4+ T cells from a Th1 type response mediated by cel-
lular immunity to a Th2 type response mediated by humoral
immunity, and this shift protects the brain from further
damage [35]. However, the immune system is suppressed,
and the number of T lymphocytes and B lymphocytes in
the peripheral blood is reduced. The evidence from these
studies combined with the results from our analysis suggests
that neutrophils, macrophages, monocytes, various types of
B cells, and T cells play important roles in IS and should
be the focus of further research. There is currently a lack
of in-depth research exploring the relationship between B
cells and T cells in each category and the occurrence of IS,
and further experiments are needed to reveal more details.
Furthermore, our results revealed correlations between the
four IRGBs and differentially expressed immune cells in IS.
CARD11 was significantly positively correlated with CD8+

effector memory T cells and negatively correlated with mac-
rophages; ICAM2 was significantly positively correlated with
CD8+ T cells and negatively correlated with neutrophils;
VIM was positively correlated with neutrophils and macro-
phages; and CD19 was significantly positively correlated
with B cells, naive B cells, and memory B cells. CARD11 is
ubiquitously expressed in peripheral leukocytes and is
important in inducing the activation of NF-κB signaling
pathway in T cells, but its relationship with macrophages is
currently unclear. CD8+ T cell-mediated immunosurveil-
lance depends on the LFA-1: ICAM adhesion pathway for
recognition, whereas ICAM2 is involved in neutrophil-
mediated plasma leakage, perhaps explaining the association
between ICAM2 and CD8+ T cells and neutrophils [38, 39].
Multiple studies have shown that vimentin can activate
ERK1/2 signaling to recruit macrophages and neutrophils
[41–43]. CD19 is widely expressed on almost all B cells,
and their significant positive relationship justifies the analy-
sis results. Research is still needed to clarify the relationship
between IRGBs and immune cells.

In this study, RF algorithm and LASSO logistic regres-
sion algorithm were used to search for IS genetic biomark-

ers, and a neural network was built to verify the accuracy.
RF is a nonparametric tree-based machine learning method
that searches for optimal variables with minimum depth sta-
tistics [57]. LASSO logistic regression belongs to the shrink-
age estimation, and during the reduction process of
regression coefficients, some insignificant regression coeffi-
cients can be directly reduced to 0, that is, to the function of
variable screening [58]. These two algorithms were used to
screen the feature variables and construct the best classifica-
tion model. In this study, CARD11, ICAM2, VIM, and CD19
were identified as genetic biomarkers for IS by combining
the RF and LASSO logistic regression methods. The biomark-
ers selected by integration performed excellently in the neural
network prediction model.

The ImmPort and PharmGBK databases were applied,
based on a comprehensive analysis of gene expression and
drug activity, to select immune-related DEGs targeted by
drugs and new drug targets that could modulate the post-
IS immune system. To our knowledge, it is the first time that
CIBERSORT and xCell have been used together, in the anal-
ysis of post-IS immune system changes in peripheral blood,
and their performance has been verified to each other.
CIBERSORT and xCell were both based on limited genetic
data that may deviate from heterotypic interactions of cells,
disease-induced disorders, or phenotypic plasticity. The
information on immune genes and drug targets included in
the ImmPort and PharmGBK databases was also incom-
plete. Furthermore, our study represents secondary mining
and analysis of previously published datasets. Although sev-
eral previous findings are consistent with our analysis, the
reliability of the results of this study requires further exper-
imental validation.
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