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Purpose. Single-period segmentation is one of the important steps in time-domain analysis of pulse signals, which is the basis of
time-domain feature extraction. The existing single-period segmentation methods have the disadvantages of generalization,
reliability, and robustness. Method. This paper proposed a period segmentation method of pulse signals based on long short-
term memory (LSTM) network. The preprocessing was performed to remove noises and baseline drift of pulse signals. Thus,
LabelMe was used to label each period of the pulse signals into two parts according to the location of the starting point of
main wave and the dicrotic notch, and the dataset of the pulse signal period segmentation was established. Consequently, the
labeled dataset was input into the LSTM for training and testing, and the results were compared with sum slope function
method. Result. The remarkable result with the whole period segmentation accuracy of 92.8% was achieved for the
segmentation of seven types of pulse signals. And the segmentation accuracies of the systolic phase, diastolic phase, and whole
period using this method were higher than those of the sum slope function method. Conclusion. LSTM-based pulse signal
segmentation method can achieve outstanding, robust, and reliable segmentation effects of the systolic phase, diastolic phase,
and whole period of pulse signals. The research provides a new idea and method for the segmentation of pulse signals.

1. Introduction

Wearable pulse wave detection devices are more and more
applied for health monitoring. The pulse signal contains very
rich cardiovascular physiological and pathological informa-
tion. According to the pulse diagnosis theory of traditional
Chinese medicine (TCM), using the pulse signal can not only
detect whether the subject is abnormal but also predict the
pathological condition. Therefore, it is of great research signif-
icance to make an objective description of pulse signals based
on the theory of TCM pulse diagnosis. In the study of the
objectification of pulse diagnosis, pulse signal processing is a
crucial step in obtaining the diagnosis result of Chinese med-
icine, including pulse signal segmentation and feature extrac-
tion and pulse signal pattern recognition and classification.

Thus, accurate segmentation and feature extraction of pulse
signals are very important for the objectification of pulse diag-
nosis. In practical applications, the pulse signal is extremely
susceptible to external interference from the environment,
individuals, acquisition equipment, etc., which will add differ-
ent noises to the signal and make it difficult to segment.

There are many methods for pulse signal segmentation.
Zong et al. [1] proposed an algorithm to effectively detect the
starting point of the blood pressure wave, using windowed
and weighted slope function to extract the characteristics of
the blood pressure wave and adopting an adaptive threshold
and search strategy to determine the starting point of the pulse
wave. Xu et al. [2] proposed a neighbor pulse-based signal
enhancement algorithm to detect pulse onset locations from
noise-contaminated pulsatile signals, in which pulse onset
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was detected using the first principal component extracted
from three adjacent pulses. It improved pulse onset detection
according to all three different onset definitions. Yang et al.
[3] presented an algorithm to identify the onset of intracranial
pressure (ICP) pulses, which created a waveform descriptor to
extract the feature of each local minimum of the waveform, and
then identified the onset by comparing the feature with a cus-
tomized template. Karlen et al. [4] developed a pulse segmenta-
tion algorithm using the derivative of the signal to find pulse
slopes and an adaptive set of repeated Gaussian filters to select
the correct slopes, and cross-correlation of consecutive pulse
segments was used to estimate signal quality. Asgari et al. [5]
utilized the adaptive thresholding method (ADT) for onset
detection of intracerebral blood flow velocity (CBFV) pulse sig-
nals, resulting in improved performance levels of 93.1% and
93.3%, respectively. Ding et al. [6] applied a simple segmenta-
tion method in the derivative of pulse waves for segmentation,
which regarded the first zero point of the derivative before each
threshold point in all threshold points of the derivative was
defined as the period segmentation point. Vadrevu and
Manikandan [7] presented an automated robust multiscale
sum and product (MSP) method for pulse peak and onset
detection, which combined MSP, Shannon entropy envelope
extractor, and Gaussian derivative-based peak finder by under-
standing the temporal-spectral characteristics of the PPG sig-
nals and the background noises and artifacts. Lee et al. [8]
presented a pulse onset detection method based on the Monte
Carlo approach. It applied the Monte Carlo simulation for
calculating sampling frequency, and the position of a systolic
peak which means a beat cycle could be accurately derived by
a moving time window. Thus, the onset detection was robust
from noise and artifacts of a signal. Oppenheim and Sittig [9]
developed a dicrotic notch detection algorithm that combined
the most appropriate method for accurate notch localization
based on a series of extracted waveform features. Donelli
et al. [10] evaluated an algorithm for real-time detection and
prediction of the dicrotic notch from aortic pressure waves in
arrhythmic aortic pressure signals. The dicrotic notch was
detected at the first negative dip from the aortic flow calculated
by a simplified model of the arterial tree, and prediction of the
notch was performed using a percentage of the decreasing flow.
Singh and Sunkaria [11] employed empirical wavelet transform
for locating the systolic peak and onset of blood pressure pulse
and utilized the first-order difference of blood pressure pulse
for dicrotic notch detection. Balmer et al. [12] defined a new
end systole detection algorithm for dicrotic notch-less arterial
waveforms. The algorithm was adaptive based on previous
heartbeat end systole locations, which employed beta distribu-
tion probability density function as a weighting function. How-
ever, the existing segmentation methods of pulse signals lack
generalization, reliability, and robustness. Moreover, these
methods require researchers to have professional knowledge
in pulse wave signal processing.

As a new research direction in the field of machine learn-
ing, deep learning is becoming more and more widely used in
medicine. Its representative networkmodels include Convolu-
tional Neural Network (CNN) and Recurrent Neural Network
(RNN). LSTM improves the traditional RNN and has been
successfully applied to ECG signal segmentation and has

achieved remarkable results [13]. Therefore, this paper pro-
posed a new segmentation method of the systolic and diastolic
phases of pulse signals based on LSTM to improve the
segmentation accuracy, reliability, and robustness.

2. Methods

2.1. Pulse Data Acquisition Equipment. In this paper, the
pulse signal data for analysis is acquired using a portable
pulse acquisition device (product by Shanghai Asia & Pacific
Computer Information System Co., Ltd., Shanghai, China)
shown in Figure 1. The device is composed of a pulse sensor,
a hardware circuit board, and a software analysis system.
The pulse signal obtained from the pulse sensor by pressing
the radial artery site is conditioned and amplified by the
hardware circuit board and then processed in the computer
software analysis system through the USB interface.

2.2. Time-Domain Characteristics of the Pulse Signal and
Segmentation Task. The formation of the pulse signal is due
to the regular systole and diastole of the heart. The initial pulse
wave is formed on the side of the aorta close to the heart, and it
also starts from the aortic root, propagating the periodic signal
changes caused by the heartbeat along the artery, so that it can
influence the entire arterial system [14]. In this process, the
pulse wave will be periodically affected by the cyclical systole
and diastole of the heart. It is also fed back on the physiological
information of the arteries at all levels. It can be used to
measure information including blood vessel information,
blood flow information, cardiovascular disease information,
and even physiological information. Therefore, it can be said
that the pulse signal is a combination of the initial pulse wave
from the source to the downstream and the reflected wave
from the downstream to the source. If the pulse signals con-
taining a large amount of human physiological and pathological
information can be properly analyzed, it will assist the doctor to
diagnose and even to predict the disease of the patient.

In order to analyze the pulse signal and to mine the path-
ological information it contains, it is also necessary to have a
certain understanding of the characteristics of the typical pulse
signal. The following will mainly introduce the characteristics
of the typical pulse signal shown in Figure 2.

A relatively complete pulse wave period consists of an
ascending branch and a descending branch, including four
characteristic points. At the peak of the ascending branch,
there is the main wave crest (point c), and then, there are
three characteristic points in the descending branch, corre-
sponding to the peak of the dicrotic wave (point e), the
trough of the descending isthmus (point f ), and the dicrotic
wave peak (point g). For most people, points c and g are
more obvious and can be easily identified.

(i) Ascending branch: it is starting from point b to point
c of the main wave peak, reflecting that the pressure
on the side of the aorta close to the heart has risen
sharply

(ii) Main wave: point c is the peak of the main wave,
which means the maximum value of aortic pressure
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and blood volume, and represents the balance of the
ventricular ejection and outflow at this time

(iii) Descending branch: the part from point c to point d
reflects that the ventricular ejection velocity begins
to decrease, and the ventricle enters a slow ejection
period

(iv) Dicrotic prewave: it is formed by a reflected wave
propagating towards the heart superimposed on
the descending branch of the pulse wave, and point
e is the peak of the dicrotic prewave

(v) Dicrotic notch: it is the point f of the trough repre-
senting the critical state of systole and diastole of the
heart at this time

(vi) Dicrotic wave: point g is at the peak of the dicrotic
wave; blood pressure has slightly increased due to
the closure of the aortic valve and aortic elastic
retraction. Because it is clear enough, the presence
of a dicrotic wave can be regarded as the important
information for clinical diagnosis

The main task of pulse signal segmentation is single-
period extraction of pulse signals. Point f where the
dicrotic notch is located is taken as the demarcating point,
and then, the single-period pulse signal is divided into
systolic phase and diastolic phase, so as to facilitate the
accurate extraction of the time-domain characteristics of
the subsequent pulse signal.

2.3. LSTM-Based Pulse Signal Segmentation. LSTM was used
to segment ECG signals in different stages, and remarkable
results have been achieved. Both the pulse signal and the
ECG signal belong to the human body’s physiological signal

and have similarities. Therefore, this article applied LSTM to
segment pulse signals. The process of pulse signal segmenta-
tion is shown in Figure 3. Firstly, pulse signals were per-
formed preprocessing to remove noises and baseline drift;
secondly, pulse signals were manually labeled; thirdly, the
LSTM model was built for training and testing.

2.4. Preprocessing of the Pulse Signal. The human pulse
signal is a kind of nonstationary random signal with low
signal-to-noise ratio. The frequency distribution of the sig-
nal is in the range of 0 to 40Hz and is mainly concentrated
below 20Hz. In the process of acquisition, some useless sig-
nals and noises will be generated due to the interference of
human respiration, acquisition equipment, working current,
and other factors, so that the direct analysis of the original
signal may not achieve satisfactory results. Therefore, pulse
signals should be preprocessed before signal analysis and
feature extraction according to the procedure shown in
Figure 4. Pulse signal preprocessing includes signal smooth-
ing and removing baseline drift.

Due to the influence of 50Hz AC current and unstable
acquisition work, the original pulse signal contains a lot of
high-frequency noise. As shown in Figure 5, the pulse wave-
form with noises is not smooth and has a large number of
burrs. Smooth processing using zero phase low-pass filter
is employed to remove the frequency components above
20Hz in the signal to reduce the noise.

Due to the interference of human respiration, the origi-
nal pulse signal produces baseline drift. The respiratory rate
of the average person is not less than 12 times and not more
than 24 times per minute; that is, the respiratory rate is less
than 0.4Hz. Signals in this frequency range can be removed
by wavelet decomposition. After decomposing the pulse sig-
nal in 10 layers using sym8 wavelets, the wavelet coefficients
from 0 to 0.35Hz in the frequency band are cleared to zero,
and then, the signal is reconstructed; thus, the frequency
components below 0.35Hz are removed. The frequency
spectrum of a pulse signal before and after the processing
is shown in Figure 6.

2.5. Pulse Signal Labeling. The period segmentation of pulse
signal is the basis of pulse signal analysis. Pulse waves are
formed by the periodic beats of the heart. As shown in
Figure 7, when the heart begins to contract, the aortic valve
opens, and the increase in atrial pressure injects the remain-
ing blood into the ventricle, which further increases the ven-
tricular filling, and there is a small increase in ventricular
pressure. At this time, the pulse wave is in the ascending
stage, until the peak value of the main pulse wave is reached
in the rapid ejection stage. Before the slow ejection and the
heart begins to diastole, the pulse wave is generally in the
downward branch. However, the characteristics of the dis-
turbance by different factors are not obvious in different
people, some have a direct decline, and others have a short
rising phase. Until the aorta closes, heralding the beginning
of the diastolic phase, this turning point corresponds to the
descent of pulse waves into the middle isthmus. Thereafter,
the heart diastolic causes the intra-atrial pressure to decrease
and the blood to flow back until the start of the next

Figure 1: Pulse signal acquisition device.
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Figure 2: Schematic diagram of a typical pulse signal.
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isovolumic contraction, which completes a cardiac period.
When the heart is in cyclic contraction and relaxation, the
blood vessels can be palpated at the site of superficial vessels
such as the radial artery that are constantly pulsating in sync
with the heartbeat. A pulse wave is produced with one sys-
tolic and diastolic act of the heart, and the average systolic
and diastolic duration of the ventricles is 0.27 and 0.53 sec-
onds, respectively.

The determination of the systolic and diastolic phases is
important for the time-domain analysis of the pulse signals.
For normal and slippery pulses, the systolic and diastolic
phases are easily determined by the dicrotic notch; for
string-like pulses and other pulses, the dicrotic wave is not
obvious or even disappears, so the position of the dicrotic
notch is inconvenient to determine. Thus, this makes it dif-
ficult to determine the systolic and diastolic phases, which
brings inconvenience to the time-domain feature extraction
of the pulse signal. Therefore, the systolic and diastolic
phases are manually labeled separately, using the dicrotic
notch of the pulse wave as the boundary of the two phases.

There are less common labeled datasets of the pulse wave
signal, and the labeling of the one-dimensional signal is dif-
ficult. In order to facilitate the labeling of pulse signals, pulse
signals are converted into images and LabelMe is employed
for labeling pulse signals in this paper. Considering a suffi-
cient number of periods for segmentation in the pulse signal
and the computational efficiency of the segmentation model,
the length of the original signal is set as 2160 based on the
sampling frequency of 720Hz. And Matlab is used to con-

vert the pulse signal into a waveform image with a resolution
of 2264 × 1296. Therefore, the human-annotated positions
in the signal are calculated based on the relationship
between the width of the image and the actual signal length,
as in the following formula:

Si =
Pi

W
× L  i = 1, 2,⋯, nð Þ, ð1Þ

where Si is the position of the labeled signal in the actual; Pi
is the horizontal position in the waveform image; W is the
image width; and L is the length of the original signal.

LabelMe is used to label each period of the signal into
two parts according to the location of the starting point of
the main wave and the dicrotic notch. After the labeling,
the results are saved into the JSON format file to establish
the dataset of pulse signal period segmentation. The labeling
process using LabelMe is shown in Figure 8.

2.6. Bidirectional LSTM. Recurrent Neural Network (RNN)
is a common model for deep learning in video processing,
text generation, language modeling, image processing, etc.
It is the more suitable network structure for processing
sequence-type data [16]. In the case of short sequences,
RNNs are perfectly capable of predicting sequences, but in
more complex scenarios, gradient vanishing or exploding is
naturally inevitable. Vanishing gradients make it difficult to
learn and tune the parameters of the earlier layers in the net-
work, while exploding gradients make the learning unstable.

Therefore, Hochreiter and Schmidhuber developed the
LSTM model to solve this problem [17]. Its neural unit struc-
ture is shown in Figure 9. This model introduces the concept
of gates, and gate structures such as “forget gates, update gates”
can be used to decide whether information can pass through
the gate to the next module or whether it should be retained
or discarded directly, in order to ensure the forward transmis-
sion of valid data.

Bidirectional LSTM [18] is an upgrade of the one-way
structure, which consists of a forward LSTM and a reverse
LSTM. Compared with one-way LSTM, the sequence pro-
cessing is more targeted and better in specific situations.
Therefore, this paper employed bidirectional LSTM to build
the period segmentation model of pulse signals.

The specific structure is shown in Figure 10, where a mod-
ule is involved in the computation of the forward LSTM, while
A′ is involved in the computation of the inverse LSTM.

LSTM is designed for time series modeling and over-
comes the “gradient disappearance or explosion” problem
in backpropagation when the dependencies are too long. In
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this paper, two bidirectional LSTM layers are constructed to
constitute the feature extraction layer. One LSTM layer
works as an encoder, and the other LSTM layer works as a
decoder. For the LSTM unit as an encoder, the output num-
ber is the same as the function number. For the LSTM unit
as a decoder, the output number is the same as the pulse sig-
nal length in this article. Specifically, the pretreated pulse
signal xi is used as the input of the LSTM model, and the
output signal yi is reconstructed from the input xi through
the LSTM model.

2.7. Experimental Setup. The dataset required for this paper is
from the Comprehensive Laboratory of Traditional Chinese

Medicine Four Diagnostic Information of Shanghai University
of Traditional Chinese Medicine. There are 1400 cases of sam-
ple data, including 120 normal pulses, 100 slippery pulses, 360
fine and slippery pulses, 100 string-like and slippery pulses,
100 string-like pulses, 100 fine pulses, and 520 fine and
string-like pulses. To facilitate the training and testing of the
LSTM, the training set, validation set, and test set are divided
according to the ratio of 8 : 1 : 1.

Python 3.8 is used as the development platform and
Torch 1.10 is employed as the deep learning framework.
The segmentation model is trained on a workstation having
Intel Xeon Gold CPU with 128GB RAM and Nvidia RTX
A6000 with 48GB memory. An Adam optimizer is used
with an initial learning rate of 0.001.
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Figure 6: Spectrum comparison before (a) and after (b) removing baseline drift.
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3. Results

The experiment was performed on the test set using the
LSTM segmentation model of the pulse signal, and the seg-
mentation results are shown in Figure 11 and Table 1. The

labeling and segmentation results of the systolic and
diastolic phases are indicated by two line segments in
Figure 11. The line segment on the upper side indicates the
original manually labeled labels, and the dashed line seg-
ment on the lower side indicates the test results based on

Figure 8: Labeling process.
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Figure 10: Bidirectional LSTM schematic.
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the LSTM model. The red dashed line represents the predic-
tion of the systolic phase, and the green dashed line repre-
sents the prediction of the diastolic phase. The
experimental results are in agreement with the original man-
ually labeled results of the systolic phase and diastolic phase.

In order to further verify the effectiveness of the method
proposed in this paper, the seven types of pulse signals in the
test set are segmented separately and compared with the
sum slope function- (SSF-) based signal segmentation method
to calculate the segmentation accuracies of systole, diastole,
and whole period of the pulse signals.

As can be seen from Table 1, the average accuracy of
LSTM-based pulse signal segmentation was 94.6% in systole,
95.7% in diastole, and 92.8% in whole period, which were
7.2%, 7.1%, and 3.8% higher than that of the SSF, respectively.

4. Discussion

As can be seen from the introduction of the pulse waveforms
mentioned above, the systole waveform generally consists of
a main wave and a dicrotic prewave, and the diastole wave-
form contains a dicrotic wave. The systole waveform is more
complex than the diastolic waveform, so the segmentation
results of the pulse signal show a higher accuracy of the dia-
stolic segmentation than those of the systolic segmentation.
In order to investigate more closely the effectiveness of dif-
ferent methods for the segmentation of different kinds of
pulse, the segmentation accuracies of seven types of pulse
signals are compared and analyzed, and the results are
shown in Table 2.

As can be seen from Table 2, the whole period segmen-
tation accuracies of seven types of pulse signals are 94.7%,
94.9%, 94.8%, 93.2%, 89.5%, 91.4%, and 91.3%, which are
4.4%, 5.0%, 4.8%, 3.6%, 0.6%, 4.5%, and 4.3% higher than
those of the SSF, respectively. The segmentation accuracies
of diastolic and systolic phases of all seven types of pulse sig-
nals based on LSTM are also higher than those of SSF, which

verifies the effectiveness of pulse segmentation based on the
LSTM model in this paper.

In order to further analyze the factors affecting the accu-
racy of pulse signal segmentation, the waveform diagrams of
the seven types of pulse signals were analyzed. As shown in
Figure 12, it can be found that the normal pulse is a three-
peak pulse signal with a steep ascending branch and sharp
and towering peaks of the main wave, and the clear dicrotic
prewave and dicrotic wave are arranged in succession with
the main wave, sloping down section by section. Therefore,
the normal pulse is easier to segment through the dicrotic
notch, so the systolic segmentation accuracy of the normal
pulse is 96.1%, which is 7.2% higher than the SSF, while
the diastolic segmentation accuracy is 96.2%, which is 6.2%
higher than the SSF.

The string-like and slippery pulse, slippery pulse, and
fine and slippery pulse are mostly bimodal pulse signals,
similarly in morphological characteristics. The three types
of pulse have a more obvious dicrotic wave, in which
descending middle isthmuses are clearer, so that the loca-
tions of the dicrotic notch are also easy to determine. The
systolic segmentation accuracy of the three types of pulses
was 96.1%, 95.5%, and 95.4%, respectively; the diastolic seg-
mentation accuracy was 96.7%, 96.7%, and 95.8%, respec-
tively. For the three pulse signals, LSTM was 7.6%, 6.6%,
and 7.4% more accurate than SSF in systolic segmentation,
respectively, and 7.4%, 7.0%, and 6.8% more accurate in dia-
stolic segmentation, respectively. Therefore, the pulse signal
segmentation method proposed in this paper achieved better
results than the SSF in the systolic and diastolic segmenta-
tion accuracies of string-like and slippery pulse, slippery
pulse, and fine and slippery pulse.

The ascending and descending branches of string-like
pulse, fine and string-like pulse, and fine pulse show sharp
inclinations, and the dicrotic prewave appears in advance
and coincides with the main wave, which is not obvious or
even disappeared, resulting in the formation of a “flat top”
type waveform. Moreover, the position of dicrotic notch is
not obvious, and the systolic and diastolic phases of pulse
could not be clearly distinguished. For these three types of
pulse signals, the systolic segmentation accuracy of the pro-
posed method is 93.4%, 92.9%, and 92.4%, and the diastolic
segmentation accuracy is 93.6%, 94.9%, and 95.8%, respec-
tively. For these three types of pulse signal waveforms with
inconspicuous dicrotic notch locations, the LSTM segmenta-
tion accuracies are 5.5%, 7.9%, and 7.8% higher than SSF for
systolic segmentation, respectively, and 5.2%, 8.2%, and 9.1%
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Figure 11: LSTM test results.

Table 1: Comparison results of pulse signal segmentation (%).

Segmentation accuracy LSTM SSF

Systolic phase 94.6 87.4

Diastolic phase 95.7 88.6

Whole period 92.8 89.0
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higher for diastolic segmentation, respectively. The segmenta-
tion method of pulse signals proposed in this paper is higher
than SSF in the systole, diastole, and period segmentation
accuracies of string-like pulse, fine and string-like pulse, and
fine pulse and achieved more satisfactory results.

In conclusion, the pulse signal segmentation method
proposed in this paper achieved good segmentation effects
of the systolic phase, diastolic phase, and whole period.
LSTM, as a special RNN, can solve the problem of gradient
disappearance and gradient explosion in the training process

Table 2: Segmentation accuracy of seven types of pulse (%).

Method Seven types of pulse
Segmentation accuracy

Systolic phase Diastolic phase Whole period

LSTM

Normal pulse 96.1 96.2 94.7

String-like and slippery pulse 96.1 96.7 94.9

Slippery pulse 95.5 96.7 94.8

Fine and slippery pulse 95.4 95.8 93.2

String-like pulse 93.4 93.6 89.5

Fine and string-like pulse 92.9 94.9 91.4

Fine pulse 92.4 95.8 91.3

SSF

Normal pulse 88.9 90.0 90.3

String-like and slippery pulse 88.5 89.3 89.9

Slippery pulse 88.9 89.7 90.0

Fine and slippery pulse 88.0 89.0 89.6

String-like pulse 87.9 88.4 88.9

Fine and string-like pulse 85.0 86.7 86.9

Fine pulse 84.6 86.7 87.0
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Figure 12: Seven types of pulse signals.
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of long sequences. Moreover, the feature engineering of the
LSTM algorithm can be employed to effectively self-learn
the pulse signals, and the features of pulse signals do not
need to be manually extracted. Consequently, it may over-
come the disadvantage of pulse signal segmentation by using
only signal processing method to a certain extent.

5. Conclusion

Period segmentation is the basis of pulse signal analysis and
recognition, so this paper proposed a period segmentation
method of pulse signal based on LSTM. Firstly, pulse signals
were performed preprocessing to remove noises and baseline
drift; secondly, LabelMe was used to label 1400 cases of
seven types of pulse signals manually; thirdly, LSTM was
applied to establish the segmentation model of pulse signals,
and training and testing were carried out; finally, the seg-
mentation results of seven pulse signals were evaluated and
analyzed. The results showed that this method can improve
the accuracy of pulse signal segmentation to a certain extent.
Therefore, the pulse signal segmentation method based on
LSTM proposed in this paper provides a new idea and
method for the period segmentation of pulse signals and
has a certain practical application value for the analysis of
pulse signals.
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