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Background. The most numerous cells in the tumor microenvironment, cancer-associated fibroblasts (CAFs) play a crucial role in
cancer development. Our objective was to develop a cancer-associated fibroblast breast cancer predictive model. Methods. We
acquire breast cancer (BC) scRNA-seq data from Gene Expression Omnibus (GEO), and “Seurat” was used for data processing,
including quality control, filtering, principal component analysis, and t-SNE. Afterward, “singleR” software was used to
annotate cells. Seurat’s “FindAllMarkers” program is used to locate particular CAF markers. clusterProfiler was used to analyze
Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The Cancer Genome
Atlas (TCGA) database was utilized to provide univariate Cox regression, least absolute shrinkage operator (LASSO) analysis
using bulk RNA-seq data. For model development, multivariate Cox regression studies are used. Utilizing pRRophetic and
Tumor Immune Dysfunction and Exclusion (TIDE) algorithms, chemosensitivity and immunotherapy response were predicted.
The “rms” software was used to facilitate and simplify modeling. Results. Integrating the scRNA-seq (GSE176078) dataset
yielded 28 cell clusters. In addition, well-known cell types helped identify 12 cell types. We found 193 marker genes that are
elevated in CAFs. In addition, a five-gene predictive model associated to CAF was created in the training set. In the training
set, the validation set, and the external validation set, greater risk scores were associated with a worse prognosis. And
individuals with a higher risk score were more susceptible to immunotherapy and conventional chemotherapy medicines.
Conclusion. In conclusion, we establish a strong prognostic model comprised of 5 genes related with CAF that might serve as a
potent prognostic indicator and aid clinicians in making more rational medication choices.

1. Introduction

Cancer continues to be a significant worldwide health concern
and the main cause of death in China [1, 2]. According to the
2015 China Cancer Epidemiology Report [3], breast cancer

was the most commonly diagnosed cancer among Chinese
women in 2015, with an estimated 304,000 new cases, or more
than 800 new cases each day. Additionally, the incidence of
breast cancer is rising by around 0.5% every year [4]. Delayed
diagnosis may result in an advanced disease stage upon
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presentation [5]. With the advent of surgical surgery and asso-
ciated adjuvant therapy, early diagnosis has significantly
improved patient outcomes.

Immune responses in the microenvironment of the
tumor are also thought to have a significant role in deter-
mining the aggressiveness and development of the tumor.
As a result of tumor heterogeneity and complicated tumori-
genic pathways, it is very difficult to establish tailored treat-
ment plans and reliably anticipate patient outcomes [6, 7].
The propensity of CAFs to promote tumor growth makes
them a potential immunotherapy target, according to studies
[8–10]. The mechanism of CAF in tumors has been inten-
sively explored, although its relevance to the prognosis of
tumors is still unknown.

In this research, we evaluated single cell RNA-seq data
from a breast cancer patient and discovered 193 fibroblast
markers with highly variable expressions. Using the
TCGA-BRCA cohort data set, we created a unique CAF-
related signature model with excellent robustness that can
correctly discriminate between patients with high and low
risk. Then, we confirmed that the five-gene model could
accurately predict prognosis and therapeutic response. Anal-
yses of univariate and multivariate Cox regression confirmed
the CAF-related signature (or risk score) as an independent
risk factor for OS. In order to improve the prediction effec-
tiveness of the signature and enable clinical application, we
subsequently created and validated a nomogram based on
age, TNM stage, and CAF signature for clinical applicability
in order to predict OS. The quantity of CD8+T cells in
malignancies influences the efficacy of the majority of
immunotherapies [11, 12]. And according to our results,
the CD8+T cell infiltration rate was greater in patients with
a high-risk score. We discovered that patients with a high-
risk score were more likely to react to anti-PD-1 and anti-
CTLA-4 therapy than those with a low-risk score. In addi-
tion, the pRRophetic algorithm revealed that patients with
a high-risk score were more responsive to various conven-
tional chemotherapy drugs than those with a low-risk score.

2. Materials and Methods

2.1. The Data Source. The scRNA-seq data of 26 breast can-
cer patient tissues were obtained from GSE176078 through
the Gene Expression Omnibus (GEO) database (http://
www.ncbi.nlm.nih.gov/geo/) [13]. The samples were mostly
from three clinical subgroups of breast cancer (11 ER+, 5
HER2, and 10 TNBC). The 10X Genomics platform was
used to do single-cell sequencing. The bulk RNA-seq data
and clinical information for the samples in The Cancer
Genome Atlas Breast Invasive Carcinoma (TCGA-BRCA)
cohort were retrieved via the UCSC Xena browser (https://
xena.net/) [14], and 835 samples having survival informa-
tion were recruited. The type of bulk RNA-seq data we use
is FPKM. The ratio of training set to validation set is arbi-
trarily determined to be 7 : 3. The GEO database was queried
for externally verified bulk RNA-seq breast cancer data
(GSE20685). All analyses in this article were conducted
using R version 4.1.2.

2.2. Analysis of a Single Cell Using RNA Sequencing. R soft-
ware application Seurat [15] was used to analyze scRNA-
seq data. In the first step of data quality check, cells with
“nFeature” less than 200 and “percent.mt” less than 20%
were filtered out. Then, single-cell data from several samples
were merged and the batch effect was removed from the
data. The “LogNormalize” approach was used to normalize
the data before to unsupervised clustering of cells by princi-
pal component analysis (PCA), dimensionality reduction,
and visualization by t-Distributed Stochastic Neighbor
Embedding (t-SNE). The SingleR software package [16]
was used to annotate each cell cluster’s cell type. The “Fin-
dAllMarkers” program was used to discover differentially
expressed marker genes among various cell types. The log2
fold change (FC) threshold value was less than 0.25, and
“min.pct” equaled 0.25.

2.3. Analysis of Gene Function Enrichment. The “clusterPro-
filer” R package (V3.14.3) conducted Gene Ontology (GO)
[17] and Kyoto Encyclopedia of Genes and Genomes
(KEGG) [18] pathway enrichment analyses [19]. To identify
marker genes in the cell cluster of interest for biological pro-
cess (BP), molecular function (MF) and cellular component
(CC) enrichment at p < 0:05 significance level.

2.4. Development of a CAF-Related Prognostic Model. This
study’s main endpoint was overall survival (OS), and univar-
iate Cox regression analysis was performed to filter potential
genes related with prognosis from cancer-associated fibro-
blasts (CAFs) genes in the training set using a p < 0:05
threshold. In order to decrease the possibility of overfitting,
we subsequently evaluated prognostic candidate genes using
the least absolute shrinkage operator (LASSO) Cox regres-
sion model in the “glmnet” R package [20]. Then, a stepwise
backward selection strategy based on the Akaike informa-
tion criterion (AIC) was employed to get significant vari-
ables [21] in order to exclude unsuitable prognostic models
for CAF. The CAF-related risk score was computed as fol-
lows:

risk score =〠 βi × Expið Þ ð1Þ

where βi denotes the coefficient of LASSO regression for the
genes, and Expi denotes the expression value of the candi-
date gene. The “maxstat” R package approach was used to
establish the appropriate cutoff for the grouping of risk
score, and the patients were categorized into high-risk and
low-risk groups, respectively.

2.5. Prediction of Chemotherapy Responsiveness and
Immunotherapy Efficacy. To estimate the sensitivity of che-
motherapeutic medicines in high-risk and low-risk groups,
we extrapolated the half-maximal inhibitory concentration
(IC50) of chemotherapeutic agents using the “pRRophetic” R
package [22]. The experimental information for chemothera-
peutic medicines (docetaxel, gemcitabine, paclitaxel, campto-
thecin, pazopanib, and sunitinib) was collected from the
Genomics of Drug Sensitivity in Cancer (GDSC) database
(https://www.cancerrxgene.org). In addition, the Tumor
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Immune Dysfunction and Exclusion (TIDE) (http://tide.dfci
.harvard.edu/) algorithm [23] is employed to forecast the
treatment response of two groups of Immune check point
blocking.

2.6. Construction and Validation of Nomograms. Clinico-
pathological factors related with prognosis were identified
using univariate Cox regression analysis, with the derived
hazard ratio (HR). The variables with p values 0:05 were
checked, and the prognosis risk score was calculated using
the “rms” R software tool. The calibration curves were used
to characterize the congruence between the actual data and
the projected OS probability.

2.7. Statistical Analysis. This research used R software ver-
sion 4.1.2 (https://www.r-project.org/) for statistical analysis
and data visualization. The Wilcoxon test was used to com-
pare the two groups. Using a two-sided log-rank test, the sta-
tistical significance of the difference in the overall survival
(OS) of patients between the high-risk and low-risk groups
was determined. For survival analysis, the packages “sur-
vival” [24] and “survminer” were used. A p value 0:05 was
regarded as statistically significant.

3. Results

3.1. Identification of Fibroblasts Pertinent to Cancer. Figure 1
depicts our study process in its entirety. The scRNA-seq
(GSE176078) data of 26 breast cancer tissue samples were
downloaded from the GEO database. Low-quality cells
(thresholds “nFeature RNA”>200 and “percent.mt” 20%)
were filtered out (Figure 2(a)) and 99,063 high-quality cells
were identified. The expression matrix was then subjected
to standardization. There was a significant positive associa-
tion between the number of discovered genes (nFeature)
and the sequencing depth (number of UMIs, nCount)
(Figure 2(b)). In the meanwhile, the “LogNormalize” tech-
nique was used to standardize the data. ANOVA was used
to identify highly variable genes, and the top 2,000 highly
variable genes were chosen for further investigation (Supple-
mentary Figure S1).

The batch effect is often present in scRNA-seq data of
greater magnitude, which may impact data integration and
interpretation. As seen in Figure 2(c), samples exhibit batch
effect. Several groups of cells from a single sample suggest
that the significant discrepancies between these clusters
may be attributable to sequencing batch. Given this, we
merged the 26 samples and eliminated the batch effect.
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Figure 1: The study’s schematic diagram.
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Subsequently, t-SNE clustering analysis was done on the first
20 main components. Finally, 99, 063 cells were grouped
into 28 cell clusters from 26 samples (Figure 2(e)). After
eliminating the batch effect, the visual clustering results of
grouping data by source revealed that the difference in sam-
ple source was no longer the primary distinction between all
cell groups (Figure 2(d)).

To determine the cell type of each cluster, the cell cluster
was annotated with SingleR. Epithelial cells and CD4+ Tem,
fibroblasts, NK cells, adipocytes, memory B cells, monocytes,
endothelial cells, Tregs, plasma cells, CD8 cells+ Tcm, mac-
rophages, and not defined cell constituted the majority of the
described cell types (Figure 2(f)). We employed established
fibroblast marker genes (ACTA2, FAP, PDGFRB, CAV1,
PDPN, PDGFRA, SPARC, MMP2, and FN1) to validate the
annotations [25, 26]. As demonstrated in Figure 2(g), fibro-
blasts expressed marker genes at high levels. In addition,
“FindAllMarkers” was utilized to discover marker genes with
differential expression among cell clusters. A random sample
of one thousand cells was taken from each cell cluster to
depict the top 10 differentially expressed genes using heat
maps (Figure 2(h)). In accordance with the criteria
(logFC > 0:25 and adj p value < 0:05), we identified a total

of 193 marker genes that were differently expressed in fibro-
blast cluster relative to other cell clusters. Consequently, we
displayed the gene expression of nine markers using violin
plot (Supplementary Figure S2).

3.2. GO and KEGG Enrichment Analysis. Using “clusterPro-
filer,” Gene Ontology (GO) enrichment analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway anal-
ysis were performed to determine the unique biological rele-
vance and critical pathways associated with 193 marker
genes linked with cancer fibroblasts. As shown in
Figures 3(a)–3(c), CAF marker genes were mostly enriched
in extracellular matrix organization, extracellular structure
organization, control of peptidase activity, wound healing,
collagen fibril organization, and collagen metabolic process.
Figure 3(d) primarily depicts the top 10 pathways identified
by KEGG enrichment analysis. Focal adhesion, PI3KAkt sig-
naling pathway, human papillomavirus infection, protein
digestion and absorption, ECM receptor interaction, proteo-
glycans in cancer, complement and coagulation cascades,
relaxin signaling pathway, and amoebiasis. These enrich-
ment findings revealed that the marker genes we screened
were associated with fibroblast function, demonstrating that

Epith
elia

l ce
lls

CD4+
 Tem

Fibroblas
ts

NK ce
lls

Adipocyt
es

Mem
ory 

B−cel
ls

Monocyt
es

Endothelia
l ce

lls

Treg
s

Plas
ma c

ells

Not d
efi

ned

CD8+
 Tcm

Macr
ophage

s

−2

−1

0

1

2

Expression

Identity

Epithelial cells

CD4+ Tem
Fibroblasts
NK cells
Adipocytes
Memory B−cells

Monocytes

Endothelial cells
Tregs

Plasma cells
Not defined
CD8+ Tcm
Macrophages

(h)

Figure 2: Analysis of single-cell RNA sequencing. (a) RNA characteristic number (nFeature RNA) and absolute UMI count (nCount RNA)
were presented using violin diagram after quality control screening of cells. (b) Analysis of the correlation between nFeature and nCount. (c)
Before eliminating batch effect, visual T-SNE clustering was separated into 26 samples, with each color representing one sample. (d) After
eliminating the batch effect, T-SNE clustering was displayed using 26 samples, with each hue representing a single sample. (e) After
eliminating the batch effect, T-SNE clusters were organized into clusters of cells, with each hue representing a cluster of cells. (f) After
batch effect is eliminated, visual T-SNE clusters are sorted by known annotated cell types, with each color representing a cell type. (g)
Violin graphic depicts the expression of nine identified fibroblast marker genes in each cell type. (h) Heat map depicting the expression
of the top ten marker genes in each of the twelve identified cell types.
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the genes we tested were credible fibroblast marker genes.
Separate information on GO and KEGG enrichment find-
ings is provided in Supplemental Table S1 and S2.

3.3. Prognostic Model Construction. The TCGA-BRCA
cohort (N = 835)was randomly split into training set and
validation set in a 7 : 3 ratio. The 193 CAF genes in the train-
ing set were examined using univariate Cox regression (Sup-
plementary Table S3), which identified 43 candidate genes as
prognosis-related. These candidate genes were subsequently
evaluated using LASSO Cox regression analysis with 10-fold
cross-validation, and “lambda.min” was determined to be
the best lambda value (Figures 4(a) and 4(b)). The model
included 15 coefficients that were not zero (Figure 4(c)),
indicating that 15 out of 43 factors may better predict
clinical outcomes. Several of these genes, including DSTN,
ID3, TFPI, C1QTNF1, CCL2, EFEMP1, LUM, and FILIP1L,
have been identified as oncogenes with a hazard ratio ðHRÞ
> 1. In addition, CXCL9, CST1, TIMP1, BGN, RAB13,
CCL19, and CEBPD were considered protective genes with
HR < 1. (Figure 4(d)). To develop a model that can predict
the prognosis of patients, we incorporated all 15 prognostic
genes identified by LASSO regression into a multivariate
Cox regression analysis model and used a stepwise
backward algorithm to select the optimal model based on
the Akaike information criterion (AIC). The best model
was comprised of 5 genes; BGN, LUM, and CEBPD were

protective genes (HR < 1, p < 0:05) (Figures 4(f)–4(h)),
whereas CCL19 and ID3 were risk genes (HR > 1, p < 0:05)
(Figures 4(i), 4(j), and 4(e)). Based on these 5 genes, a
prognostic model was developed: the integrated risk score
= ð0:38∗ exp ðBGNÞÞ + ð0:27∗ exp ðLUMÞÞ + ð0:16∗ exp
ðCCL19ÞÞ + ð0:3∗ exp ðCEBPDÞÞ + ð0:51∗ exp ðID3ÞÞ.

3.4. Validation of Prognostic Model Performance. Using the
prognostic model, we estimated the risk score for the train-
ing set, validation set, and external validation set, and then
separated the patients into high- and low-risk groups based
on the risk score and the optimal cutoff value. A heat map
depicted the risk score distribution, and the expression levels
of five genes were included into the model for various data
sets (Figures 5(a), 5(e), and 5(i)). Moreover, scatter plots
illustrated the risk score and associated survival status of
patients in each data set (Figures 5(b), 5(g), and 5(k)). To
determine if risk score was connected with patient progno-
sis, we compared K-M survival curves across groups with
high- and low-risk scores using the log-rank test. Patients
in the high-risk category were shown to have a poor progno-
sis (train set: log-rank test p < 0:0001, HR = 2:72; validation
set: log-rank test p < 0:0001, HR = 1:9; external validation
set: log-rank test p < 0:0001, HR = 2:58). The area under
the ROC curve (AUC) in the training set was 0.676 (3 years),
0.687 (5 years), and 0.749 (10 years) when the model was
used to predict the 3-year, 5-year, and 10-year survival,
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Figure 4: Prognostic model construction. (a) 10-fold cross-validation to determine the optimal lambda parameters. (b) LASSO model
coefficient derived by optimum lambda. (c) Coefficients of the univariate Cox regression model for 15 prognostic genes. (d) Forest map
depicting the hazard ratio (HR) and p value derived from a univariate Cox regression analysis. (e) Forest plot displaying hazard ratio
(HR) and p value using multivariate Cox regression analysis. (f–j) Display of Kaplan-Meier survival curves of patients separated into
high expression group and low expression group based on the expressions of BGN, LUM, CEBPD, ID3, and CCL19, respectively.
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respectively (Figure 5(d)). The AUC of the validation set was
0.69 (3 years), 0.676 (5 years), and 0.737 (10 years)
(Figure 5(h)), while the AUC of the external validation set
was 0.67 (3 years), 0.62 (5 years), and 0.621 (10 years)
(Figure 5(l)). These findings suggested that the risk score is
a reliable predictor.

3.5. Risk Score May Predict Response to Chemotherapy and
Immunotherapy. Next, in order to determine if the model
may play a role in directing the clinical treatment of breast

cancer, we employed the “pRRophetic” program to predict
patient sensitivity to chemotherapeutic drug therapy using
the integrated Cancer Genome Project (CGP) drug database.
Patients in the high-risk group in the TCGA-BRCA cohort
were shown to be more responsive to chemotherapy medica-
tions (docetaxel, gemcitabine, paclitaxel, camptothecin,
pazopanib, and sunitinib) than those in the low-risk group
(Figures 6(a)–6(f)). In addition, we employed the TIDE
online algorithm to predict the response of immune check-
point inhibitors in TCGA-BRCA breast cancer patients.
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Figure 5: Validation of prognostic model performance. (a, e, and i) The heat map depicts the expressions of BGN, LUM, CEBPD, CCL19,
and ID3 in the training set, validation set, and external test set as well as the risk score grouping information. (b, g, and k) The scatter figure
illustrates the distribution of sample risk scores and the survival status of patients in the training set, test set, and external test set,
respectively. (c, f, j) The Kaplan-Meier graphs depict the survival of patients in the high-risk and low-risk categories of the training set,
test machine, and external test set, respectively. (d, h, l) The ROC curves for predicting 3, 5, and 10-year survival from the training set,
the test set, and the external test set, respectively, are shown by the curves.
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Patients in the high-risk group responded better to immune
checkpoint treatment (90.1%, 79/87) than those in the low-
risk group (77.1%, 577/748; p < 0:01). (Figure 6(g)). The risk
score of patients who reacted to immunotherapy was sub-
stantially greater than that of individuals who did not
respond (Figure 6(h)). The findings indicated that high-
risk individuals may react more favorably to clinical chemo-
therapy and immunotherapy than low-risk patients.

3.6. Construction and Validation of Nomograms. According
to prior research, risk score is a reliable prognostic indicator.
However, it is challenging to address the specific peculiari-
ties of clinical patients and their clinical use. We included

several therapeutically relevant TCGA-BRCA cohort
markers (Table 1). Analysis of the link between clinically rel-
evant parameters, risk score, and patient prognosis using
univariate and multivariate Cox regression is shown in
Table 2. The prognosis of patients was connected with risk
score, cancer grade (pathologic M, pathologic N, pathologic
T, and tumor stage), and age, according to univariate Cox
regression analysis (Table 2). Cancer grade (pathologic M,
pathologicN, pathologicT, and tumor stage) had no signifi-
cant in test for independence (p > 0:05), whereas age
(HR = 2:45, p < 0:001) and risk score (HR = 1:03, p < 0:001
) remained significantly (Table 2), indicating that age and
risk score were independent prognostic factors. Moreover,
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Figure 6: Prediction of chemotherapy and immunotherapy response. (a–f) pRRophetic approach to estimate the normalized Z-scores of
IC50 for six anticancer medications: docetaxel (a), gemcitabine (b), paclitaxel (c), camptothecin (d), pazopanib (e), and sunitinib (f). (g,
h). Variations in risk ratings depending on anticipated immunosuppressant treatment effects (∗p < 0:05, ∗∗p < 0:01, ∗∗∗p < 0:001).
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the risk score was the most influential predictive component.
Subsequently, we developed a prognostic nomogram using
risk score and age to objectively estimate the 3, 5, and 10-
year survival probability of patients (Figure 7(a)). The cali-
bration curves demonstrate that TCGA-BRCA cohort data
(Figure 7(b)) and external validation data GSE20685
(Figure 7(c)) are in excellent agreement with the ideal pro-
jected probability (gray dotted line) for predicting 3-year,

5-year, and 10-year survival. The findings demonstrate that
this prognostic nomogram is a valid instrument for predict-
ing OS in patients with breast cancer.

4. Discussion

Globally, breast cancer is the leading type of malignancy
causing death in women. Significant developments in diag-
nostics, surgery, and anticancer drug development have been
made with advances in medical technology, but effective
treatment is still hampered by the metastasis and treatment
resistance. Anticancer treatments have long focused on tar-
geting tumor cells. However, recent advances in immuno-
therapy have shown that targeting the tumor
microenvironment (TME) is a powerful tool for controlling
tumor progression. Cancer-associated fibroblasts (CAFs)
are the most abundant stromal cells in breast cancer, and
there is growing evidence that these cells affect cancer. The
exact origin of CAFs in breast cancer is not fully understood.
In tumors, CAFs play an active role in the formation of
TME, supporting tumor cell survival, angiogenesis, immu-
nosuppression, and therapeutic resistance.

In this investigation, we collected a scRNA-seq data col-
lection including 193 CAF-related marker genes from fibro-
blast cells. Using GO and KEGG enrichment analysis, we
determined that the enriched words were associated with
fibroblasts. In addition, univariate, LASSO, and multivariate
Cox regression analyses allowed us to choose five key risk
variables (BGN, LUM, CCL19, CEBPD, and ID3) for the con-
struction of a signature and nomogram.

The BGN gene encoding biglycan, a soluble extracellular
protein that belongs to the small leucine-rich proteoglycan
(SLRP) family. Biglycan may perform its activity through
intercellular contact, which is overexpressed in cancer stem
cells [27] and may activate NF-κB signaling. It binds to the
extracellular matrix in the physiological context and is also
expressed on the cell surface [28]. BGN plays an important
role in various cellular processes such as cell migration,
adhesion, inflammation, cell growth, regulation of autoph-
agy, apoptosis, and regulation of matrix assembly [29]. In
addition, BGN has been implicated in various tissue-
specific tumorigenesis, such as pancreatic, gastric, endome-
trial, colon, and bladder cancers [28]. Previous studies have
shown the role of BGN in the treatment of drug resistance
and immune activity. [27, 30–32]. These suggest that BGN
plays an important role in tumorigenesis and metastasis.

LUM is located on chromosome 12q21.3-q22 including a
putative 18-residue signal peptide and has 338 amino acids.
LUM core protein contains a central region rich in leucine-
rich repeats, flanked by a disulfide binding region, and the
central region of the molecule contains four asparagine res-
idues capable of N-chain glycosylation [32, 33]. LUM is
thought to be a key regulator of collagen fibrogenesis, a
key process in corneal transparency [34]. LUM mRNA is
specifically expressed in breast cancer tissues but not in nor-
mal breast tissues, suggesting that LUM is differentially
expressed during breast tumor progression [35]. In addition,
LUM, one of the three primary components of the corneal
stroma, regulates the assembly of collagen into fibrils in

Table 1: Clinical information data for samples from the TCGA-
BRCA cohort.

Overall

N 835

Status = 1 (%) 125 (15.0)

Time (mean (SD)) 1288.36 (1165.58)

Pathologic_M (%)

M0 705 (84.4)

M1 16 (1.9)

MX 114 (13.7)

Pathologic_N (%)

N0 391 (46.8)

N1 286 (34.3)

N2 88 (10.5)

N3 56 (6.7)

NX 14 (1.7)

Pathologic_T (%)

T1 219 (26.2)

T2 479 (57.4)

T3 111 (13.3)

T4 25 (3.0)

TX 1 (0.1)

Tumor_stage (%)

Stage i 149 (17.8)

Stge ii 475 (56.9)

Stage iii 179 (21.4)

Stage iv 15 (1.8)

Stage x 8 (1.0)

Not reported 9 (1.1)

Age (mean (SD)) 58.16 (12.89)

Table 2: Univariate and multivariate Cox proportional hazards
regression analysis on OS.

Univariate analysis Multivariate analysis

HR
95% CI
for HR

p value HR
95% CI
for HR

p value

RiskScore 2.72 2.04-3.62 <0.001 2.45 1.54-3.89 <0.001
Pathologic_M 4.85 2.66-8.85 <0.001 0.55 0.04-6.9 0.646

Pathologic_N 1.96 1.28 3 <0.001 1.63 0.91-2.91 0.099

Pathologic_T 1.21 0.77-1.9 <0.001 1.65 0.73-3.71 0.231

Tumor_stage 1.27 0.74-2.19 <0.001 0.57 0.2-1.6 0.283

Age 1.03 1.02-1.05 <0.001 1.03 1.01-1.04 <0.001
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Figure 7: Continued.
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diverse connective tissues. LUM may block or even revert
the many metastatic characteristics that EMT confers to
breast cancer cells [36]. These results suggest that LUM pro-
tein plays an important role in the growth and invasion of
cancer cells.

Chemokine ligand 19 (CCL19) is one of the ligands of
chemokine receptor 7 (CCR7) and plays an important role
in cancer. CCL19 has significant chemotactic action for T
and B cells [37]. There is evidence that CCL19 increases
the life span of T cells within the LN. Once inside the LN,
CCL19 and CCL21 are continually released by fibroblastic
reticular cells [38, 39]. Based on the fact that CCR7 functions
in the inflammatory/immune response, many strategies have
been developed to exploit this axis for the treatment of can-
cer [40–42].

CEBPD is a leucine zipper (LZ) DNA-binding protein
that is generally not highly expressed but can be induced
by many different stimuli and is considered to be a stress
response gene [43]. It is an important transcription factor
regulating the expression of genes involved in immune and
inflammatory responses [44, 45]. CEBPD has many tumor
suppressor-like properties and downregulated in several
types of cancer [46–49], and its expression in tumors is asso-
ciated with a favorable prognosis [50, 51].

ID3 regulates several biological processes, including cell
proliferation, senescence, differentiation, apoptosis, angio-
genesis, and tumor transformation. This study presented
early evidence that these genes are intimately associated with
the clinical manifestations and prognosis of BRCA, provid-
ing new research areas and suggestions for discovering novel
gene therapy targets and producing antitumor medications.

This research has certain drawbacks. First, despite the
predictability of the robustness of the features and nomo-
gram produced in this work utilizing enormous quantities
of data from the TCGA and GEO databases, they are still
limited by retrospective analysis. Second, we examined the
immune microenvironment landscape and molecular pro-
cesses of patients at varying risk, as well as predicted the
effectiveness of immunotherapy and chemotherapy; never-
theless, this study requires more experimental confirmation.

5. Conclusions

Based on the analysis of scRNA-seq and bulk RNA-seq data,
we built and validated a cancer fibroblast-related risk signa-
ture consisting of five genes (BGN, LUM, CCL19, CEBPD,
and ID3) that may be utilized as an independent prognostic
indicator for breast cancer patients. In addition, this
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Figure 7: Construction and validation of a nomogram. (a) Age and risk score-based clinical line plot for predicting 3-, 5-, and 10-year total
breast cancer patient survival. (b) Validation of standard curve consistencies between projected 3-, 5-, and 10-year overall survival and actual
3-, 5-, and 10-year overall survival using TCGA-BRCA cohort data. (c) Standard curves to validate the congruence between projected 3-, 5-,
and 10-year overall survival and actual 3-, 5-, and 10-year overall survival using external validation data GSE20685.
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signature may suggest the vulnerability of BRCA patients to
chemotherapeutic medicines (docetaxel, gemcitabine, pacli-
taxel, camptothecin, pazopanib, sunitinib) and immune
checkpoint inhibitors, presenting BRCA patients with novel
clinical uses. Ultimately, the developed signature is strong
and can reliably predict the fate of BRCA patients, allowing
clinicians to make more rational and viable treatment
options.
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