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The formation of breast tubules plays an important role in the pathological grading of breast cancer. Breast tubules surrounded by
a large number of epithelial cells are located in the subcutaneous tissue of the chest. The shapes of breast tubules are various,
including tubular, round, and oval, which makes the process of breast tubule segmentation a difficult task. Deep learning
technology, capable of learning complex data structures via efficient representation, could help pathologists accurately detect
breast tubules in hematoxylin and eosin (H&E) stained images. In this paper, we propose a deep learning model named DKS-
DoubleU-Net to accurately segment breast tubules with complex appearances in H&E images. The proposed DKS-DoubleU-
Net model suggests using a DenseNet module as the encoder of the second subnetwork of DoubleU-Net, which utilizes dense
features between layers and strengthens the propagation of features extracted in all previous layers, in order to better discover
the intrinsic characteristics of breast tubules with complex structures and diverse shapes. Moreover, a feature fusing module
called Kernel Selecting Module (KSM) is inserted before each output layer of the two U-Net branches of the DoubleU-Net, to
implement a multiscale feature fusion via a self-adaptive kernel selecting for the sake of accurate segmentation of breast
tubules in different sizes. The experiments on the public BRACS dataset and a private clinical dataset have shown that our
model achieves better segmentation performance, compared to the state-of-art models of U-Net, DoubleU-Net, ResUnet++,
HRNet, and DeepLabV3+. Specifically, on the public BRACS dataset, our method produced an F1-Score of 92.98%, which
outperforms the F1-Score of U-Net, DoubleU-Net, and HRNet by 4.24%, 0.37%, and 1.68%, respectively, and is much better
than performances of DeepLabV3+ and ResUnet++ by 7.83% and 23.84%, respectively. On the private clinic dataset, the
proposed model achieved an F1-Score of 73.13%, which has shown an improvement of 10.31%, 1.89%, 4.88%, 15.47%, and
31.1% to the performances of the U-Net, DoubleU-Net, HRNet, DeepLabV3+, and ResUnet++, respectively. Superior
performance could also be observed when comparing the proposed DKS-DoubleU-Net with the others using the metrics of
Dice and mIou.

1. Introduction

Breast cancer is one of the most common cancers for women
in the world [1]. With the increase of breast cancer patients
worldwide, the precise diagnosis and prognosis of breast
cancer have become urgent tasks. The Nottingham grading
system [2] has become the most adopted clinic routine cri-
teria in the diagnosis and prognosis of breast cancer. As
one of the three essential factors (tubule formation, nuclear
pleomorphism, and mitotic counts) in the Nottingham grad-

ing system, the assessment of breast tubule formation plays
an important role [2].

The arrangement and morphology of tumor cells within
breast tubules are vital criterions for the diagnosis of breast
ductal carcinoma. Breast ductal carcinoma will destroy the
function of breast ducts, resulting in the disappearance of
tubular structure of breast tubules. Therefore, it is particu-
larly important to accurately identify breast tubules in path-
ological images for a precise grading and diagnosis of breast
cancer patients.
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The identification of breast tubules is usually done by the
manual observation of pathologists through microscopes.
This process is not only time- and labor-consuming but also
prone to errors due to interobserver and intraobserver dis-
crepancies. Thus, it is necessary to develop a model to auto-
matically recognize the breast tubule in histopathological
images for a more objective and accurate computational
pathology analysis.

Breast tubules are located in the subcutaneous tissue of
the chest. Although breast tubules are characterized by clear
lumina surrounded by epithelial cells, they are easily con-
fused with clefts induced by shrinkage artifacts [2]. More-
over, breast tubules are typical of diverse appearances,
complex structures, and highly sophisticated morphology,
such as various shapes (tubular, round, or oval), colors,
and textures, as shown in Figure 1. Therefore, it is a chal-
lenging task for traditional machine learning methods to
identify breast tubules effectively. A promising way is to
train end-to-end deep learning models [3–7], which could
automatically discover the essential characteristics of breast
tubules through the nonlinear representation of multiple
layers of neurons.

Nowadays, with the rapid development of deep learning
technology, increasing image segmentation models, such as
U-Net [8], ResUNet++ [9], DeepLabV3+ [10], DoubleU-
Net [11], and HRNet [12], have shown good performance
in the field of medical image segmentation. For example,
the U-Net model was applied to the segmentation of neuro-
nal structures in electron microscopic recordings and the cell
segmentation task in light microscopic images. Moreover,
many U-Net-based Convolutional Neural Networks (CNNs)
have also demonstrated superior performance in the task of
medical image segmentation [13–17]. Particularly, among

the outstanding U-Net derived models, DoubleU-Net has
shown promising results on various medical image datasets,
including polyp detection dataset, lesion boundary segmen-
tation dataset, and nuclei image dataset.

There have been some approaches dedicated to semanti-
cally segmenting breast tubules in hematoxylin and eosin
(H&E) stained images. For example, Wang et al. [18] pro-
posed a two-step clustering and random forest method for
automatic recognition and segmentation of breast tubules.
Basavanhally et al. [19] applied the O’Callaghan neighbor-
hood in modeling and imposed spatial distance with direc-
tional constraints on object attributes for tubular
identification on histopathological images stained with
hematoxylin and eosin (H&E). Maqlin et al. [20] used K-
means clustering to identify objects including glandular
tubules and fatty regions. Zhang et al. [21] proposed a
method for detecting tubules in testicular images based on
boundary weighting and circular shortest path. Janowczyk
and Madabhushi [22] detected breast tubules, lymphocytes,
and epithelial cells by using the deep learning framework
of the Caffe AlexNet network model.

However, the current deep learning models are still inca-
pable of accurate segmentation of breast tubules, because
breast tubules are usually of diverse appearance, complex
structures, and different sizes for patients in different grad-
ing stages and various tissue transections.

Although deep-learning-based methods have been
applied to the segmentation of breast tubules [8–12],
most of them have not taken into account the reuse
and fusion of multilevel features to better describe the
tubule ROI regions of complex structures, diverse shapes,
and different sizes for a more accurate segmentation
performance.

Figure 1: Demostration of the complexity of breast tubules. Breast tubules are usually of diverse appearances, complex structures, and
highly sophisticated morphology. The first and third row show several breast tubular images from public BRACS dataset and private
clinical dataset. The second and fourth row represent their corresponding ground truths.
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In this paper, we propose a novel semantic segmentation
model named DKS-DoubleU-Net by integrating a DenseNet
[23] module and a Kernel Selecting Module (KSM) [24] into
the DoubleU-Net model for accurate segmentation of breast
tubules in H&E images. The adopted DenseNet encoder utilizes

dense features between layers to discover intrinsic characteris-
tics and strengthen the feature propagation of breast tubules.
Besides, the KSMmodule conducts a self-adaptive kernel select-
ing for the sake of a multilevel feature fusion, facilitating the
detection of breast tubules of different sizes. Experiments on
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Figure 2: The overall architecture of the proposed DKS-DoubleU-Net model and the details of the introduced DenseNet and Kernel
Selecting Module (KSM) for semantic breast tubule segmentation. (a) The overall architecture of the proposed DKS-DoubleU-Net model.
(b) The detailed architecture of the DenseNet module [23]. (c) The detailed architecture of the Kernel Selecting Module (KSM) module [24].

Table 1: The quantitative comparison of the tubule segmentation results obtained by different models on the test set of the private clinical
dataset.

Model Dice mIou Recall Precision F1-score

DKS-DoubleU-Net 0.7002 0.5547 0.7636 0.7016 0.7313

DoubleU-Net+DenseNet 0.6897 0.5412 0.7442 0.7066 0.7249

DoubleU-Net+KSM 0.6820 0.5364 0.7165 0.7243 0.7204

DoubleU-Net 0.6798 0.5308 0.7450 0.6825 0.7124

U-Net 0.6115 0.4519 0.6568 0.6020 0.6282

ResNet++ 0.3922 0.2672 0.6610 0.3081 0.4203

DeepLabV3+ 0.5513 0.3955 0.5885 0.5651 0.5766

HRNet 0.6608 0.5085 0.6496 0.7188 0.6825
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the public BRACS dataset [25] and a private clinical dataset
have demonstrated the outperformance of the proposed DKS-
DoubleU-Net in the semantic segmentation of the breast

tubules, compared to the original DoubleU-Net as well as the
state-of-the-art segmentation models including U-Net [8],
HRNet [12], DeepLabV3+ [10], and ResUNet++ [9].
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Figure 3: The illustrative tubule segmentation results of different models on the test set of the private clinical dataset. The first row lists the
original images; images a(1)-f(1) in the second row are the corresponding tubule annotation masks; images a(2)-f(2) in the third row are the
tubule segmentation results performed by DKS-DoubleU-Net; images a(3)-f(3) in the fourth row are the results output by the DoubleU-Net
which added DenseNet; images a(4)-f(4) in the fifth row are the results obtained by the DoubleU-Net which added Kernel Selecting Module
(KSM); images a(5)-f(5) in the sixth row are the results output by the DoubleU-Net; images a(6)-f(6) in the seventh row are the results
output by Unet; images a(7)-f(7) correspond to the results of ResUnet++; images a(8)-f(8) are the results obtained by DeepLabV3+, and
images a(9)-f(9) show the tubule segmentation results of HRNet.
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2. Methods

2.1. The Proposed DKS-DoubleU-Net Architecture. For accu-
rate semantic segmentation of breast tubules with complex
structures and shapes, the proposed DKS-DoubleU-Net
model is constructed through two main processes: (1)
substituting the encoder of the second U-Net subnetwork
branch of DoubleU-Net with a DenseNet [23] module; (2)
inserting a Kernel Selecting Module (KSM) before each out-
put layer of the two U-Net branches of the DoubleU-Net.
The overall architecture of the proposed DKS-DoubleU-
Net model is shown in Figure 2.

As shown in Figure 2, the proposed DKS-DoubleU-Net
is composed of two U-Net subnetwork branches which are
connected end to end, and each network branch is com-
posed of an encoder and a decoder. Specifically, the
VGG19 [26] is employed as the encoder module in the first
network branch. The decoder modules of the two subnet-
work branches are identical, both including four decoder
blocks, and each of the decoder blocks consists of a squeeze
and excitement block [27], 3 × 3 convolutional layers, and an
upsampling layer. For each branch, the encoder and the
decoder are connected with an Atrous Spatial Pyramid Pool-
ing (ASPP) [10], which expands the receptive field of the
convolutional layer. When the input image is fed to the first
network, a preliminary binary segmentation mask will be
generated to indicate the coarse detected regions of the
tubules. Subsequently, the binary preliminary output tubule
segmentation mask is multiplied by the original input image
to remain only the coarse tubule ROI region in the original
image. And the coarse tubule ROI image is further served
as the input of the second network branch. The KSM mod-
ule is inserted before each output layer of the two U-Net
subnetwork branches. Finally, after the DenseNet encoder
module and the decoder block of the second subnetwork
branch, the final result of breast tubule segmentation on
the input H&E image is output.

We will describe each component of the proposed DKS-
DoubleU-Net model in detail.

2.2. Encoder. Feature extraction is the major function of the
encoders in both branches [28]. The encoder of the first net-
work branch adopts a VGG19 module, and all the convolu-
tional layers of the module employ the same small size of
3 × 3 convolution kernels. Thus, VGG19 with a deep enough
network structure could extract plenty of nonlinear features.

As the encoder of the second network branch, the Den-
seNet with a dense connection mechanism is introduced to
extract the complex tubule structure features for a better
tubule segmentation in H&E images. Specifically, each
Dense Block (as shown in Figure 2(b)) of the introduced
DenseNet module densely collects the output feature maps
of all previous Dense Blocks as its input. Such dense connec-
tion of Dense Blocks makes the propagation and utilization
of multilevel features more effective, resulting in a more effi-
cient training process. That is, by establishing dense connec-
tions between the front and back layers, the reuse and
propagation of features between different layers could allevi-
ate the problem of gradient disappearance caused by the

deepening of the network to a certain extent. Therefore,
the introduced DenseNet encoder has the potential to effec-
tively extract, fuse, and propagate multilevel features of
breast tubules on the ROI regions detected by the first U-
Net branch.

2.3. Decoder. Decoders are used to restore the feature maps
to the original resolution. The model has two decoders, each
of which consists of four decoder blocks, as shown in
Figure 2(a). For each layer of the decoder block, an upsam-
pling operation is applied to enlarge the image through
interpolation [29]. And then the upsampling feature map
is concatenated with the feature map output from the corre-
sponding encoder through a skip connection. Different from
the skip connection from the encoder to the decoder in the
first subnetwork branch, there are two skip connections
from both encoder1 and encoder2 to the decoder in the sec-
ond subnetwork branch. The purpose of this process is to
reduce information loss in the process of feature extraction.
After the upsampling, there are two 3 × 3 convolution oper-
ations, each of which is followed by the operations of nor-
malization and ReLU [30]. The subsequent layers are
composed of a squeeze and excitation block, a 1 × 1 convolu-
tion operation, and a sigmoid activation function [31]. The
final output of the model is a binary image [32] having the
same size as the input image to indicate the segmentation
regions of breast tubules.

2.4. Kernel Selecting Module (KSM). The Kernel Selecting
Module (KSM) fuses multiple convolutional branches with
different kernel sizes to implement adaptive receptive field
selection and multiscale feature fusion, as shown in
Figure 2(c). Firstly, the input U ∈RH×W×C performs 3 × 3,
5 × 5, and 7 × 7 convolution operations, respectively, to
obtain U ′ ∈RH×W×C , U ′′ ∈RH×W×C , and U ′′′ ∈RH×W×C .
Secondly, U ′, U ′′, and U ′′′ are added to obtain �U . The cal-
culation formula of �U is

�U =U ′ +U ′′ +U ′′′: ð1Þ

Then, the global average pooling operation (GAP) and
the full connection operation (FC1) are performed on �U ,
and after that, we perform the full connection operation
(FC2) on the obtained result again. The specific calculation
formula is as follows:

α′ = FC2 ′ FC1 GAP �U
� �� �� �

,

β′ = FC2 ′′ FC1 GAP �U
� �� �� �

,

γ′ = FC2 ′′′ FC1 GAP �U
� �� �� �

,

ð2Þ

where α′ ∈R1×1×C , β′ ∈R1×1×C , and γ′ ∈R1×1×C . Three
obtained outputs are calculated by softmax, respectively.
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The specific calculation method is as follows:

αc =
eαc′

eαc′ + eβc
′ + eγc′

,

βc =
eβc

′

eαc′ + eβc′ + eγc′
,

γc =
eγc′

eαc′ + eβc
′ + eγc′

,

ð3Þ

where α, β, and γ denote the soft attention vectors, respec-
tively. Note that αc is the c-th element of α, and is the same
for βc and γc.

Finally, the feature maps obtained by different convolu-
tion kernels and the obtained attention vectors are multi-
plied and added to obtain the final output feature map V .

Vc = αc ⋅U ′ + βc ⋅U″ + γc ⋅U
‴, ð4Þ

where α, β, and γ need to satisfy αc + βc + λc = 1, and V
=½V1, V2,:⋯ , Vc�, Vc ∈R

H×W .

3. Experiments

3.1. Datasets. In the task of breast tubule segmentation, we
conducted experiments on the public BRACS dataset [25]
and a private clinical dataset. For each dataset, we randomly
selected 10% of images for testing, 10% of images for verifi-
cation, and the rest 80% of the images for model training.

The first experimental dataset is a private clinical dataset
with a total of 398 images, each of which is 2000 × 2000 in size.
The tubule masks on each of the images in this dataset were
annotated by a pathologist, with white areas representing the
breast tubules and black areas indicating irrelevant areas.

The second dataset is an openly accessible dataset named
BRACS, which has a total of 4539 H&E images of various
sizes. Since the breast tubules on the images of this dataset
were not labeled, we did manual annotation of the breast
tubules with the help of a pathologist before our
experiments.

3.2. Implementation Details. Our experiments ran on the
Ubuntu operation system with GPUs of GeForce GTX

1080 [33]. Our model was built using the Keras framework
with TensorFlow [34, 35] as the back end. We used the Dice
function [36] as the loss function of model training, the opti-
mizer was Adam [37], the learning rate was set to 1e-5, the
batch size of the DKS-DoubleU-Net model and those of
the other comparable models were set to 4, and the epoch
was set to 200.

Our private dataset includes 398 original images with a
size of 2000 × 2000 cropped from WSI images and their cor-
responding ground truths of tubule masks. Since the size of
each of the private clinical pictures is 2000 × 2000, to reduce
the computational pressure of the graphics processing sys-
tem [38] and improve the efficiency of code running, we
cut each 2000 × 2000 image into 16 random overlapping
512 × 512 tiles, resulting in 6368 tiles in total. Since the
cropped images do not change the structures of tubules, it
will not affect the actual segmentation effects.

The public BRACS dataset is composed of 4539 H&E
images of different image sizes, we resized the images to 512
× 512 for consistency with the 512 × 512 tile size of the private
dataset. Since there are no tubule annotations in the public
dataset, we generated the labels of the breast tubules before-
hand. To speed up the annotation process, we adopted a
coarse-to-fine annotation procedure on this dataset.

Specifically, as the first step, we randomly selected 200
H&E images and asked a pathologist to manually annotate
the breast tubules using HistoView [39]. Subsequently, we
trained the proposed model by using the 200 annotated
images and obtained a preliminary model. The preliminary
model in our experiment was a DoubleU-Net adopting a deep
Residual module as the encoder of the second subnetwork.
With the help of this preliminarily trained model, we tested
the remaining unlabeled images and treat their outputs as
coarse annotations of tubules. Then, the coarse annotations
were denoised by applying the “bwareaopen” function in
MATLAB to remove small areas [40]. Finally, the refined
breast tubule annotations were generated by manually elimi-
nating the false positives and false negatives on the coarse
annotation images with the help of the pathologist [41].

3.3. The Objective Function and Evaluation Metrics. To train
the proposed DKS-DoubleU-Net model, Dice function is
used as the loss function to emphasize the accurate semantic
segmentation of the tubule regions. The Dice loss function is

Table 2: The quantitative comparison of tubule segmentation results obtained by different models on the test set of the public BRACS
dataset.

Model Dice mIou Recall Precision F1-Score

DKS-DoubleU-Net 0.9272 0.8655 0.9292 0.9305 0.9298

DoubleU-Net+DenseNet 0.9247 0.8617 0.9288 0.9259 0.9273

DoubleU-Net+KSM 0.9269 0.8655 0.9328 0.9264 0.9296

DoubleU-Net 0.9219 0.8570 0.9204 0.9319 0.9261

U-Net 0.8793 0.7887 0.9239 0.8537 0.8874

ResNet++ 0.6547 0.5020 0.7450 0.6450 0.6914

DeepLabV3+ 0.8413 0.7301 0.8547 0.8483 0.8515

HRNet 0.9089 0.8348 0.9368 0.8903 0.9130
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Figure 4: The illustrative tubule segmentation results of different models on the test set of the public BRACS dataset. The first row lists the
original images; images a(1)-f(1) in the second row are the corresponding tubule annotation masks; images a(2)-f(2) in the third row are the
tubule segmentation results performed by DKS-DoubleU-Net; images a(3)-f(3) in the fourth row are the results output by the DoubleU-Net
which added DenseNet; images a(4)-f(4) in the fifth row are the results output by the DoubleU-Net which added Kernel Selecting Module
(KSM); images a(5)-f(5) in the sixth row are the results output by the DoubleU-Net; images a(6)-f(6) in the seventh row are the results
output by Unet; images a(7)-f(7) correspond to the results of ResUnet++; images a(8)-f(8) are the results obtained by DeepLabV3+, and
images a(9)-f(9) show the tubule segmentation results of HRNet.
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widely used in medical image segmentation tasks. The defi-
nition of Dice Loss is as follows:

DiceLoss = 1 −
2 X ∩ Yj j
Xj j + Yj j , ð5Þ

where X ∩ Y denotes the intersection between X and Y , jXj
and jY j represent the number of elements, respectively,
and the numerator is multiplied by 2 to ensure that the value
range is between 0 and 1.

To measure the superiority of the proposed model more
quantitatively and comprehensively, Dice, mIou, Precision,
Recall, and F1-Score, which are the most important and
commonly used metrics in semantic segmentation tasks
[42–45], served as evaluation metrics in our experiments:

Dice =
2 X ∩ Yj j
Xj j + Yj j ,

mIou =
TP

TP + FP + FN
,

Precision =
TP

TP + FN
,

F1 − Score =
2 × Precision × Recall
Precision + Recall

,

ð6Þ

where TP represents true positive, FP denotes false positive,
and FN means false negative.

4. Results and Analysis

To evaluate the performance of the proposed DKS-
DoubleU-Net model, we conducted experiments on both
the private clinical dataset and the public BRACS dataset
independently. The experiment results of the proposed
DKS-DoubleU-Net model are compared with those of the
state-of-the-art segmentation models, including U-Net [8],
DoubleU-Net [11], ResUnet++ [9], DeepLabV3+ [10], and
HRNet [12] models. To assess the performances of different
models objectively, we employ the most commonly used
evaluation metrics in semantic segmentation tasks, such as
Dice, mIou, Precision, Recall, and F1-Score in our
experiments.

4.1. Experiments on the Private Clinical Dataset. The quanti-
tative comparison of the tubule segmentation results
obtained by different models on the private clinical dataset
is shown in Table 1. The proposed DKS-DoubleU-Net
model achieves a Dice of 70.02%, a mIou of 55.47%, a Recall
of 76.36%, a Precision of 70.16%, and an F1-Score of 73.13%,
which is superior to the original DoubleU-Net model by
increasing 2.04%, 2.39%, 1.86%, 1.91%, and 1.89%, respec-
tively. The individual combination of the DenseNet module
or KSM module with the original DoubleU-Net also exhib-
ited an improvement in performance as shown in Table 1.
This may be attributed to the combined action of the power-
ful feature extraction ability of DenseNet and the multiscale
feature fusion mechanism of KSM. The former could accu-
rately identify the various shapes of tubules and the latter
improves the detection accuracy of tubules in different sizes.
Moreover, compared to the U-Net model, the proposed
DKS-DoubleU-Net has improved the scores of Dice, mIou,
Recall, Precision, and F1-Score obtained by 8.87%, 10.28%,
10.68%, 9.96%, and 10.31%, respectively. In summary, the
proposed DKS-DoubleU-Net model has achieved the high-
est scores in Dice, mIou, and F1-Score, except for precision,
among all listed state-of-the-art models. Although the model
of “DoubleU-Net+KSM” has the highest precision score, the
decrease in its recall score leads to a decrease in its F1-Score
(i.e., the harmonic mean of Recall and Precision).

To visualize the performances of different models, we
demonstrate several tubule semantic segmentation results
on the test set of the private clinical dataset, as shown in
Figure 3. As can be seen from Figure 3, DKS-DoubleU-Net
has the most excellent performance even in segmenting the
challenging targets. Specifically, its segmentation results are
the closest to the ground truth images and with the fewest
noise spots.

4.2. Experiments on the Public BRACS Dataset. To further
analyze the performance of breast tubule segmentation by
the proposed DKS-DoubleU-Net, we conducted experi-
ments on the public BRACS dataset [25]. The comparative
evaluation results of different models on the public BRACS
dataset are shown in Table 2.

Table 2 shows that the proposed DKS-DoubleU-Net
achieves scores of 92.72% in Dice, 86.55% in mIou, 92.92%
in Recall, 93.05% in Precision, and 92.98% in F1-Score. Spe-
cifically, after introducing the modules of DenseNet and
KSM into the original DoubleU-Net model, the segmenta-
tion results have increased by 0.53%, 0.85%, 0.88%, and
0.37% in Dice, mIou, Recall, and F1-Score, respectively. This
may be put down to the flexible ability of the introduced
DenseNet and KSM modules in segmenting the breast
tubules in different sizes and diverse shapes. Compared to
the U-Net, the proposed DKS-DoubleU-Net has gained the
biggest increase in Dice, mIou, Recall, Precision, and F1-
Score by 4.79%, 7.68%, 0.53%, 7.68%, and 4.24%, respec-
tively. On the public BRACS data set, our model fails to
reach the highest recall and precision scores, but its F1-
Score, resulting from the harmonic mean of recall and preci-
sion, is the most superior among all state-of-the-art methods
as shown in Table 2.

Table 3: Comparison of the computational complexity of the
models.

Model Trainable params FLOPs

DKS-DoubleU-Net 127.38M 254.71M

DoubleU-Net+DenseNet 127.24M 254.42M

DoubleU-Net+KSM 111.88M 223.69M

DoubleU-Net 111.73M 223.40M

U-Net 98.68M 197.31M

ResNet++ 15.50M 30.97M

DeepLabV3+ 155.88M 311.76M

HRNet 108.93M 217.85M
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The illustrative tubule segmentation results obtained by
different models on the test set of the public BRACS dataset
are shown in Figure 4. It can be seen from Figure 4 that,
compared to the state-of-the-art networks, the tubule seg-
mentation results performed by the proposed DKS-
DoubleU-Net are more effective in suppressing noisy spots
and more accurate in detecting the tubules with various sizes
and diverse shapes.

In summary, the proposed DKS-DoubleU-Net model
has shown outstanding performance in detecting breast
tubules of diverse shapes and different sizes on both the pri-
vate clinical dataset and the public BRACS dataset.

Specifically, from the quantitative comparison results in
Table 1 and Table 2, it can be seen that, among the state-
of-the-art models, the proposed DKS-DoubleU-Net model
achieves the highest evaluation scores of Dice, mIou, and
F1-Score in the tubule segmentation on both datasets.
Besides, the compared illustrative tubule segmentation
results, as shown in Figures 3 and 4, also demonstrate that
the proposed DKS-DoubleU-Net performs best in the accu-
rate breast tubule segmentation, with the results closest to
the ground truth among all stat-of-the-art models including
DoubleU-Net, U-Net, ResUnet++, DeepLabV3+, and
HRNet. Therefore, the introduced modules of DenseNet
and Kernel Selecting Module (KSM) in the proposed DKS-
DoubleU-Net model could effectively improve the model’s
ability in complex feature extraction and multiscale feature
fusion, which are important in the performance promotion
of breast tubule segmentation.

4.3. Computational Complexity Analysis. In order to com-
pare the computational complexity of the models, we mea-
sure the computational complexity from the amount of
parameters (Paras) and the amount of calculation (FLOPs)
as shown in Table 3. Each parameter is a float, that is, a
parameter is 4 bytes. And the units of these two metrics
are MB. The amount of parameters corresponds to the space
complexity of the model, that is, the size of the model. The
amount of computation corresponds to the time complexity
of the model, that is, the length of the network execution
time. It can be seen from Table 3 that the amounts of param-
eters and calculation of the DKS-DoubleU-Net network are
a little bit larger than those of the original DoubleU-Net
model, due to the addition of the DenseNet and KSM mod-
ules. Although the space complexity and time complexity of
the DKS-DoubleU-Net network is a little bit higher, it results
in a high performance.

5. Discussion

Breast tubule formation is one of the three essential factors
in the clinical routine Nottingham grading system. The
assessment of breast tubule formation is critical to the accu-
rate diagnosis and prognosis of breast cancer [2]. In practice,
it is a challenging task to accurately segment the breast
tubules in H&E images due to their diverse appearance,
complex structures, and highly sophisticated morphology.
Although deep-learning-based methods have been applied
to the segmentation of breast tubules, most of them have

not taken into account the reuse of dense features among
layers and the fusion of multilevel features for a more accu-
rate semantic segmentation performance of breast tubules.
To solve this problem, the proposed DKS-DoubleU-Net
model introduced a DenseNet [23] as the encoder module
of the second network branch in DoubleU-Net. Besides,
the Kernel Selecting Module (KSM) was inserted in front
of the outputs of the two U-Net branches in the proposed
DKS-DoubleU-Net.

The potential roles of the two modules played in the task
of tubule segmentation could be inferred as follows: (1) the
DenseNet module, utilizing dense connections between
layers through Dense Blocks, would help better extract fea-
tures from the tubules with complex structures and diverse
shapes and (2) the KMS module, enabling a self-adaptive
kernel selecting for feature fusion, would facilitate the dis-
covery of tubules of different sizes. Therefore, both qualita-
tive and quantitative experiments have shown that our
model achieves competitive performance on both the private
clinical dataset and public BRACS dataset. Specifically, in
view of quantitative assessment, the DKS-DoubleU-Net pro-
duced a Dice of 70.02% and an F1-Score of 73.13% on the
private data, which has increased by 2.04% in Dice and
1.89% in F1-Score compared to the original DoubleU-Net.
On the public BRACS dataset, our proposed model achieved
a Dice of 92.72% and an F1-Score of 92.98%, which outper-
formed the DoubleU-Net by 0.53% and 0.37%, respectively.
Both in terms of quantitative metrics and qualitative visual
perception of the tubule segmentation results, our model
showed the best performance among the state-of-the-art
models, including DoubleU-Net [11], U-Net [8], ResUnet+
+ [9], DeepLabV3+ [10], and HRNet [12].

The limitation of the DKS-DoubleU-Net is that after the
introduction of DenseNet and Kernel Selecting Module
(KSM), the network structure becomes more complex and
has more parameters to learn, therefore, in our future work,
we will focus on optimizing the network structure for more
efficient and accurate segmentation performance on diverse
tubule regions. As another limitation, our network cannot
handle images of random size. In our experiment, we
cropped or resize the input image to the size of 512 × 512.
Therefore, to develop an algorithm dealing with input
images of random sizes will be one of our further works.

6. Conclusions

In this paper, we proposed a semantic segmentation model
termed DKS-DoubleU-Net for accurate semantic segmenta-
tion of breast tubules in H&E images. The proposed DKS-
DoubleU-Net adopted a DenseNet module as the second
encoder of the DoubleU-Net and inserted a Kernel Selecting
Module (KSM) before the output layer in each of the two U-
Net branches. Our purpose is to discover, reuse, fuse, and
propagate the dense features and multilevel features
extracted from the coarse breast tubular regions suggested
by the first U-Net subnetwork branch of DoubleU-Net.
Moreover, in the experiment section, we applied the pro-
posed DKS-DoubleU-Net to two datasets. In terms of both
quantitative evaluation and visual perception quality, the
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proposed DKS-DoubleU-Net achieved competitive perfor-
mance in the semantic segmentation of breast tubules in
the H&E images on both datasets, as compared with the
state-of-the-art models. Therefore, DKS-DoubleU-Net has
the potential of being a baseline for breast tubule segmenta-
tion in H&E images.
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