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Impaired cerebral autoregulation (CA) can cause negative outcomes in neurological conditions. Real-time CA monitoring can
predict and thereby help prevent postoperative complications for neurosurgery patients, especially those suffering from
moyamoya disease (MMD). We applied the concept of moving average to the correlation between mean arterial blood pressure
(MBP) and cerebral oxygen saturation (SCO2) to monitor CA in real time, revealing optimal window size for the moving
average. The experiment was conducted with 68 surgical vital-sign records containing MBP and SCO2. To evaluate CA, the
cerebral oximetry index (COx) and coherence obtained from transfer function analysis (TFA) were calculated and compared
between patients with postoperative infarction and those who without. For real-time monitoring, the moving average was
applied to COx and coherence to determine the differences between groups, and the optimal moving-average window size was
identified. The average COx and coherence within the very-low-frequency (VLF) range (0.02-0.07Hz) during the entire surgery
were significantly different between the groups (COx: AUROC = 0:78, p = 0:003; coherence: AUROC = 0:69, p = 0:029). For the
case of real-time monitoring, COx showed a reasonable performance (AUROC > 0:74) with moving-average window sizes
larger than 30 minutes. Coherence showed an AUROC > 0:7 for time windows of up to 60 minutes; however, for windows
larger than this threshold, the performance became unstable. With an appropriate window size, COx showed stable
performance as a predictor of postoperative infarction in MMD patients.
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1. Introduction

Cerebral autoregulation (CA) is the physiological mechanism
that maintains constant blood flow despite changes in cere-
bral perfusion pressure (CPP) [1]. As long as CA remains
intact, the brain can protect itself against excessively high
or low blood flow regardless of CPP. Impaired CA is strongly
associated with negative outcomes in a variety of neurologi-
cal conditions such as traumatic brain injury, intracranial
hemorrhage, and cerebral infarction [2–4].

One of the cerebrovascular diseases related to CA is
moyamoya disease (MMD). MMD is a clinical entity charac-
terized by stenosis and occlusion of the terminal internal
carotid arteries, together with the development of collateral
networks, which seem to provide an alternative route for
cerebral perfusion [5]. MMD is difficult to treat because
the cause of blood vessel blockage is not clear; however,
bypass is performed to prevent cerebral infarction. Although
the etiology of MMD is still unknown, several studies have
shown the correlation between MMD and impaired CA [6,
7]. Among MMD patients, the occurrence of infarction is a
major form of neurological damage that is closely related
to impaired CA [8].

Noninvasive parameters that are widely used to evaluate
CA include the mean velocity index (Mx) and the cerebral
oximetry index (COx). Mx indicates the correlation of cere-
bral blood flow velocity (CBFV) with mean arterial blood
pressure (MBP) and is calculated based on the Pearson corre-
lation coefficient (PCC) [9]. Measurement of CBFV requires
application of a Doppler ultrasound probe to a specific win-
dow in the skull, which cannot be maintained for prolonged
time in practice. COx is calculated as the PCC between MBP
and cerebral oxygen saturation (SCO2), and SCO2 can be con-
tinuously measured using near-infrared spectroscopy (NIRS)
sensors [10, 11]. In addition to Mx and COx, some studies
use frequency-domain approaches with transfer function
analysis (TFA), yielding indicators for evaluating CA such
as coherence, gain, and phase [12]. All these indicators are
exquisitely developed but are not practical for real-time mon-
itoring; CBFV for Mx is highly sensitive and cannot be
collected for prolonged time. Additionally, COx and TFA
indicators hardly obtain clinical rationale when real-time
monitoring because of their fluctuation.

This study proposes a novel CA monitoring method to
predict postoperative infarction in MMD surgical patients
by analyzing MBP and SCO2 in “real time.” Applying the
concept of moving average to indicators obtained from
MBP and SCO2 in real time, we defined the optimal
moving-average window size for COx and coherence, one
of the autoregulatory parameters obtained by TFA, and the
performance was statistically significant.

2. Material and Methods

2.1. Patient Inclusion and Data Acquisition. This study was
approved by Seoul National University College of Medicine/
Seoul National University Hospital Institutional Review
Board (IRB approval No. 2102-113-1197) in agreement with
the Declaration of Helsinki, Korean Bioethics and Safety

Act (Law No. 16372), and Human Research Protection
Program-Standard Operating Procedure of Seoul National
University Hospital. Patient consent was not required by
our IRB for this database due to the retrospective nature
of the study and the lack of patient interaction.

During the construction of the VitalDB, vital signs from
various medical devices were collected prospectively using
the Vital Recorder program [13]. Analog-to-digital con-
verters (SNUADC, VitalLab, Seoul, Korea) were used to
obtain 500Hz MBP waveform signals from the analog out-
put port of the patient monitor (Tram module of Solar™
8000 patient monitor, GE Healthcare, Wauwatosa, WI,
USA), and SCO2 data were obtained from an INVOS oxim-
eter (Medtronic, Minneapolis, MN) at 5-second intervals.
Two INVOS sensors were attached to the forehead above
both eyebrows immediately after a patient entered the oper-
ating room and removed shortly before the patient left the
operating room.

From the registry, the 68 records of adult (>18 years)
MMD patients aged 22 to 65 years who underwent bypass
surgery from February 2018 to June 2020 were collected.
Improperly collected signals due to dislodged sensors or
mechanical defects were excluded.

2.2. NIRS-Based Autoregulation Monitoring. MBP was col-
lected in a 500Hz waveform, and NIRS SCO2 was collected
as a numeric variable at 0.2Hz. For the NIRS signal, cubic
spline interpolation was applied to convert the numeric type
to the waveform type [14]. To remove outliers due to arti-
facts, a Hampel filter was applied, and intervals unmeasured
due to dislodged sensors were removed, including 10 sec-
onds before and after [15]. Data with a length less than
10% of the original length after removal were considered
impaired data. The signals were filtered to a nonoverlapping
10-second average value, which is equivalent to using a
moving-average filter with a 10-second time window and
resampling at 0.1Hz. This method reduces the effect of
high-frequency components due to breathing and pulse
waveforms [16, 17]. If NIRS signals from both sides were
damaged, the record was excluded from the study, and if
only one signal was damaged, the other one was used for
the analysis. If both signals were not damaged, we used the
mean values of those signals; however, the intervals in which
the difference in values between the two signals was too high
(>30%) were removed. To investigate the difference between
the signals from the operated and contralateral sides, we per-
formed the Mann–Whitney U test and there was no differ-
ence in SCO2 with a p value larger than 0.15.

COx was calculated as the PCC between MBP and SCO2
every 10 seconds. When CA is intact, COx approaches zero
or negative while impaired CA is indicated by high positive
COx. TFA was performed for each pair of signals using the
classical fast Fourier transform approach combined with
Welch’s method [18]. Each 20-minute epoch was divided
into 5 segments overlapping by 75% for spectral estimation.
The transfer function (TF) gain, phase, and coherence
derived from TFA were calculated using the cross-power
spectral density between the input (MBP) and the output
(SCO2) and the respective autopower spectral densities of
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MBP and SCO2. TF gain, phase, and coherence were aver-
aged over the frequency bands of 0.02-0.07Hz (very low
frequency (VLF)), 0.07-0.2Hz (low frequency (LF)), and
0.2-0.5Hz (high frequency (HF)).

2.3. Clinical Outcomes. The clinical outcomes after surgery
were evaluated to validate the clinical utility of CA parame-
ters. The occurrence of postoperative infarction, hyperperfu-
sion, and intracranial hemorrhage (ICH) was reviewed, as
were the patients’ Glasgow Outcome Scale (GOS) scores
[19]. Infarction or ICH was confirmed by magnetic reso-
nance imaging (MRI). All the patients received a recent pre-
operative MRI, and the patients with neurological symptoms
after the surgery received postoperative MRI. Postoperative
infarction was recorded if there were new lesions by compar-
ing preoperative MRI with postoperative MRI on the oper-
ated hemisphere. Hyperperfusion was clinically suspected
and confirmed with MRI when neurological symptoms from
hyperperfusion did not resolve with empirical management

[20]. GOS was routinely evaluated at discharge. In this study,
the primary outcome was postoperative infarction because it
resulted in definite neurological deficits with evidence from
MRI, and postoperative hyperperfusion was the secondary
outcome.

2.4. Statistical Analysis. The comparison of characteristics
between the infarction group and the noninfarction group
were investigated by calculating p values using Fisher’s exact
test for categorical variables and the Mann–Whitney U test
for continuous variables. To find and validate the optimal
window size of moving average for COx and TF coherence
within the VLF range, area under the receiver operating char-
acteristic curve (AUROC) values for infarction status were
calculated according to various window sizes from real time
to 480 minutes. AUROC values calculated with window sizes
of 10, 20, 30, and 60 minutes were compared to AUROC cal-
culated with entirely averaged value, and the comparison of
AUROC values were performed by the method of Hanley

Table 1: Summary of patient characteristics and raw signals during surgery.

Variables All (n = 68) Infarction (n = 10) Noninfarction (n = 58) p value

Age (years) 39:54 ± 10:86 41:1 ± 8:73 39:28 ± 11:16 0.225

Male sex 23 (33%) 3 (30%) 20 (34%) 1.0

Operation time (hours) 6:3 ± 0:78 5:97 ± 0:64 6:35 ± 0:79 0.123

MBP (mmHg) 94:21 ± 8:44 93:16 ± 7:15 94:39 ± 8:63 0.329

SCO2 (%) 75:95 ± 7:67 73:02 ± 7:34 76:46 ± 7:61 0.077

EtCO2 (mmHg) 37:27 ± 1:64 37:39 ± 1:99 37:24 ± 1:57 0.329

Preoperative neurological deficit

Duration at symptom onset (month) 0:99 ± 0:12 1:0 ± 0:0 0:98 ± 0:13 0.354

TIA 59 (86%) 10 (100%) 49 (84%) 0.336

Infarction 37 (54%) 5 (50%) 32 (55%) 1.0

Hemorrhage 14 (20%) 2 (20%) 12 (20%) 1.0

Preoperative perfusion

ASL (MRI)

Decreased CBF 56 (82%) 8 (80%) 48 (82%) 0.619

SPECT

Basal hypoperfusion 43 (63%) 8 (80%) 35 (60%) 0.311

Decreased vascular reserve 64 (94%) 10 (100%) 54 (93%) 1.0

PCA involvement 22 (32%) 1 (10%) 21 (36%) 0.149

Unilateral moyamoya 10 (14%) 4 (40%) 6 (10%) 0.034

mRS score

On admission 0:66 ± 0:85 0:4 ± 0:66 0:71 ± 0:87 0.143

Discharge 0:93 ± 1:02 1:7 ± 1:68 0:79 ± 0:78 0.036

Surgical categories

Direct/combined bypass 67 (98%) 10 (100%) 57 (98%) 1.0

Follow-up events

Hyperperfusion 21 (30%) 3 (30%) 18 (31%) 1.0

ICH 1 (1%) 0 (0%) 1 (1%) 1.0

Postoperative GOS score 4:79 ± 0:58 4:3 ± 1:19 4:88 ± 0:33 0.011

All data are shown as the mean ± SD and n ð%Þ in the table. MBP: mean blood pressure; SCO2: cerebral oxygen saturation; EtCO2: end-tidal carbon dioxide
concentration; TIA: transient ischemic attack; ASL: arterial spin labeling; PCA: posterior cerebral artery; mRS: modified Rankin scale; ICH: intracranial
hemorrhage; GOS: Glasgow Outcome Scale.
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and McNeil [21]. Statistical significance was set at α = 0:05.
All signal processing, numerical computation, and statistical
analysis were performed using the Python programming lan-
guage (version 3.6.9).

3. Results

A summary of the characteristics of the patients and raw sig-
nals during surgery is shown in Table 1. There was no signif-
icant difference between the groups except in the number of
unilateral MMDs, modified Rankin scale (mRS) score after

discharge, and postoperative GOS. Raw vital signals, such
as MBP, SCO2, and EtCO2, were also not significantly differ-
ent. A comparison of autoregulatory parameters between the
infarction group and the noninfarction group is shown in
Table 2. There were significant intergroup differences in
COx, coherence within the VLF and LF ranges, and in gain
within the LF range. Both COx and coherence were higher
in the infarction group. Gains within all frequency ranges
were also slightly higher in the infarction group. Phases
did not show any pattern between the infarction and nonin-
farction groups.

Table 2: Comparison of autoregulatory parameters between the infarction group and the noninfarction group.

Variables Infarction (N = 10) Noninfarction (N = 58) p value AUROC

COx 0:07 ± 0:07 0:01 ± 0:08 0.003 0.78

TFA result

Coherence

VLF 0:16 ± 0:05 0:13 ± 0:05 0.029 0.69

LF 0:10 ± 0:02 0:09 ± 0:02 0.037 0.68

HF 0:09 ± 0:01 0:08 ± 0:01 0.191 0.59

Gain

VLF −18:34 ± 2:57 −19:72 ± 3:70 0.077 0.64

LF −24:51 ± 2:31 −25:99 ± 4:37 0.049 0.67

HF −31:11 ± 1:95 −32:26 ± 4:68 0.147 0.61

Phase

VLF 0:21 ± 0:31 0:06 ± 0:48 0.140 0.61

LF −0:23 ± 0:25 −0:11 ± 0:38 0.140 0.61

HF 0:08 ± 0:17 0:15 ± 0:22 0.125 0.62

All data are shown as the mean ± SD in the table. COx: cerebral oximetry index; TFA: transfer function analysis; VLF: very low frequency; LF: low frequency;
HF: high frequency.
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Figure 1: AUROC according to cumulative moving-average window size. (a) COx for infarction status. (b) Coherence for infarction status.
(c) COx for hyperperfusion status. (d) Coherence for hyperperfusion status.
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To find an appropriate moving-average window size, the
AUROC values for infarction and hyperperfusion status
were calculated according to the cumulative moving-
average window size as shown in Figure 1. In terms of
infarction status, first, with a window size of 30 minutes,
the cumulative mean COx showed an AUROC of approxi-
mately 0.74 to predict infarction, and the AUROC was even
greater than 0.8 with a 40-minute window size, and at the
end of surgery, the AUROC was approximately 0.77. The
cumulative mean coherence with the 30-minute window size
shows an AUROC of greater than 0.7 and oscillates between
0.7 and 0.8 until approximately 150 minutes. As the window
size exceeds 150 minutes, the AUROC score decreases and
remains at approximately 0.68. In terms of hyperperfusion
status, both COx and coherence remained at approximately
0.6. The receiver operating characteristic curve and the bar
graph comparing the AUROC measured over the entire
surgery with the cumulative mean cases are shown in
Figure 2. To compare the result over the entire surgery with
the result of moving-average application, the method of
Hanley and McNeil was applied, and for both COx and
coherence, there was no significant difference in AUROC

compared to the result of the entire surgery, regardless of
the applied window size.

4. Discussion

In this study cohort, the AUROC for predicting postopera-
tive infarction was 0.78 when COx was calculated over the
entire length of the surgery, demonstrating that patients
with impaired CA are at postoperative risk compared with
those without impaired CA. To prevent postoperative side
effects such as infarction, it is clinically important to monitor
and control CA in real time during surgery. This study
sought the appropriate method to monitor CA in real time
by applying the concept of moving average in a cohort of
patients with MMD, discovering the optimal window size
for the moving average of COx and coherence.

Several previous studies have shown that COx is a good
indicator of CA, and autoregulatory parameters from TFA,
such as gain, phase, and coherence, are useful to detect
impaired CA [22, 23]. Similarly, we found the intuitively
plausible result that COx and coherence within the VLF
range are good indicators of the risk of postoperative
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Figure 2: ROC curve and AUROC for infarction status according to cumulative moving-average intervals. (a, c) ROC curve and AUROC
for infarction status according to cumulative mean calculation interval of COx. (b, d) The corresponding information for coherence. Two-
sided statistical comparisons were performed using the Hanley-McNeil test. ∗∗∗ denotes a p value < 0.1, and all other values have a p value
greater than 0.1.
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infarction in MMD patients, with significant differences
between the infarction group and the noninfarction group.
When COx and coherence were monitored in real time, how-
ever, they were similar to random signals, so the difference
between groups was not clearly visible, as shown in
Figures 3 and 4. While the difference between groups became

clearer as the window size of the moving average increased,
there are fatal drawbacks when a large window size was
applied to the moving average. First, monitoring is not valid
until the surgery time reached the corresponding window
size. Second, when errors such as defects in the sensor or arti-
fact entered the window, such errors are less likely to be
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Figure 3: Illustrative cases of the moving average of COx with varying window sizes. The graphs on the left are from a patient who
developed postoperative infarction, and the graphs on the right are from a patient who did not develop postoperative infarction. The
graphs at the top show real-time COx, and the graphs at the bottom show the cumulative moving average of COx. The rest are moving-
average graphs over varying window sizes.
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detected and can compromise all data within the time win-
dow. Therefore, it is necessary to find an optimal window size
that is sufficiently small.

The cumulative moving-average approach determined
the optimal window size for COx and coherence within

the VLF range to detect postoperative infarction. The win-
dow size of 30 minutes was sufficient to achieve performance
above an AUROC of 0.7 for both COx and coherence. The
results of the Hanley-McNeil test showed that there was no
statistically significant difference between analyzing the
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Figure 4: Illustrative cases of the moving average of coherence (Coh) within the VLF range with varying window sizes. The graphs on the
left are from a patient who developed postoperative infarction, and the graphs on the right are from a patient who did not develop
postoperative infarction. The graphs at the top show real-time coherence, and the graphs at the bottom show the cumulative moving
average of coherence. The rest are moving-average graphs over varying window sizes.
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entire surgical record and moving-average monitoring with a
30-minute window size in predicting postoperative infarc-
tion. This demonstrates that records do not need to be mea-
sured entirely to evaluate CA. Applying an appropriate
moving average in CA evaluation can detect the risk of post-
operative infarction in real time so that “prevention” during
the surgery rather than “prediction” after the surgery is avail-
able. Meanwhile, the practical threshold was calculated as 0.1
for both COx and coherence. Maintaining the moving-
average value of COx and coherence below the threshold
would contribute to the prevention of postoperative infarc-
tion. For the case of postoperative hyperperfusion, neither
COx nor coherence showed significant performance. In our
cohort, hyperperfusion was recorded by asterial spin labeling
MRI, and thus, if the hyperperfusion was controlled by med-
ication or blood pressure regulation so that MRI examination
was not required, it might not have been recorded according
to decision of physician. Compared to infarction, hyperper-
fusion was recorded with the bias of physicians, so postoper-
ative hyperperfusion does not appear to be detected by COx
and coherence.

While COx showed stable performance as the moving-
average window size increased, the instability of coherence
with a large moving-average window size explains its sensi-
tivity to signal-to-noise ratio (SNR). To perform TFA, power
spectral density derived from the fast Fourier transform is
needed, and as the noise intervention on signal increases,
the SNR decreases and indicators obtained from TFA can
be ambiguous [24]. Drugs and anesthetics used during the
surgical procedure of patients with MMD can cause noise
intervention on the vital signals and distortion of autoregu-
latory parameters obtained from TFA [25, 26]. As surgery
progresses and the moving-average window size increases,
more distorted values would be included into the window,
and accordingly, the performance for identifying postopera-
tive infarction appears to deteriorate. As shown in Figure 1,
however, coherence also performs as much as COx with a
moving-average window size between 30 and 60 minutes,
which concludes that there is a delay time until surgical fac-
tors fully influence SNR. To investigate this delay time, a
study on the decrease of SNR and failure of coherence mon-
itoring under drug treatment is necessary.

Several limitations of the present study should be consid-
ered. First, since this study was limited by its small sample
size (68 records) and included only patients with MMD,
there could be bias in the results. Although the performance
was statistically significant, this result is likely to be limited
to the patients in our cohort. Second, SCO2 signal from
INVOS oximeter was recorded at 0.2Hz, which is a relatively
low frequency. Thus, we were not able to perform waveform
analysis using raw signals and introduced an interpolation
technique assuming that the signal follows the cubic spline
function. Third, all the records had information about post-
operative hemorrhage and hyperperfusion, and we con-
ducted the same experiments on them; however, the
performance was not as good as that of infarction. Addition-
ally, further experiments are needed to confirm the decrease
of SNR and the failure of coherence monitoring due to sur-
gical factors, which is a remaining research task.

5. Conclusion

This study proposed a novel method to monitor CA in real
time for MMD patients to prevent postoperative infarction
using signals from NIRS and the concept of moving average.
The optimal window size for the moving average of COx and
coherence was found, enabling the prevention of postopera-
tive infarction during the surgery, rather than after the
surgery.
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