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Objectives. To investigate a deep learning reconstruction algorithm to reduce the time of synthetic MRI (SynMRI) scanning on the
breast and improve the image quality. Materials and Methods. A total of 192 healthy female volunteers (mean age: 48.1 years)
underwent the breast MR examination at 3.0 T from September 2020 to June 2021. Standard SynMRI and fast SynMRI scans
were collected simultaneously on the same volunteer. Deep learning technology with a generative adversarial network (GAN)
was used to generate high-quality fast SynMRI images by end-to-end training. Peak signal-to-noise ratio (PSNR), mean
squared error (MSE), and structural similarity index measure (SSIM) were used to compare the image quality of generated
images from fast SynMRI by deep learning algorithms. Results. Fast SynMRI acquisition time is half of the standard SynMRI
scan, and the generated images of the GAN model show that PSNR and SSIM are improved and MSE is reduced. Conclusion.
The application of deep learning algorithms with GAN model in breast MAGiC MRI improves the image quality and reduces
the scanning time.

1. Introduction

Magnetic resonance imaging (MRI) is essential for accurate
diagnosis, staging, curative effect evaluation, and prognosis
analysis of breast cancer. Conventional breast MRI includes
T1WI, T2 STIR, DWI, and DCE-MRI images to comprehen-
sively diagnose breast diseases. Quantitative magnetic reso-
nance imaging is a new MRI technology that can obtain
multiple tissue parameters (T1, T2, PD, R1, and R2) and
multiple contrast images of the same sequence and level
through one acquisition. Because of its unique advantages
such as acquisition signal uniqueness, rapid synchroniza-
tion, visualization, and multiparameter atlas, it has been
gradually applied to the diagnosis of breast cancer, especially
when T2 relaxation time has been proved to be an effective
parameter for diagnosing breast cancer [1, 2]. However,
the disadvantage of conventional breast quantitative MRI is

long scanning time, which will reduce the tolerance of
patients. At the same time, during long-time scanning, when
patients appear to involuntarily move, it is easy to produce
motion artifacts, which seriously reduces the image quality
[3]. Synthetic magnetic resonance imaging (SynMRI) tech-
nology can be used to create any contrast weighted images,
including T1-weighted, T2-weighted, and FLAIR images
based on R1 and R2 relaxation rates (inverse ratio of T1
and T2 relaxation times) and proton density (PD). Due to
the development of fast and synchronous relaxation mea-
surement methods, SynMRI has become a clinically feasible
method [4, 5]. These methods have high repeatability and
reproducibility among different suppliers. However, even
for SynMRI, the standard scanning still takes a long time.
The scanning parameters can be adjusted to speed up the
scanning, but the image quality will be lost. Therefore,
reducing the simultaneous interpreting time of breast
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MAGiC MRI and developing a new technology that is equiv-
alent to the quality of the traditional MAGiC MRI image are
the key to solving this problem.

Deep learning technology with the generative adversarial
network (GAN) is widely used to generate high-resolution
images and improve image quality. The Generator and Dis-
criminator are generated in competition and iteration, which
are very close to the real image. A previous study points out
that the GAN algorithm can improve the image quality of
FLAIR MRI and effectively reduce its granularity [6]. There-
fore, we hypothesize that GAN can generate high-quality
fast SynMRI to shorten the scan interval to half to improve
clinical efficiency.

2. Materials and Methods

2.1. Patients. This study obtained the permission of the
ethics committee of the General Hospital of Ningxia Medical
University and filled in the informed consent form for all the
participants, and all data were fully anonymized before they
were exported for research purposes.

From September 2020 to June 2021, the subjects who
underwent breast MRI examination in the Department of
Radiology of our hospital were selected as the subjects.
According to the inclusion and exclusion criteria, 192
healthy volunteers were recruited. All subjects underwent
routine breast MRI examination, standard SynMRI, and fast
SynMRI scanning sequences. The inclusion and exclusion
criteria are as follows.

Inclusion criteria are as follows: (1) healthy female vol-
unteers who were recruited—all subjects who completed
the routine breast MRI scans and breast SynMRI scans; (2)
all subjects who were over 20 years old; and (3) non-
postmenopausal patients who received magnetic MRI
images of the breast in the second week of the menstrual
cycle. Exclusion criteria are as follows: (1) those whose
SynMRI images did not meet quality standards to be used
as training targets of deep learning; (2) patients who are
allergic to contrast agents, cardiac pacemakers, and claustro-
phobic patients who have terminated MRI scans; and (3)
those with breast prosthesis, lactating, and pregnant women.

2.2. Image Quality Evaluation Criteria. MSE: mean squared
error, a measure of the degree of difference between an esti-
mated quantity and the actual quantity.

PSNR: peak signal-to-noise ratio, an objective criterion
for evaluating images, which has limitations and is generally
used as an engineering item between the maximum signal
and background noise.

SSIM: the structural similarity index measure is a mea-
sure to evaluate the similarity between two digital images.
Compared to traditional image quality measures such as
peak signal-to-noise ratio (PSNR), the structural similarity
index measure is a better measure of image quality than
the human eye can judge [7].

2.3. MRI Scan Parameters. In this study, a 3.0 T magnetic
resonance scanner (Signa Architect, GE Healthcare) and 8-
channel phased array breast dedicated coils were used to
scan patients and healthy volunteers. Volunteers were in
the prone position with the feet advanced and the breasts
on both sides naturally drooped and placed in the breast coil.
The OAx SynMRI sequence is added to the routine clinical
MR examination. The standard SynMRI scanning parame-
ters are TR = 4000, 15000, TE = 9:4, 75.5, 84.9, 151, slice
thickness 5mm, spacing 0.5mm, matrix = 320 × 256, FOV
= 32 × 32, number of slices = 24, and the scan time is 5
minutes, 12 seconds. Our fast SynMRI scanning parameters
are TR = 4000, 15000, TE = 9:2, 73.5, 82.7, 147, slice thick-
ness 5mm, spacing 0.5mm, matrix = 320 × 256, FOV = 32
× 32, number of slices = 24, and the scan time is 1 minute,
52 seconds. Other scan parameters are shown in Table 1.
Magnetic resonance image compilation (MAGiC) software
was used to retrieve the quantification images T1, T2, and
proton density (PD)—on the basis of the acquired data
and to create synthetic T1-weighted (T1W) images, T2-
weighted (T2W) images, and T2-weighted fluid-attenuated
inversion recovery (T2W FLAIR) images [8].

2.4. Model Construction. In this section, due to decreasing
the scan time of our SynMRI scan, we presented the
SRGAN-based image clarity enhancement model, which
makes scanning of images faster while ensuring clarity of
images. Superresolution generative adversarial network
(SRGAN) that we adopted from [9] is the network designed
for estimating a high-resolution and superresolution image
ISR using a low-resolution image ILR [10, 11].W ×H × C
was described as tensor of size for image ILR with C color
channels, rW × rH × rC for ISR, respectively. As shown in
Figure 1, unlike the regular generative adversarial network
(GAN), SRGAN pioneered the introduction of GAN into

Table 1: Scan parameters.

Parameters Ax T2 FLEX Ax T1 FSE Ax DWI b800 L-R Sag fs T2 Cor T2 FLEX Standard SynMRI Fast SynMRI

TR (ms) 4982 642 2517 5107 4292 4000, 15000 4000, 15000

TE (ms) 85 8 72 85 68 9.4, 75.5, 84.9, 151 9.2, 73.5, 82.7, 147

Slice thickness (mm) 5 5 5 4 4 5 5

Spacing (mm) 0.5 0.5 0.5 1 0.4 5 5

FOV 32 × 32 32 × 32 32 × 32 18 × 18 34 × 34 32 × 32 32 × 32
Number of slices 32 32 32 32 20 24 24

Scan time (min) 2 2 2 3.5 2 5 2
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the superresolution domain. The Generator’s input in
SRGAN is no longer noise, but ILR . And the structure of
the Discriminator is no different from that of a normal
GAN [11, 12]. We adopted [9] for the establishment and
architecture of the SRGAN model due to its effectiveness
in estimating high-resolution image IHR.

Involving GAN, we followed Goodfellow et al. [13] to
define a Discriminator network DθD

along with Generator
GθG

to solve the adversarial min–max problem:

min
θG

max
θD

EIHR~ptrain IHRð Þ log DθD
IHR� �� �

+ EILR~pG ILRð Þ log 1 −DθD
GθG

ILR
� �� �� �� �

:

ð1Þ

Generator contains three large modules between the
input ILR and the output ISR, as shown in Figure 2:

(I) A Conv layer with 3 × 3 kernels and 64 features
plus a ReLU layer as the activation function

(II) B-residual blocks with identical layout proposed by
Gross and Wilber [14], where each block contains
two sets of Conv layers with 3 × 3 kernels and 64
features followed by Batch Normalization layer,
plus a ReLU layer as the activation function. Each
block uses the residual connection named
Elementwise-Sum to add the block input to the
block output, except the last block. An extra resid-
ual connection that added the input of first block
to the output of last block was set for the
Elementwise-Sum of last block

(III) Two Deconv layers and a Conv layer at last, each
Deconv contains a Conv layer followed by two Pix-
elShuffler layer, plus a ReLU layer as the activation
function

The input of Discriminator is ISR or IHR, and the output
is the judgment results that tell if the input is a real image or
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Figure 1: Discriminator and Generator training flowchart.
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an artificial image. Three modules contained between input
and output are as follows:

(I) A Conv layer plus a Leaky ReLU as the activation
function

(II) Seven blocks contained repeated Conv layer plus
Leaky ReLU layer followed by BN layer. The size
of kernel in each block increased periodically from
64 to 512, with the values of strides shifts cyclically
between 2 and 1

(III) Dense fully connection layer plus Leaky ReLU layer
as activation layer followed by Dense layer plus Sig-
moid layer as activation layer at last. The role of
fully connected layer is equivalent to adjusting the
number of channels. The output of the last fully
connected layer is ðNone, 32,32,1Þ, which can be
interpreted as 1024 discriminations, after which
the 1024 results are aggregated to realize the dis-
criminations of an image

2.5. Loss Function. The widely used loss function [15] is
based on minimizing mean squared error to maximizing
peak signal-to-noise ratio:

MSE = 1
H ×W

〠
H

i=1
〠
W

j=1
X i, jð Þ − Y i, jð Þð Þ2, ð2Þ

PSNR = 10 log10
2n − 1ð Þ2
MSE

 !
: ð3Þ

However, this common loss function is not applicable to
GAN; the perceptual loss function lSR adopted by [9] is crit-
ical for the performance of SRGAN. The authors formulated
the loss function with a content loss and an adversarial loss

component:

lSR = lSRX + 10−3lSRGen: ð4Þ

lSRX denotes the content loss and 10−3lSRGen denotes the
adversarial loss.

2.5.1. Content Loss. Content loss lSRX on MSE is pixel-wised,
calculated as

lSRMSE =
1

r2WH
〠
rW

x=1
〠
rH

y=1
IHR
x,y −GθG

ILR
� �

x,y

� �2
: ð5Þ

This solution for maximizing PSNR often lacks high-
frequency content to make images overly smooth. For gen-
eral image, performance is still average; however, for
MAGiC medical images such as near grayscale image, per-
formance is below average.

Aiming for good performance on MAGiC image, VGG-
19 feature extraction network [16] was introduced. To date,
VGG-19 is still frequently used to extract image features
[17]. VGG-19 requires only a small number of iterations to
start converging and the network contains 16 Conv layers
and 3 Full connection layers. The structure of VGG-19 is
very consistent, using the 3 × 3 convolution and the 2 × 2
convergence from start to finish. The improvement of lSRMSE
is to define the VGG loss as the Euclidean distance between
the feature representation of the artificial image GθG

ðILRÞ
and the real image IHR. This is done by feeding IHR obtained
from the Generator into the VGG network and calculating
the Euclidean distance for each layer of the feature mapping:

lSRVGG/i,j =
1

Wi,jHi,j
〠
Wi, j

x=1
〠
Hi, j

y=1
ϕi,j I

HR� �
x,y − ϕi,j GθG

ILR
� �� �

x,y

� �2
:

ð6Þ

Wi,j and Hi,j represent the dimensions of the respective
feature inside the VGG network. ϕi,j is considered given to
explicit the feature-map obtained by the j-th Conv before
the i-th max-pooling layer in the VGG-19 network.

2.5.2. Adversarial Loss. The loss function of GAN is based on
the probability of the output of Generator. With adding
GAN adversarial loss, the authors hope to confuse Discrim-
inator on judging images produced by Generator:

lSRGen = 〠
N

n=1
− log DθD

GθG
ILR
� �� �

: ð7Þ

DθD
ðGθG

ðILRÞÞ represents the probability that GθG
ðILRÞ

was treated as IHR by Discriminator.

2.6. Train Process

2.6.1. Discriminator. Input the real image IHR and the artifi-
cial image GθG

ðILRÞ into the Discriminator. The loss is

Table 2: Study population characteristics.

Variable Result

Mean age (y) 48.1

Median age (y) 48

Mean diameter of mass (cm) 2:38 ± 1:61
Median diameter of mass (cm) 2.05

Table 3: Three parameters previously mentioned.

Variable MSE PSNR SSIM

PD 102.989 23.714 0.772

T1 525112.632 15.557 0.631

T2 1231.180 15.160 0.599

T1W 32.630 24.858 0.810

T2W 13.174 26.240 0.869

T2W FLAIR 13.052 26.285 0.875
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obtained from comparing the adjusting result of IHR to 1 and
GθG

ðILRÞ to 0.

2.6.2. Generator

Step 1. The artificial image GθG
ðILRÞ is obtained by passing

ILR into Generator. The loss is obtained by comparing the
discriminant result of GθG

ðILRÞ with 1. This loss reflects
whether the artificial picture generated by the Generator
can deceive the Discriminator.

Step 2. Input the real image IHR and the artificial image
GθG

ðILRÞ into the VGG feature extraction network to get
the features of two images, and the loss is obtained by com-
paring the features of GθG

ðILRÞ with those of real IHR. Notice:

a new pair of ILR and IHR is needed for training process in
Generator.

The model was implemented with PyTorch framework on
Python platform (version: 3.6.8 https://www.python.org).
Training and validation of our model were conducted on a
local computing workstation, equipped with Intel Xeon
CPU, NVIDIA Tesla V100 GPU, 64GB of RAM. Training
time by our SRGAN model was 19 hours.

2.7. Statistical Analysis. For quantitative evaluation, we cal-
culated the mean squared error (MSE, equation (2)), peak
signal-to-noise ratio (PSNR, equation (3)), and structural
similarity index measure (SSIM, equation (8)) [15] for both

numbers and images such as PD, T1, T2, T1W, and T2W.
MSE in the image algorithm processes the mean value of
the sum of squares of the difference between the image pixel
value and the original pixel. PSNR is an objective standard
for evaluating images based on MSE with a simple and fast
algorithm. The PSNR shows how close the image recon-
struction is to the source image on a logarithmic scale, and
PSNR is one of the basic denoising metrics to validate the
proposed algorithm. The evaluation metric SSIM analyzes
the viewing distance, edge information between the refer-
ence and the test images, changed and preserved edges, tex-
tures, and structural similarity of the images. The range of
SSIM is defined as 0 to 1. The more similar the two images
are, the closer the value of SSIM is to 1. These calculation
metrics can reflect the similarity of estimated high-
resolution images and actual high-resolution images very
effectively and accurately [15].

SSIM =
2μxμy + c1
� �

σxy + c2
� �

μ2x + μ2y + c1
� �

σ2x + σ2y + c2
� � : ð8Þ

μx is the average of x. μy is the average of y. σ
2
x is the var-

iance of x. σ2y is the variance of y. σxy is the covariance of x

and y. c1 = ðk1LÞ2, c2 = ðk2, LÞ2 are the constant used to
maintain stability, which k1 = 0:01, k2 = 0:03, and L is the
dynamic range of the pixel values, in general L = 255.
Because not all the datasets were normally distributed when
analyzed by the Shapiro-Wilk test, we used the
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nonparametric Wilcoxon signed rank test to compare the
quantitative and qualitative scores. Two-way P value less
than 0.05 was considered statistically significant. All the sta-
tistical analyses were performed using R (version: 4.1.0,
https://www.rproject.org).

2.8. Ethics Statement. The study was conducted in accor-
dance with the Declaration of Helsinki (as revised in 2013).
This retrospective study was approved by the medical ethics
committee of General Hospital of Ningxia Medical Univer-
sity (No. KYLL-2021-280), and written informed consent
was waived due to the retrospective nature of the study.

3. Results

A total of 192 healthy volunteers were examined. The dem-
ographics of the study participants are summarized in
Table 2. The three parameters previously mentioned (MSE,
PSNR, and SSIM) of PDmap, T1map, T2map, T1W, T2W,
and T2W Flair are shown in Table 3.

Figures 3–5 compare the results of GAN Fast MAGiC
with those of regular MAGiC in terms of three quantitative

parameters (PD, T1, and T2) and three weighted images
(T1W, T2W, and T2W FLAIR), respectively, and the data
for the generated images are obtained from the quantitative
analysis of the table.

Our experimental data and the output images clearly
show that the quality of our GAN Fast MAGiC MRI images
is improved compared to that of the conventional MAGiC
images, especially in T1W, T2W, and T2WFLAIR parame-
ters. The PSNR metrics for T1W, T2W, and T2WFLAIR
images improved from a median value of approximately 24
to 28, approximately 23 to 27, and approximately 24 to 27,
respectively, and SSIM also improved approximately 0.1,
0.2, and 0.2, respectively. The improvement in both param-
eters indicates that GAN Fast MAGiC images have
improved in visual error compared to the traditional
MAGiC method and in comparing structural similarity con-
sistent with Human Visual System (HVS) characteristics.
Although the performance in quantitative parameters such
as PD, T1, and T2 is the same as that of regular MAGiC,
the improvement in weighted images can already show that
the GAN Fast MAGiC model can output the same or even
higher quality MRI images while reducing the scan time by
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half. A comparison of standard SynMRI and GAN images
from the same patient is shown in Figure 6.

4. Discussion

The SynMRI technology scans to obtain the relaxation time
of the tissue, and the quantitative information of proton
density reflects the signal difference and pathological infor-
mation of different tissues, which is of great significance
for the identification of benign and malignant breast lesions.
However, the disadvantage of SynMRI is that it takes a long
time to scan in to obtain high-quality images and requires
the patient to remain stationary for a long time, which is a
challenging task for patients with breast cancer. Therefore,
it is a great challenge to balance the scan time and image
quality and the accuracy of the diagnosis.

For the moment, some clinical studies have applied deep
learning technology to MRI of the head [18, 19] and abdo-
men [20], and these studies have yielded good results.
According to research, the impact of GAN on image quality
and its potential to reduce scan time in SynMRI of breast
diseases has yet to be fully investigated. Our study compared
standard SynMRI to fast SynMRI in a sample of bilateral
breasts in healthy volunteers and showed that our experi-
mental data and output images clearly demonstrated the
improved quality of our GAN fast SynMRI images com-
pared to standard SynMRI, especially in T1W, T2W, and
T2WFLAIR images. The MRI scanning sequence, parame-
ters, and scanning methods of healthy volunteers in this
study were consistent with those of clinical breast cancer
patients. So this result also applies to breast cancer patients.
For patients with breast lesions, higher-quality SynMRI
images can help to more accurately determine whether the
tumor is benign or malignant. The metrics for T1W, T2W,
and T2WFLAIR images improved from a median value of
about 24 to 28, about 23 to 27, and about 24 to 27, respec-
tively, and SSIM also improved by about 0.1, 0.2, and 0.2,
respectively. The improvement in both parameters indicates
that GAN Fast MAGiC images have improved in terms of
visual error compared to the traditional MAGiC method
and in terms of comparative structural similarity consistent
with the Human Visual System (HVS). Although the perfor-
mance in quantitative parameters such as PD, T1, and T2 is
about the same as that of standard SynMRI, the improve-
ment in weighted images can already indicate that the
GAN model can output the same or even higher quality
MRI images with half the scan time. The use of GAN algo-
rithm in scanning SynMRI images of breast cancers is an
innovative application of artificial intelligence, and our
results proved that it has the potential to improve image
quality, object detection accuracy, and radiologist confi-
dence, as well as simultaneously reduce scan time to improve
the patient tolerance of SynMRI examination on the breast.
In conclusion, GAN algorithms can output the same or even
higher quality MRI images with half the scan time of stan-
dard SynMRI, which facilitates the clinical application of
SynMRI in the diagnosis of breast diseases and improves
the efficiency of examinations.

This study has certain limitations: (1) the potential path-
ological and clinical conditions of the research subjects are
different, and there is no comparison between conventional
breast SynMRI images and deep learning reconstructed
images for the actual diagnosis of breast diseases; and (2) it
is a single-center, single-type research, which has certain
limitations and lacks external verification.
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