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Subcellular localization attempts to assign proteins to one of the cell compartments that performs specific biological functions.
Finding the link between proteins, biological functions, and subcellular localization is an effective way to investigate the general
organization of living cells in a systematic manner. However, determining the subcellular localization of proteins by traditional
experimental approaches is difficult. Here, protein–protein interaction networks, functional enrichment on gene ontology and
pathway, and a set of proteins having confirmed subcellular localization were applied to build prediction models for human
protein subcellular localizations. To build an effective predictive model, we employed a variety of robust machine learning
algorithms, including Boruta feature selection, minimum redundancy maximum relevance, Monte Carlo feature selection, and
LightGBM. Then, the incremental feature selection method with random forest and support vector machine was used to
discover the essential features. Furthermore, 38 key features were determined by integrating results of different feature selection
methods, which may provide critical insights into the subcellular location of proteins. Their biological functions of subcellular
localizations were discussed according to recent publications. In summary, our computational framework can help advance the
understanding of subcellular localization prediction techniques and provide a new perspective to investigate the patterns of
protein subcellular localization and their biological importance.

1. Introduction

Protein subcellular localizations are connected to protein
functions and associated with multiple biological and patho-
logical conditions. Generally, the subcellular localizations in
a eukaryotic cell can be divided into 12 groups: (1) chloro-
plast, (2) cytoplasm, (3) cytoskeleton, (4) endoplasmic retic-
ulum, (5) extracell, (6) Golgi apparatus, (7) lysosome, (8)
mitochondria, (9) nucleus, (10) peroxisome, (11) plasma
membrane, and (12) vacuole [1]. Specific biological pro-
cesses can only happen in certain region of the cells: for
instance, the orchestrating cellular energy production

mainly happens in the mitochondria and is mediated by
mitochondrial region specific proteins [2]. The proteins
and related biological functions of subcellular regions are
regarded as a coordinated whole. Therefore, finding connec-
tions among proteins, biological functions, and subcellular
localizations is an effective way to systematically study the
organization of a living cell as a whole.

Traditionally, the most effective and widely used method
to study subcellular localizations is labelling, either by
immunolabeling or tagging with a green fluorescent protein
[3, 4]. However, the method is not only expensive but also
time-consuming. Therefore, with the development of
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computational biology, more and more statistical methods
have been developed to study the subcellular localizations.
Machine learning models have been applied to connect
genes, Gene Ontology (GO) terms, and KEGG pathways to
predict subcellular localizations. Systematic analyses on the
essential genes and related biological functions (Gene Ontol-
ogy and KEGG pathways) associate subcellular localization
with potential biological significance [5–7]. In most previous
analyses, researchers focused more on machine learning
models. Multiple machine learning models such as support
vector machine (SVM) [8], random forest (RF) [9], and ran-
dom walk [10] have been applied to identify the key factors
affecting the subcellular localization and specific biomarkers
for each subcellular location.

Early in 2001, Hua and Sun from Tsinghua University
have described an SVM-based pattern recognition method
for subcellular localization prediction [11]. Later in 2006,
integrating different SVMs, a predictor for five pre-
classified subcellular clusters (i.e., secretory pathway, cyto-
plasm, nucleus, mitochondrion, and chloroplast) has been
built, implying that machine learning models may be effec-
tive for subcellular localization prediction [12]. In 2010, a
general protein localization prediction model with various
new localization subcategories and capabilities for all pro-
karyotes was presented [13]. Further in 2017, a deep-learn-
ing-model-based subcellular localization prediction model
was established using recurrent neural network architecture
with optimized MCC as 0.8345 [14]. Therefore, as we have
described above, computational approaches using machine
learning and deep learning models have been widely
reported and confirmed to be effective for subcellular local-
ization prediction. However, the feature selection procedure
is a long-neglected part for machine-learning-model-based
subcellular localization analyses. The integration of feature
importance evaluation and incremental feature selection
(IFS) [15] can help us identify the optimized candidate fea-
tures for subcellular localization prediction based on
machine learning models.

Here, in this study, we applied multiple feature selection
methods, including minimum redundancy maximum rele-
vance (mRMR) [16], Monte Carlo feature selection (MCFS)
[17], and light gradient boosting machine (LightGBM) [18],
to optimize the candidate features for machine-learning-
model-based subcellular location prediction. The results
can not only help us compare and screen out the most effec-
tive feature selection methods for machine learning model
application but also systematically evaluate the importance
of regulatory factors associated with subcellular localization,
exploring the potential biological significance of subcellular
localization.

2. Materials and Methods

2.1. Dataset. The dataset employed in the present study was
obtained from the Swiss-Prot [19] (release 54.0) database by
searching for proteins with the annotation “subcellular loca-
tion.”At first, 53,427 protein sequences were acquired. Proteins
with sequence length less than 50 amino acids and lengths
greater than 5000 amino acids were filtered away, and proteins

that included unknown amino acid abbreviation, such as X,
were also removed. In addition, protein sequences that have
high similarity were excluded by CD-HIT program [20] with
a cut-off threshold of 0.7. Finally, only human proteins were
chosen for further investigations. After these processing opera-
tions, 4986 protein sequences were left. They were classified into
16 categories, as listed in Table 1. The number of proteins in
each category is also provided in this table.

2.2. Feature Representation. In this study, each protein had
one group of network features and two groups of functional
features, where the network features were derived from a
protein–protein interaction (PPI) network and functional
features were about functional terms (GO terms and KEGG
pathways). These features were produced through the fol-
lowing steps.

2.2.1. Network Features. The network features were extracted
from a PPI network. Such PPI network was constructed using
the PPI interactions acquired from STRING (version 9.0) [21].
These interactions include verified and predicted protein
interactions. 20770 proteins were treated as nodes in the PPI
network, and there was an edge between two proteins once
they can interact with each other. Clearly, each edge in the net-
work indicated a PPI. In addition, each PPI in STRING is
assigned a confidence score with range between 0 and 1, indi-
cating the strength of the PPI. Such score was assigned to the
corresponding edge as its weight. The adjacent matrix of this
network was used to extract network features of a protein, that
is, each row of the adjacent matrix was assigned to the corre-
sponding protein as its feature vector. Accordingly, each pro-
tein was represented by 20770 network features.

2.2.2. Functional Features-GO Enrichment Scores. GO term
is a key annotation information for proteins, indicating the
essential properties of proteins. Here, we used the enrich-
ment theory [22] to quantify the relationship between a pro-
tein and all GO terms, called GO enrichment score. For a
given protein p, let PðpÞ denote the protein set consisting
of p and its direct neighbors in the PPI network constructed
above. Its GO enrichment score to one GO term GOi is
defined as the −log10 of the P value on PðpÞ and the protein
set containing proteins annotated by GOi. 20681 GO terms
were used in this study, inducing 20681 GO enrichment
scores for each protein.

2.2.3. Functional Features-KEGG Enrichment Scores. Similar
to GO enrichment score, we also applied enrichment theory
[22] to KEGG pathways, inducing KEGG enrichment scores.
For a protein p, its KEGG enrichment score to one KEGG
pathway Pathwayi is defined as the −log10 of the P value
on PðpÞ and the protein set containing proteins in Pathwa
yi. 297 KEGG pathways were considered, which induced
297 KEGG enrichment scores for each protein.

By combining all above network and functional features,
each protein was encoded by 41748 (20770 + 20681 + 297)
features. These features were deeply analyzed in this study
and essential features which can efficiently predict subcellu-
lar locations of proteins were extracted by multiple feature
selection methods.
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2.3. Boruta Feature Filtering. Lots of network and functional
features were employed to represent proteins. Clearly, a
small proportion of them are highly related to the prediction
of protein subcellular locations. A deep analysis on these fea-
tures was necessary. Considering the huge number of fea-
tures, we first employed Boruta feature selection method
[23] to exclude irrelevant features.

The Boruta feature selection method [23] can choose
important features that are significantly relevant to target
labels in a wrapper manner on the basis of the random forest
(RF) algorithm. Boruta feature filtering retains important
features iteratively by comparing the feature importance
between the original features and the shuffled features. This
method involves three steps: (i) copying and then shuffling
the original data to yield shadow features; (ii) training the
RF model on the dataset by appending the shuffled data to
the original one, and the importance score such as z-score
of each feature is calculated; and (iii) the importance score
of each original feature is evaluated, and the original features
achieving significantly lower importance than the shuffled
ones are removed. Through repeating the above steps, the
Boruta approach obtains related features.

The Boruta program that we used in this study was
acquired from a public web site (https://github.com/scikit-
learn-contrib/boruta.py) [24], and it was executed with the
default parameters.

2.4. Feature Ranking Algorithm. Although irrelevant features
were filtered by the Boruta method and relevant features
were retained, the selected features were still too many to
conduct further investigation. In view of this, we further
analyzed the remaining features with the following three fea-
ture ranking algorithms: mRMR [16], MCFS [17], and
LightGBM [18].

2.4.1. mRMR. The mRMR approach allows ranking features
according to their importance on the basis of the following
assumptions. On the one hand, the mRMR considers fea-
tures that have the high relevance to the labels are impor-
tant. On the other hand, features that have the low
redundancy to others are also important. Thus, mRMR sorts
features by both considering the conditions of minimum
redundancy to other features and maximum relevance to
labels. The obtained feature list was called mRMR feature list
in this study. Features with high ranks are crucial for dis-
criminating the labels in subsequent model building. This
study adopted the mRMR program obtained from http://
home.penglab.com/proj/mRMR/. Default parameters were
used.

2.4.2. MCFS. The MCFS is a tree-based feature selection
algorithm that randomly takes features from the original
data multiple times and then trains a series of decision trees
using samples consisting of these features. The importance
of one feature is evaluated on the basis of the number of
times the feature appears on these tree models and the clas-
sification accuracy. To qualify such importance, MCFS com-
putes the relative importance (RI) score for each feature.
Accordingly, features were ranked in the decreasing order
of their RI scores. The obtained list was termed as MCFS fea-
ture list. In this study, we downloaded the MCFS program
from https://home.ipipan.waw.pl/m.draminski/mcfs.html
and executed it using default parameters.

2.4.3. LightGBM. The LightGBM is a gradient boosting deci-
sion tree- (GBDT-) based ensemble learning algorithm that
processes data with large sample size and various features
using two new methods: Gradient-based one-side sampling
and exclusive feature bundling, improving computing speed
and ensuring model accuracy. The importance of a feature is
measured by the total number of times that the feature is
involved in the trees. Investigated features are ranked in a
list, called LightGBM feature list in this study. The program
of LightGBM was retrieved from https://lightgbm
.readthedocs.io/en/latest/, which was performed using
default parameters.

2.5. Incremental Feature Selection. Three feature lists were
generated by three feature ranking algorithms, IFS method
[15] was applied to each list to extract essential features from
them, which is a feature selection method that can determine
the optimal number of features in an iterative way. First, the
IFS creates a series of subsets from a ranked feature list (e.g.,
the mRMR feature list). For example, when the step size is
set to 1, the first feature subset is made up of the top-
ranked one feature, the second feature subset contains the
top-ranked two features, and so on. Then, the IFS trains a
classifier on each feature subset based on one classification
algorithm (e.g., RF) and tests it through 10-fold cross-
validation [25]. Moreover, the feature subset on which the
classifier provides the highest evaluation measurement, such
as Matthews correlation coefficient (MCC) [26] (please refer
to Section 2.8), is regarded as the optimal feature subset.
And the classifier is called as the optimal classifier.

Table 1: Number of proteins in each category.

Index Category Number of proteins

Class 1 Biological membrane 1487

Class 2 Cell periphery 35

Class 3 Cytoplasm 506

Class 4 Cytoplasmic vesicle 70

Class 5 Endoplasmic reticulum 190

Class 6 Endosome 25

Class 7 Extracellular space or cell surface 649

Class 8 Flagellum or cilium 3

Class 9 Golgi apparatus 98

Class 10 Microtubule cytoskeleton 48

Class 11 Mitochondrion 345

Class 12 Nuclear periphery 33

Class 13 Nucleolus 112

Class 14 Nucleus 1285

Class 15 Peroxisome 46

Class 16 Vacuole 54

Total 4986
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2.6. Classification Algorithm. According to the IFS method,
one classification algorithm was necessary. This study tried
two classic classification algorithms: RF [27] and SVM
[28]. Their brief descriptions were as follows.

2.6.1. Random Forest. RF [27, 29–33] is an ensemble learning
algorithm that builds a classifier on the basis of a number of
tree classifiers. In RF, the label of a predicted sample is
decided through aggregating votes from the tree classifiers.
Of note, the final consensus outcome is usually relied on
the voting of all trees. With the goal of avoiding overfitting
and boosting the model robustness, the diversity of decision
trees is uniform in RF. To quickly implement RF, the pack-
age in Scikit-learn [34] was adopted. Default parameters
were employed to execute this package, where the number
of decision trees was 100.

2.6.2. Support Vector Machine. SVM is based on the statisti-
cal learning theory [28, 35, 36]. It can guarantee that the
solution is the global optimal solution rather than the local
minimum, which determines the SVM method to have bet-
ter generalization ability to unknown samples. SVM is aimed
at finding a hyperplane that can locate sample points of dif-
ferent classes in the training set on both sides of the plane
and requires the blank area on both sides to be maximum.
In the present study, the tool “SMO” in Weka [37] was used,
which implement the SVM mentioned above. Default
parameters were used, where kernel was a polynomial func-
tion, and regularization parameter C was set to 1.0.

2.7. Synthetic Minority Oversampling Technique. As shown
in Table 1, the dataset utilized in this study had unbalanced
sample sizes between different classes. The classifier directly
built on such dataset may produce bias. In view of this, the
synthetic minority oversampling technique (SMOTE) [38]
method was used to balance the sizes of categories. It itera-
tively generates new samples of the minor categories until
the number of samples in these categories is equal to that
in the major category. The well-balanced data processed by
SMOTE can effectively enhance the performance of classi-
fiers. In the present study, the tool “SMOTE” in Weka [37]
was employed. Default parameters were adopted.

2.8. Evaluation Metrics. In this study, the predictive perfor-
mance of each classifier was assessed by 10-fold cross-
validation [25], and the MCC [26] was adopted as the key
measurement. MCC is a widely used measurement that
scales between −1 and+1; +1 is achieved when the classifica-
tion model is perfect, and−1 is achieved when the model is
completely wrong. Here, we used a multiclass version pro-
posed by Gorodkin [39] as the data we analyzed consisted
of 16 categories. The MCC can be calculated below:

MCC = cov X, Yð Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

cov X, Xð Þ cov Y , Yð Þp
, ð1Þ

where cov ð⋅ , ⋅Þ represents the covariance of two matrices, X
is a 0–1 matrix indicating the predicted category of each

sample, and Y is also a 0–1 matrix representing the actual
categories of all samples.

In addition, the accuracy on each category and overall
accuracy (ACC) were also calculated. The accuracy on one
category was defined as the proportion of correctly classified
samples in this category, whereas ACC was the proportion
of correctly classified samples.

3. Results

In this study, we designed a computational framework on
the basis of some machine learning approaches for the iden-
tification of human protein subcellular locations. The whole
procedure is shown in Figure 1. The results of feature selec-
tion and model evaluation are described in this section.

3.1. Results of Boruta and Feature Ranking Methods. As
mentioned in Section 2.2, for each protein, it was repre-
sented by a large number of network features, functional fea-
tures (KEGG enrichment scores), and functional features
(GO enrichment scores). We first applied the Boruta method
to discard irrelevant features. As a result, a total of 4773 fea-
tures were retained, which are listed in Table S1. Within
these features, the numbers of network features, functional
features (KEGG enrichment scores), and functional
features (GO enrichment scores) were 399, 151, and 4223,
respectively. It was obvious that functional features (GO
enrichment scores) dominated in the selected features
(∼88%). Next, for these 4773 features, mRMR, MCFS, and
LightGBM were followed to analyze their importance.
Three ranked feature lists were produced, as listed in
Table S1.

3.2. Results of the IFS Method. On the basis of LightGBM,
mRMR, and MCFS feature lists, the IFS method was exe-
cuted. A number of feature subsets were generated with a
step size of 1. For each feature subset, RF and SVM classifiers
were trained individually using samples composed of these
feature subsets, and their performance was evaluated by
10-fold cross-validation. The evaluation results of RF and
SVM classifiers with different numbers of features, including
MCC, ACC, and accuracy on each category, are listed in
Table S2. For easy visualization, we plotted the IFS curves
for different feature lists and each classification algorithm,
as shown in Figures 2–4.

For the LightGBM feature list, the RF obtained the high-
est MCC of 0.838 when using the top 2675 features, whereas
the SVM achieved the maximum MCC using the top 4759
features with MCC of 0.851 (Figure 2). For the MCFS feature
list, the highest MCC of RF was 0.836 when using the top
4669 features, and the SVM reached the highest MCC of
0.852 when the top 4730 features were used (Figure 3). As
for the mRMR feature list, RF and SVM generated the high-
est MCC of 0.835 and 0.852 when top 2989 and 4747 fea-
tures were adopted, respectively (Figure 4). Thus, we can
construct optimal RF and SVM classifiers from each feature
list using these features. Their performance of each category
is shown in Figure 5(a). The six optimal classifiers achieved
an ACC of 1 in identifying cell periphery, flagellum or
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cilium, Golgi apparatus, microtubule cytoskeleton, nuclear
periphery, peroxisome, and vacuole. In terms of perfor-
mance on the three feature lists, RF performed worse than
SVM in distinguishing biological membrane, but outper-
formed SVM in distinguishing nucleus. Moreover, the accu-
racies in distinguishing each category are almost higher than
0.8, indicating that the feature subsets that we identified
from three feature lists were capable of distinguishing sub-
cellular sites, and the performance of the optimal RF and
SVM was extremely high and similar.

Although several optimal classifiers were built as previ-
ously discussed, their complexities were high due to the large
number of features included. We thoroughly checked the per-
formance of RF and SVM on different feature subsets for each
feature list in order to develop classifiers with lower complex-
ity. Six classifiers using fewer features can be constructed,
where the RF used the top 76 (for LightGBM feature list),
484 (for MCFS feature list), and 46 (for mRMR feature list)
features and the SVM adopted the top 1027 (for LightGBM
feature list), 1448 (for MCFS feature list), and 1431 (for
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Figure 1: Entire procedures for constructing and evaluating protein subcellular location prediction models. Human proteins and their
subcellular location information are retrieved from Swiss-Prot. Each protein is represented by three feature groups: network features,
functional KEGG features, and functional GO features. All features are analyzed by Boruta and mRMR, MCFS, and LightGBM methods,
resulting in three ranked feature lists. These lists are fed into the IFS method one by one, incorporating two classification algorithms, to
build efficient models and extract essential features. Thirty-eight essential features are selected on the basis of the feature integration rules.
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mRMR feature list) features. The MCC values yielded by these
classifiers are also marked in Figures 2–4. It can be observed
that although the performance of these classifiers fell short of
the above-mentioned optimal classifiers, their MCC values
stayed consistent at around 0.8, demonstrating that they still
performed well with fewer features. The accuracies evaluated
by these classifiers under each subcellular location are pro-
vided in Figure 5(b). The accuracies of six models in cell
periphery, flagellum or cilium, and peroxisome are 1. There

is not much of a difference from the above optimal classifiers,
suggesting that the ability of these classifiers to discriminate
subcellular sites using fewer features is still strong. This fact
also implied that features used in these classifiers were more
essential than other features in the optimal feature subsets.
Furthermore, considering that the RF outperformed the
SVM using a small number of features, we chose the top 76,
484, and 46 features from the LightGBM, MCFS, and mRMR
feature lists for the follow-up analysis.

(76, 0.832) (4759, 0.851)
(1027, 0.800)
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Support vector machine

Figure 2: Results of the IFS method with RF and SVM in the LightGBM feature list. The highest MCC values for RF and SVM are 0.838 and
0.851, respectively. RF and SVM can provide quite high performance when much less features are used (76 for RF and 1027 for SVM).
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Figure 3: Results of the IFS method with RF and SVM in the MCFS feature list. The highest MCC values for RF and SVM are 0.836 and
0.852, respectively. RF and SVM can provide quite high performance when much less features are used (484 for RF and 1448 for SVM).
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In summary, we identified the optimal feature subsets
and constructed the optimal classifiers on different ranked
features lists when using the IFS method with RF and
SVM. Taking into account the computational efficiency
and the number of features, the feature subsets used to con-
struct RF classifiers with a little lower performance were
applied as biomarker sets for the next step of biological
analysis.

3.3. Results of Feature Integration. Considering the different
ranks of each feature in three feature lists, we gave an inte-
gration on these ranks to further identify essential features.
Here, we only considered the features used to construct RF
classifiers with fewer features and a little lower performance,
i.e., top 76, 484, and 46 features from the LightGBM, MCFS,
and mRMR feature lists, respectively. We used the following
integration rules to rank these features:

(1) Number of selections for each feature by three fea-
ture selection methods

(2) The highest rank of the feature selected by three fea-
ture selection methods

(3) The averaged rank of the feature selected by three
feature selection methods

In this step of the analysis, the top 38 key features were
eventually selected, which are listed in Table 2. The biologi-
cal functions of these 38 features in subcellular localization
would be detailed in Section 4.

4. Discussion

Here, we applied three feature selection methods to optimize
the candidate features for predicting protein subcellular

locations. To evaluate the performance of each feature selec-
tion method, we applied RF and SVM in the IFS method.
With accepted MCC value based on a small number of fea-
tures, some features were selected using the performance of
RF. 38 features were screened by the feature integration
rules, as listed in Table 2.

Among the 38 optimized features, 15 features with six
genes and nine GO terms or KEGG pathways were identified
by two methods. As the first predicted gene, PEX5
(ENSP00000407401) has been shown to be associated with
spatiotemporal contacts between peroxisomes and lipid
droplets [40], indicating that this gene contributes to the
subcellular localization of peroxisomes. The next predicted
gene is SUMO2 (ENSP00000405965), a ubiquitin-like pro-
tein regulating covalent attachment via an isopeptide bond
to its substrates [41, 42]. The subcellular location of SUMO2
has shown to be identical for specific biological functions; on
the contrary, the activation and inhibition of SUMO2 can
reflect its specific subcellular distribution patterns [41], indi-
cating its prediction capacity. The next predicted gene
BCCIP (ENSP00000357748) has been shown to be essential
for p21 protein nuclear localization [43], validating our
prediction. The other three genes in our list predicted by
multiple methods are DDX18 (ENSP00000263239), GRK3
(ENSP00000317578), and CYC1 (ENSP00000317159).
According to recent publications, these three genes have
been directly connected to nucleus cytoplasm [44], mem-
brane structure [45], and subcellular localization of
NADPH-cytochrome P450 enzyme [46].

As for the nine remaining GO or KEGG terms, all func-
tional description terms have also been connected to specific
subcellular localization. Six GO or KEGG terms were
directly connected to specific subcellular locations or organ-
elles: lysosome (hsa04142), nucleoplasm (GO:0005654),
organelle membrane (GO:0031090), integral component of
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Figure 4: Results of the IFS method with RF and SVM in the mRMR feature list. The highest MCC values for RF and SVM are 0.835 and
0.852, respectively. RF and SVM can provide quite high performance when much less features are used (46 for RF and 1431 for SVM).
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membrane (GO:0016021), extracellular space (GO:0005615),
and endoplasmic reticulum membrane (GO:0005789).
Therefore, these six biological function description terms
are effective features for subcellular localization. As for the
remaining three features, amino sugar and nucleotide sugar
metabolism (hsa00520) occurs mainly in the cytosol, involv-
ing multiple trans-membrane transportation from the cyto-
sol to the nucleus. Therefore, it is also reasonable to use
such sugar metabolism to recognize cytosol and nucleus
[47]. Similarly, glycolysis/gluconeogenesis (hsa00010) is
another pathway associated with cytosol regions [48], vali-
dating our prediction. The remaining feature predicted by

multiple method turns out to be Vibrio cholerae infection
(hsa05110). Five core regulatory subcellular regions includ-
ing the cytoplasm, periplasm, inner membrane, outer mem-
brane, and extracellular space have been shown to be
specifically associated with our predicted Vibrio cholerae
infection [49], reflecting its unique association with subcel-
lular localization.

For the remaining features selected by only one method,
11 predicted GO terms or KEGG pathways directly refer to
specific subcellular localization, including intrinsic compo-
nent of membrane (GO:0031224), intracellular organelle
lumen (GO:0070013), envelope (GO:0031975), microtubule
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Figure 5: Performance of different classifiers on each category. (a) Performance of the optimal classifiers constructed from three feature lists
on 16 categories. (b) Performance of the classifiers using much less features from three feature lists on 16 categories.
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bundle formation (GO:0001578), integral component of
plasma membrane (GO:0005887), nucleus (GO:0005634),
plasma membrane (GO:0005886), obsolete microtubule
organizing center part (GO:0044450), retrograde transport,
endosome to Golgi (GO:0042147), obsolete intracellular part
(GO:0044424), and microtubule organizing center
(GO:0005815). Therefore, these 11 features have been con-
firmed to be directly associated with subcellular localization,
validating our prediction.

As for the remaining features, two of them are also func-
tional descriptors: (1) oxidoreductase activity (GO:0016491)

describes the oxidoreductase associated biological processes.
Considering that oxidoreductase activity has been shown to
be connected with the mitochondrion [50, 51], it is reason-
able to speculate that such feature may be connected to
mitochondrion subcellular localization. (2) Aerobic respira-
tion (GO:0009060) is another predicted feature only by
mRMR. Considering that aerobic respiration is associated
with the mitochondrion, this feature can also help us localize
subcellular regions, validating our prediction.

The other nine features are all proteins predicted by
MCFS. According to recent publications, such genes can be

Table 2: Thirty-eight key features obtained by feature integration rules.

Rank Feature name Description

1 ENSP00000407401 PEX5 gene: peroxisomal biogenesis factor 5

2 hsa04142 Lysosome

3 GO:0005654 Nucleoplasm

4 GO:0031090 Organelle membrane

5 GO:0016021 Integral component of membrane

6 ENSP00000405965 SUMO2 gene: small ubiquitin-like modifier 2

7 ENSP00000357748 BCCIP gene: BRCA2 and CDKN1A interacting protein

8 GO:0005615 Extracellular space

9 hsa00520 Amino sugar and nucleotide sugar metabolism

10 ENSP00000263239 DDX18 gene: DEAD-box helicase 18

11 GO:0005789 Endoplasmic reticulum membrane

12 ENSP00000317578 GRK3 gene: G protein-coupled receptor kinase 3

13 ENSP00000317159 CYC1 gene: cytochrome C1

14 hsa05110 Vibrio cholerae infection

15 hsa00010 Glycolysis/gluconeogenesis

16 GO:0031224 Intrinsic component of membrane

17 GO:0070013 Intracellular organelle lumen

18 ENSP00000346725 PES1 gene: pescadillo ribosomal biogenesis factor 1

19 GO:0031975 Envelope

20 ENSP00000390722 SLC25A17 gene: solute carrier family 25 member 17

21 ENSP00000328854 NOC4L gene: nucleolar complex associated 4 homolog

22 GO:0001578 Microtubule bundle formation

23 GO:0005887 Integral component of plasma membrane

24 ENSP00000264279 NOP58 gene: NOP58 ribonucleoprotein

25 GO:0016491 Oxidoreductase activity

26 ENSP00000380982 PUM3 gene: Pumilio RNA binding family member 3

27 GO:0005634 Nucleus

28 ENSP00000371101 NOL10 gene: nucleolar protein 10

29 GO:0005886 Plasma membrane

30 GO:0044450 Obsolete microtubule organizing center part

31 ENSP00000244230 MPHOSPH10 gene: phase phosphoprotein 10

32 GO:0042147 Retrograde transport, endosome to Golgi

33 ENSP00000408017 /

34 GO:0009060 Aerobic respiration

35 GO:0044424 Obsolete intracellular part

36 ENSP00000402733 /

37 GO:0005815 Microtubule organizing center

38 GO:0044451 Obsolete nucleoplasm part
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connected to specific subcellular locations with specific bio-
logical significance. For example, (1) PES1
(ENSP00000346725) encodes a specific nuclear protein [52]
that can be localized on telomerase [53]; (2) SLC25A17
(ENSP00000390722) is a functional gene regulating the
physical functions of peroxisome and located in the same
organelle [54]; (3) NOC4L (ENSP00000328854), NOP58
(ENSP00000264279), and NOL10 (ENSP00000371101) are
three nucleolar complex associated proteins with specific
subcellular localization around the nucleus [55]; (4) PUM3
(ENSP00000380982) is a functional DNA and mRNA bind-
ing protein that is mainly localized in the nucleus region
[56], with specific subcellular location; and (5)MPHOSPH10
(ENSP00000244230) regulating the pre-18S ribosomal RNA
processing is observed to be mainly distributed in the
nucleus and cytosol [57]. As for the remaining two Ensembl
protein IDs (ENSP00000408017, ENSP00000402733), no
genes can be directly annotated. However, both of them have
been shown to be potential scaffold proteins, which indicate
that they may be distributed in the cytosol.

As discussed above, all the top 38 features have been
shown to be associated with subcellular localization, validat-
ing the reliability of our findings.

Furthermore, according to our analyses, all three
methods have similar number of selected features (17 for
LightGBM, 19 for MCFS, and 17 for mRMR). For each fea-
ture selection method, the average rank of the 38 selected
features in their respective feature lists was calculated. The
features identified by mRMR had the lowest averaged rank-
ing (16.94) compared with the other two methods (102.05
for MCFS and 19.35 for LightGBM). Among the 15 features
identified by more than one feature selection methods, all
three methods identified 10 features (66.7%), reflecting the
consistency of multiple feature selection methods.

Finally, considering that there are some direct subcellu-
lar location features such as nucleoplasm (GO:0005654) with
high reliability to connect with specific subcellular location,
we summarized the number of GO or KEGG terms directly
describing subcellular locations and their proportions: 12/38
for LightGBM (lysosome, nucleoplasm, organelle mem-
brane, integral component of membrane, extracellular space,
endoplasmic reticulum membrane, intrinsic component of
membrane, microtubule bundle formation, nucleus, obsolete
microtubule organizing center part, retrograde transport-
endosome to Golgi, obsolete intracellular part, and microtu-
bule organizing center), 1/38 for MCFS (lysosome), and 9/38
for mRMR (nucleoplasm, organelle membrane, integral
component of membrane, extracellular space, endoplasmic
reticulum membrane, intracellular organelle lumen, enve-
lope, integral component of plasma membrane, and plasma
membrane). Therefore, according to the summary,
LightGBM and mRMR were much better than MCFS.

5. Conclusions

In this study, we first identified a number of network fea-
tures and functional annotation terms that effectively con-
tribute to intracellular subcellular localization prediction
using several feature selection methods and classification

algorithms. Combining the feature ranked results obtained
by mRMR, MCFS, and LightGBM, 38 key features were
determined on the basis of the feature integration rules. A
validation was conducted on several selected network fea-
tures, functional features (KEGG pathway), and functional
features (GO term) using recent literature. This study could
provide a machine-learning-based investigation method for
effective prediction of subcellular localization and establish
a strong baseline for future experimental studies in this field.
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