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Microcephaly (MCPH) is a developmental anomaly of the brain known by reduced cerebral cortex and underdeveloped
intellectual disability without additional clinical symptoms. It is a genetically and clinically heterogenous disorder. Twenty-five
genes (involved in spindle positioning, Wnt signaling, centriole biogenesis, DNA repair, microtubule dynamics, cell cycle
checkpoints, and transcriptional regulation) causing MCPH have been identified so far. Pakistani population has contributed in
the identification of many MCPH genes. WES of three large consanguineous families revealed three pathogenic variants of
MCPH1, CENPJ, and CASK. One novel (c.1254delT) deletion variant of MCPH1 and one known (c.18delC) deletion variant of
CENPJ were identified in family 1 and 2, respectively. In addition to this, we also identified a missense variant (c.1289G>A) of
CASK in males individuals in family 3. Missense mutation in the CASK gene is frequent in the boys with intellectual disability
and autistic traits which are the common features that are associated with FG Syndrome 4. The study reports novel and
reported mutant alleles disrupting the working of genes vital for normal brain functioning. The findings of this study enhance
our understanding about the genetic architecture of primary microcephaly in our local pedigrees and add to the allelic
heterogeneity of 3 known MCPH genes. The data generated will help to develop specific strategies to reduce the high incidence
rate of MCPH in Pakistani population.

1. Introduction

Primary microcephaly is a rare genetically heterogenous
neurodevelopmental condition that specifically affects the
cerebral cortex, and the affected individual has a reduced
brain weight than the individuals of the same age, ethnicity,
and gender [1, 2]. It is characterized by an architecturally
normal brain with mild to moderate intellectual disability
[3]. Clinically, the severe MCPH is defined as the occipito-
frontal head circumference (OFC) of more than 3SD below
the mean for gender, age, and ethnicity [4, 5].

It is a recessive hereditary disorder, and most of the
MCPH causing mutation occur in genes that are essential for
maintaining proper cell cycle and integrity of the cellular
genome [6]. Phenotypically and genetically microcephaly is a
very heterogeneous disorder with over 900 OMIM phenotype
entries and at last count 25 different types of genes with
diverse form of linked variants [6, 7]. Majority of these genes
express during the proliferation of neural precursor cells
(NPCs) in the ventricular zone of the cerebral cortex [8].
The most frequent cause of this clinical disorder is the muta-
tion inWDR62 (WD repeat-containing protein 62) andASPM
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(abnormal spindle-like, microcephaly-associated) genes which
together responsible for more than half (½) the cases of
MCPH, followed byMCPH1 which is the first and third most
common causes of MCPH [9–11]. At cellular level, MCPH1
encode a multifunctional protein that play an important role
in chromosome condensation, DNA damage response, cell
cycle control, and DNA repair [12].Many diverse forms of this
congenitally rare genetic disorder may involve a compromised
division of cortical precursor cells that leads to a reduced
proliferation of neurons due to imbalance among symmetric
and asymmetric division of the NPCs. Ultimately, the reduced
number of neurons leads to the reduced brain volume, as
observed in the MCPH patients [13, 14].

Due to the common practice of consanguineous marriages
in Pakistani population, the incidence rate of MCPH (though it
is a rare recessive disorder) is high (1/10,000) as compared to
the European white populations [15]. One reason of high
prevalence of microcephaly in Pakistan is the lack of genetic
counselling in the country. More than half of marriages in
Pakistan are consanguineous that increases the chances of get-
ting autosomal recessive primarymicrocephaly in the next gen-
eration [16]. Thus, proper screening of more population will
reduce the incidence rate of MCPH in Pakistani population.

In the current study, WES and Sanger sequencing were
used for the identification of genetic components involved
in MCPH. Here, we report three variants inMCPH1, CENPJ,
and CASK genes segregating with MCPH. The most fre-
quent pathomechanism of mutant alleles in these genes is
the dysfunction of MCPH proteins either through excessive
apoptosis or dysregulation of cell cycle dynamics impairing
mitotic neurogenesis leading to the precipitation of MCPH
phenotypes [17, 18]. Findings of the current study will help
to better understand the neurogenesis and pathophysiology
ofMCPH. Furthermore, the variants ofMCPH genes reported
in this study will help in devising better molecular diagnostic
strategies and providing genetic counselling to the affected
families.

2. Materials and Methods

2.1. Subjects and Approval of This Research Study. This study
was duly approved by the Institutional Review Boards (IRBs)
of Government College University Faisalabad-Pakistan and
Shenzhen Institute of Advanced Technology, Chinese Acad-
emy of Sciences, China. Detailed clinical information (videos,
photographs, medical records, and interviews), pedigrees, and
blood samples were collected after written informed consents
from the parents/guardians following the declaration of
Helsinki. Patients were physically examined, and their head
circumference was measured.

2.2. Whole-Exome Sequencing. DNA specimen from affected
subjects of each pedigree were subjected to whole-exome
sequencing (WES) using Illumina NovaSeq 6000 platform to
recover genomic libraries and sequenced with an average of
100x coverage on an Illumina HiSeq4000 (Illumina, San Diego,
CA, USA). Human reference genome sequence (GRCh37)
assembly was used as reference, and reads were aligned and
mapped to it. GATK version 3.7 was used for variant calling

and SnpEff (version 4.2; http://snpeff.sourceforge.net/) was
employed for the classification and annotation of variants.
Single-nucleotide variants were filtered by using a variant qual-
ity score recalibration method. Postannotation filtration of the
variants was done by using the public databases like Genome
Aggregation Database (gnomAD) and 1,000 Genomes Project.
All the variants with minor allele frequency ðMAFÞ > 0:005
were discarded. Among the retained variants (MAF < 0:005),
homozygous and compound heterozygous alleles were focused
as the most likely transmission mode for these pedigrees was
autosomal recessive. No further in silico tools were used for
the deletion variants as these result in immature truncation of
translation.

2.3. Sanger Sequencing. The predicted identified variants after
whole-exome sequencing were validated through genotyping
of all available family members and checked which variant is
homozygously segregated in all affected individuals with the
disease phenotype. Primer3 web resource was used to design
a primer for Sanger sequencing (http://bioinfo.ut.ee/primer3-
0.4.0/) available in Table 1. Samples were run on Applied Bio-
system 3730 Genetic Analyzer using BigDye, respectively.
DNASTAR (Lasergene) and Sequencher 5.4.6 (Gene Codes
Corporation) were used to analyze the chromatograms.

2.4. In Silico Analysis of the Identified Variants. The pathoge-
nicity of variants was ascertained according to the criteria of
the American College of Medical Genetics (ACMG) (Richards
et al., [19]). Bioinformatics prediction tools such as SIFT
(http://sift-dna.org/sift4g), Polyphen2 Bioinformatics predic-
tion tools such as SIFT (http://sift-dna.org/sift4g), Polyphen2
(http://genetics.bwh.harvard.edu/pph2/), Provean (WEB
LINK), Fathmm (http://fathmm.biocompute.org.uk/), and
CADD (https://cadd.gs.washington.edu/score) were used to
predict the impacts of missense variant on protein foldings.
SIFT Indel was used for predicting the effect of deletion muta-
tion on the protein (https://sift.bii.a-star.edu.sg/www/SIFT_
indels2.html).

3. Results and Discussion

We report a novel deletion variant in MCPH1 and reported
deletion and missense variants in CENPJ and CASK genes,
respectively (Figure 1). Gene structures of MCPH1, CENPJ,
and CASK genes are shown in Figure 2. All the affected indi-
viduals segregated MCPH in recessive inheritance pattern as
their parents were normal. Detailed clinical and genetic man-
ifestations in these three families are given in Table 2. In all the
affected individuals, MCPH was present as a congenital disor-
der and with no history of maternal infection or head injury.

Exome sequence analysis of the proband and subsequent
Sanger sequencing of all the affectedmembers from 3 unrelated
families discovered a homozygous and hemizygous variant in
the three different genes, i.e., MCPH1, CENPJ, and CASK.

In an individual (IV-1 and IV-2), from the MC-1, a
novel frameshift variant c.1254delT was observed at exon 8
of the MCPH1 gene (Figure 3(a)). The Sanger sequencing
demonstrates that single-base deletion c.1254delT in the
MCPH1 gene cosegregate with the disease in a homozygous
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manner while both parents and normal siblings of the patients
were found heterozygous. This frameshift variant causes the
damage to asp amino acid at position 419 and loss of function.
Interestingly, in silico tool SIFT Indel predicted it pathogenic
and cause nonsense-mediated mRNA decay (NMD). The
literature survey of this variant showed that the variant has
not been reported in the literature or found absent from the
large population databases: Human genomemutation database
(HGMD), gnomAD, and 1000 Genomes Project and ClinVar.

In the MC-2, three affected female individuals are pre-
sented in the fifth generation (IV-3, IV-4, and IV-5). These
individuals showed typical microcephaly phenotypes which
were in line with the previously reported cases. The exome
sequence analysis of three patients revealed previously known
homozygous frameshift variant c.18delC at exon 2 of the
CENPJ gene [20] (Figure 3(b)). This variant causes change of
serine amino acid to proline at position 7 (p. Ser7profs). Subse-
quent genotyping of the patient’s data through Sanger

Table 1: Primers sequences used to amplify mutation of MCPH1, CENPJ, and CASK.

ID Gene Mutation Forward Reverse Product size

MC-1 MCPH1 c.1254delT; p. Asp419fs ACCAGGAGATCTATCATGCC AGAAGTCACGCAACTCGAAG 375

MC-2 CENPJ c.18delC; p. Ser7fs GTAGCTCAATGCCCAATTGC AGAAATGTCCACAGCTGCTC 370

MC-3 CASK c.1289G>A; p. Arg430His CCTGCCATAAAAATCCACTC AGTACAGTCCCTGAAAAGCC 412

MC-1 Wild type

Mutant Mutant Mutant

Wild type

MCPH1
c1254del T
p.Asp419fs

MC-2

G
A

T
C

CENPJ
c18del C
p.Ser47fs

Wild typeMC-3

CASK
c12899G > A
p.Arg430His

Figure 1: Sanger sequencing chromatograms of wild -type and mutant sequences showing deletion and substitution mutations in
c.1254delT-MCPH1, c.18delC-CENPJ, and c.1289G>A-CASK.

MCPH 1

CENPJ

CASK

Exon 1 Exon 8

Exon1 Exon2

Exon 1 Exon14

c.1289G > A

c.18 del C

c.1254 del T

Figure 2: Schematic representation of exon and intronic regions of human MCPH1, CENPJ, and CASK genes along with the position of
known and novel mutations. The white box represents the untranslated regions (UTR). The straight line represents the introns and the
rectangle represents the exons. The asterisk sign shows the novel deletion variant in the MCPH1 gene.
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sequencing confirmed it homozygous to the heterozygous car-
rier parents and normal siblings. This is a highly characterized
pathogenic mutation for microcephaly, and further in silico
analysis was not needed.

In MC-3, two affected male individuals IV-2 and IV-4
have symptoms of microcephaly, seizure, and epilepsy. WES
and Sanger sequence analysis revealed previously reported
hemizygous missense variant c.1289G>A at exon 14 of the
CASK gene (Figure 3(c)). This mutation causes the change of
arginine at position 430 to Histidine (p. Arg430His). This
change is predicted highly damaging by SIFT, Polyphen2,
Fathmm, and MCAP for the resulting protein (Figure 4). This
mutation is present in the highly conserved region of the
CASK protein. Screening of additional families will refine it,
and such families will be of great value in defining genotype
and phenotype correlations.

Mutant alleles of MCPH1 gene have been reported with
immature chromosome condensation syndrome and primary
microcephaly 1. The present study reports a novel frameshift
deletion mutation c.1254delT at exon 8 with modified amino
acid p. Asp419fs (Figure 1). Multiple sequence alignment
showed conservation of proline across species. This variant
disrupted the structurally and functionally conserved domain
ofMCPH1 gene resulting in disease phenotype.MCPH1 gene
plays a pivotal role in the neurogenesis of the cerebral cortex
and regulation of brain size [21, 22]. In situ hybridization
revealed an elevated expression of microcephalin in the fetal
mouse brain especially near the lateral ventricles during neu-
rogenesis signifying the involvement of MCPH1 gene in the
size regulation of the brain cortex [21]. The MCPH1 mouse
model revealed abnormal chromosome condensation during
mitosis and a decreased skull size [23, 24].

The CENPJ (centromere protein j) gene having 17 exons
present on chromosome 13q12.2 plays a major part in assem-
bling, rearrangement, and integrity of the microtubules, during
the neurogenesis. The structural changes or complete loss of
CENPJ gene leads to the damaged centrosome, multiple spindle
poles, cell arrest in mitosis, and loss of centrioles. The CENPJ
protein is contained to centrosomes in interphase and to the
spindle poles during mitosis [25]. Cho et al. found that the
exhaustion of CENPJ protein impairs centrosome integrity
and mitosis is arrested in cells deficient in CENPJ [26]. The
centrosome serves as a microtubule organizing center and is
crucial for the regulation of the cell division. Centrosomal
mechanism is the key player in regulating brain size [27]. Inter-
action of CENPJ with other MCPH proteins like WDR62,
CEP152, STIL, CEP135, and ASPM results in microtubules
binding [12, 28], Recent studies reveal that CENPJ controls
progenitor division and neuronal migration in the brain [29].
Until now, eight mutations are identified in this gene (includ-
ing the one reported in this study) and two of them have been
reported in Pakistani MCPH families [15]. MC-3 is the 6th
serial Pakistani family in which this frameshift variant
(c.18delC) is being reported so this CENPJ variant could
reasonably be a founder mutation of the Pakistani population.

CASK (OMIM# 300172) is an X-linked gene with 27 exons
which encode a protein (calcium/calmodulin-activated serine
kinase), with a role in ion channel trafficking, synaptic
transmembrane protein anchoring, neural development, and
gene expression regulation. CASK gene expression in the
mammalian brain is higher than the other organs of the body
[30]. Mutations throughout this gene are known to be involved
in the X-linked intellectual disabilities of varying lethality in
male and female individuals [31]. The clinical symptoms

MC-1
MCPH1: c1254del T
p.Asp419fs

I

(a) (b) (c)

I:1

III:1 III:2

I:2

II:1 II:2 II:3 II:4
II

III

IV

IV:1

-/- -/- +/-

+/- +/-

IV:2

IV:2

IV:3

IV:3

IV:4

IV:4

I

I:1

III:1 III:2

I:2

II:1 II:2 II:3 II:4
II

III

IV

IV:1

-/- -/- -/- -/-

+/- +/-

IV:2 IV:3 IV:4 IV:5

I

I:1

III:1 III:2

I:2

II:1 II:2 II:3 II:4
II

III

IV

IV:1

IV:1

-/- -/-

-/+ +/+

+/+

IV:2 IV:3 IV:4

MC-2
CENPJ: c18del C
p.Ser47fs

MC-3
CASK: c12899G > A
p.Arg430His

Figure 3: MCPH families showing autosomal and X-linked mode of disease segregation. The filled circles and squares show affected females
and males. The open circles and squares show the unaffected individuals. Consanguineous marriage is represented by double lines. The (-/-)
sign show the recessive homozygous individuals and (-/+). Patient’s facial characteristics represented in photographs reduced head
circumference with no other facial dysmorphism. Family MC-3 did not grant consent for their photographs.
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associated withmutation in theCASK gene is gender specific. In
the girls, the severe deletionmutations in theCASK gene is asso-
ciated with ailment known as mental retardation and micro-
cephaly with pontine and cerebellar hypoplasia (MICPCH)
(OMIM#300749), while in male, boy’s epileptic encephalopa-
thies such as Ohtahara syndrome and infantile spasms are most
commonly observed [32–34]. Splice site, duplication, nonsense,
and deletion mutation in the CASK gene are less frequently
observed in the male which may be due to early male lethality
[31]. Missense mutation in the CASK gene is frequent in the
boys with mental retardation and autistic traits [35]. WES and
Sanger sequence analysis revealed previously reported hemizy-
gous missense variant c.1289G>A at exon 14 of the CASK gene
(Figure 1) [32]. This mutation causes the change of arginine at
position 430 to Histidine (p. Arg430His). This change is pre-
dicted highly damaging by SIFT, Polyphen2, Fathmm, and
MCAP for the resulting protein. In public databases gnomAD
and ClinVar, this mutation is present with conflicting interpre-
tation and uncertain clinical significance. Segregation analysis
of the variant in the normal mother and sibling found heterozy-
gous which is suggesting recessive carrier for this mutation.
Females with missense heterozygous mutations may have very
mild cognitive deficits with nomicrocephaly or cerebellar hypo-
plasia, suggesting an X-linked recessive inheritance pattern [35].
This variant is present in the highly conserved region of the
CASK protein. Based upon the American College of Medical
Genetics and Genomics guideline for variant clinical interpre-
tation, we can confidently say that the variant c.1289G>A (p.
Arg430His) is responsible for the phenotype of the patients
presented in this study [36].

4. Conclusion

The current study reports one novel and two previously
reported mutations in three Pakistani MCPH families in
well-studied MCPH genes. Functional assessment of the
novel mutation will clarify its impact on neurogenesis and
the development of microcephaly. The findings of this study
expand the mutation dataset related to MCPH in the Paki-
stani population and pave the way for better genotype-
phenotype correlations and better understanding and man-
agement of MCPH.
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