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Background. Bungarus multicinctus is one of the top ten venomous snakes in China. Its venom is mainly neurotoxin-based. Novel
antivenom drugs need to be further researched and developed. Objective. This study aimed to explore the molecular mechanism of
Cynanchum paniculatum in treating Bungarus multicinctus bites based on network pharmacology. Material and methods. The
potential active ingredients of Cynanchum paniculatum were screened and their SDF structures were obtained using the
PubChem database and imported into the SwissTargetPrediction database, and targets were obtained for the antitoxin effects of
Cynanchum paniculatum in the treatment of Bungarus multicinctus bites. The Cynanchum paniculatum-active compound-
potential target network and protein-protein interaction network were constructed by using Cytoscape software, and then
biological function analysis and KEGG pathway enrichment analysis were performed using the DAVID. Results. Seven
potential active components (cynapanoside C, cynatratoside B, tomentolide A, sitosterol, sarcostin, tomentogenin, and paeonol)
and 286 drug targets were obtained, including 30 key targets for the treatment of bungarotoxin toxicity. The active
components mainly acted on PIK3CA, MAPK1, MAP2K1, JAK2, FYN, ACHE, CHRNA7, CHRNA4, and CHRNB2, and they
antagonized the inhibitory effect of bungarotoxin on the nervous system through cholinergic synapses and the neurotrophin
signaling pathway. Conclusions. Cynanchum paniculatum exerts a therapeutic effect on Bungarus multicinctus bites through
multiple active components, multiple targets, and multiple pathways. The findings provide a theoretical basis for the extraction
of active components of Cynanchum paniculatum and for related antivenom experiments.

1. Background

Snakebite is a neglected tropical disease [1]. It is estimated that
about 5 million people worldwide are bitten by snakes each
year, of which 81,000 to 138,000 die, andmany people have per-
manent physical and psychological sequelae [2]. Venomous
snake bites are a constant threat to human health and life. Bun-
garus multicinctus is one of the top ten venomous snakes in
China. Its venom is mainly neurotoxin-based [3], containing
α-, β-, and γ-bungarotoxins (BGTs) [4, 5]. Bungarus multicinc-
tus bites cause neuromuscular symptoms, including ptosis,
mydriasis, ophthalmoplegia, mandibular weakness, neck mus-

cle paralysis, limb paralysis, respiratory muscle paralysis, respi-
ratory failure, and even death [6, 7]. Therefore, the timely
treatment of Bungarus multicinctus bites is very important.
Antivenom is currently the most effective and commonly used
treatment for Bungarus multicinctus bites. According to the
WHO, because it is expensive and difficult to store, antivenom
is challenging to obtain in economically disadvantaged and
remote rural areas, and there is still great risk associated with
antivenom treatment [8]. In China, horse-derived antivenom
is currently used in clinical, but the allergic reaction rate can
be high, ranging from 3% to 88% [9]. Therefore, novel anti-
venom drugs need to be further researched and developed.
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Network pharmacology is an emerging discipline based on
systems biology [10, 11]. It involves integration of multiple dis-
ciplines, such as high-throughput omics, computer technology,
pharmacology, and network database retrieval, and can be used
to reveal the pharmacological effects of traditional Chinese
medicines and their molecular mechanisms [12]. Network
pharmacology has been demonstrated to be a powerful method
for analysis of the underlying mechanism of Chinese medicine
ingredients [13]. Traditional Chinese medicines contain many
active ingredients, including multiple ingredients that can act
on multiple cellular targets and pathways in different ways
[14]. Network pharmacology is particularly well-suited for anal-
yses of the characteristics of these multiple targets and multiple
pathways and can improve the success rates of clinical trials on
new drugs and reduce the cost of drug research [15].

It is also applicable for the research methods of network
pharmacology to the study of toxicology. Xiaohui Fan et al. have
proposed the concepts of network toxicology and network tox-
icology of traditional Chinese medicine [16]. And firstly
extracted the key elements: gene, protein, toxicity, side effects,
and others from the database; then took these elements as nodes
in the network to construct a network model, which included
network of interactions among gene, target, and drug interac-
tion. Through this network analysis, we can understand the rel-
evant toxicmechanism and find out the effective components of
treatment or substances with toxic and side effects. Until now,
there are many studies that have been successfully carried out
by many researchers through network toxicology, such as Hao-
nan Ruan et al. reported that they had predicted some targets of
Mycotoxin-Induced Liver Injury (MILI) through network toxi-
cology, which provided a theoretical basis for further study of
the toxicity mechanism [17]. Also, Yubo Li et al. published that
they had preliminarily identified the toxic compounds of Chi-
nese medicine and gave a comprehensive explanation of its
toxic mechanism by the prediction results of network toxicol-
ogy [18]; moreover, Tao He et al. have explored and found
the mechanism of hepatotoxicity induced by Esculent side A
in rats and analyzed the changes of endogenous metabolites in
rat plasma through combining the network toxicology with
nontargeted metabolomics [19]. Therefore, in this study, we
employed the approach of network pharmacological and toxi-
cological again to investigate the toxicity mechanism of bungar-
otoxin and the therapeutic target sites of Cynanchum
paniculatum.

Modern pharmacology shows that the various active ingre-
dients of Cynanchum paniculatum can treat various diseases
[20]. Extensive pharmacological activities of the extracts or
compounds of Cynanchum paniculatum in vivo and in vitro
were confirmed, which included the effect of anti-inflamma-
tory, antinociceptive, sedative antiviral, antitumor, neuropro-
tective, treating snakebites, immunomodulatory, antiradiation,
vasodilatory, acaricidal potentials, and antiadipogenic [21]:
Paeonol is one of the simple phenolic compounds, which can
be extracted from Cynanchum paniculatum and has various
biological and pharmacological activities, such as anti-inflam-
matory, antitumor, antihypertensive, and antioxidant [22–24].
Panying Wei et al. also found that two compounds which were
isolated from Cynanchum paniculatum and elucidated as
cynanversicoside A and cynanversicoside C showed much

strong anti-inflammatory and antiviral activities [25]. More-
over, Zhao Dan et al. reported that C21 steroidal glycosides
obtained from the roots of Cynanchum paniculatum had the
function of antioxidant and antibacterial [26]. Wen Ji-Hong
et al. have found that there were two extracts from Cynanchum
paniculatum that had the activity against Ichthyophthirius mul-
tifiliis theronts and tomonts [27]. Moreover, Antofine which is
extracted from Cynanchum paniculatum is also a phenan-
throindolizidine alkaloid with antiproliferative and antitumor
effects [28]. Jin Bae Weon et al. reported that they successfully
isolated the neuroprotective compounds which may antagonize
the neurological damage caused by bungarotoxin from Cynan-
chum paniculatum [29]. Yan Xiong et al. also published that the
ethanolic root extract of Cynanchum paniculatum had the
properties of anti-deinagkistrodon acutus venom [30].

Chinese medicines have been used to treat venomous
snake bites for thousands of years, many of them with good
clinical efficacy. Among them is Cynanchum paniculatum,
also known as the “snake dysentery herb,” which is particu-
larly effective against Bungarus multicinctus bites. Modern
pharmacology has confirmed that Cynanchum paniculatum
extract contains active antisnake venom ingredients [30, 31].
Intragastric administration of Cynanchum paniculatum
extract significantly attenuates the toxic effects of snake venom
in mice [32]. In vitro enzyme activity inhibition experiments
and in vivo animal protection experiments have also found
that Cynanchum paniculatum has good antisnake venom
activity [33]. However, Cynanchum paniculatum contains
many different chemical ingredients; the specific ingredients
that exert antivenom effects and their mechanisms are still
unclear. Therefore, the aim of this study was to clarify Cynan-
chum paniculatum’s active antisnake venom ingredients and
their targets using network pharmacology. The findings of this
study will be of great significance for the discovery and extrac-
tion of new antisnake venom compounds [34].

2. Material and Methods

2.1. Chemical Composition and Target Prediction of
Cynanchum Paniculatum. The Traditional Chinese Medi-
cine Systemic Pharmacology Database and Analysis Plat-
form (TCMSP) (http://lsp.nwu.edu.cn/tcmsp.php/), which
contains 499 herbal medicines registered in the Chinese
Pharmacopoeia and their 29,384 ingredients, 3311 targets,
and 837 related diseases, was used to predict the chemical
composition of Cynanchum paniculatum [35]. An oral bio-
availability (OB)≥30% and drug-likeness (DL)≥0.18 were
used as screening conditions, and the literature was used to
supplement the potential active ingredients. Afterward, the
structure data file (SDF) structures of the above ingredients
were obtained using the PubChem database [36, 37]
(https://pubchem.ncbi.nlm.nih.gov/) and then imported into
the SwissTargetPrediction [38] (http://www
.swisstargetprediction.ch/) database. Based on the 2D and
3D similarities of the chemical components with human as
the selected species of “human,” the potential targets of the
compounds were predicted, and the potential targets of
Cynanchum paniculatum were ultimately obtained by col-
lating the results and removing duplicates.
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2.2. Acquisition of Targets for BGT. The Online Mendelian
Inheritance in Man (OMIM) [39] (https://omim.org/) and
GeneCards [40, 41] (https://www.genecards.org/) databases
were searched with “bungarotoxin” as the keyword to obtain
the targets of BGT.

2.3. Construction of a Cynanchum Paniculatum-Active
Compound-Potential Target Network. The potential targets
of Cynanchum paniculatum were mapped to the targets of
BGT to obtain the potential targets of Cynanchum panicula-
tum in the treatment of BGT toxicity. The active compounds
and potential targets obtained above were introduced into
Cytoscape [42, 43] software (Version 3.6.1, http://www
.cytoscape.org) to draw a Cynanchum paniculatum-active
compound-potential target network. In this network, the dif-
ferent types of nodes represent Cynanchum paniculatum, its
active compounds, and its potential targets, and the relation-
ships among them are shown as edges. The Network Ana-
lyzer [44] plug-in was used to analyze the main active
ingredients of Cynanchum paniculatum with the “between-
ness centrality” and “degree” settings (the thickness of each
edge reflects the magnitude of the betweenness centrality,
and the size of each node reflects the magnitude of the
degree. A larger degree value is associated with a more
important component).

2.4. Protein-Protein Interaction (PPI) Network Construction.
A PPI network was constructed by inputting the common
targets of Cynanchum paniculatum and BGT into the
STRING database [45] with the species set as “Homo sapi-
ens” and the minimum interaction threshold set as 0.4.
The target interaction of network data was imported into
Cytoscape software to draw the protein interaction network
and analyze the topology of the network. The color and size
of the network nodes were set with the “Generate style from
statistics” tool. The size, color, and shade of the nodes reflect
the magnitude of the degree value, and the thickness of each
edge indicates the magnitude of the combined score.

2.5. Gene Ontology (GO) Analysis and Kyoto Encyclopedia of
Genes and Genomes (KEGG) Pathway Enrichment Analysis.
The Bioconductor [46] package “(http://org.Hs.eg.db/)”
was installed in R software and run to convert Cynanchum
paniculatum/BGT targets and common targets into entre-
zIDs. The “ClusterProfiler” package was installed in R soft-
ware, and GO and KEGG functional enrichment analyses
of the key target genes were performed with thresholds of
a P < 0:05 and a Q < 0:05 based on the converted entrezIDs.
The results were output in the form of bar graphs.

3. Results

3.1. Screening of Active Ingredients and Targets of
Cynanchum Paniculatum. The active ingredients of Cynan-
chum paniculatum in the TCMSP database were screened
with the settings OB≥30% and DL≥0.18, and paeonol was
included according to the literature [47, 48] to obtain a total
of seven potential active ingredients: cynapanoside C, cyna-
tratoside B, tomentolide A, sitosterol, sarcostin, tomento-
genin, and paeonol. The SDF structures of the above

components were obtained using the PubChem database
and imported into the SwissTargetPrediction database, and
a total of 286 drug targets were screened after deduplication.

3.2. Prediction of the Targets of Action of BGT. A total of 186
disease targets of BGT were obtained after deduplication
using the OMIM and GeneCards databases. A total of 286
drug targets and 186 disease targets were entered into the
Venny2.1 online mapping tool to create a Venn diagram,
and 30 common targets were obtained after the intersection
of the drug and disease targets (Figure 1(a)). The 30 com-
mon drug-disease targets included APP, PIK3CA, JAK2,
ACHE, CAPN1, OPRM1, MAPK1, ERBB4, AR, NOS1,
MAPK8, MAP2K1, ICAM1, BCHE, CHRNA7, MAPK10,
SRC, FYN, NOS2, CAPN2, ADAM17, ALOX5, RAF1,
PPARG, CHRNA4, MTOR, P2RX3, BRAF, NR3C1, and
CHRNB2.

3.3. Construction and Analysis of the Cynanchum
Paniculatum Component BGT Target Interaction Network.
The seven potential active ingredients and 30 common
drug-disease targets for Cynanchum paniculatum were
entered into Cytoscape software to construct a drug-ingredi-
ent-target-disease interaction network [49] (Figure 1(b)). In
Figure 1(b), purple represents the drug, blue represents the 7
active ingredients in Cynanchum paniculatum, green repre-
sents the 30 common targets, and red represents the disease.
The degrees of freedom are listed in descending order, as fol-
lows: cynapanoside C, 16; cynatratoside B, 14; tomentolide
A, 12; sitosterol, 6; sarcostin, 4; tomentogenin, 3; and paeo-
nol, 2. Topological analysis of the 30 common targets
revealed that the targets with ≥4 degrees of freedom were
MAPK8, PIK3CA, JAK2, ACHE, and AR. It is evident that
the targets of Cynanchum paniculatum in the treatment of
Bungarus multicinctus bites are diversified and act as anti-
toxins through synergistic effects on multiple targets. Paeo-
nol was the most abundant component in Cynanchum
paniculatum, but there was only one common target with
the disease (ACHE), suggesting that paeonol may act as a
therapeutic agent by affecting ACHE.

3.4. PPI Network Construction and Core Target Analysis

3.4.1. PPI Data Construction. The common targets of
Cynanchum paniculatum/BGT were inputted into the
STRING database to obtain the target network relationship
data, which were then imported into Cytoscape 3.7.2 to draw
the protein interaction network diagram (Figure 2(a)).
MAPK1, SRC, and MAPK8 had degrees greater than or
equal to 20.

3.4.2. Core Target Screening Based on Topology Analysis. The
PPI network was imported into Cytoscape 3.7.2, and the
topology analysis was carried out with Network Analyzer.
The four parameters of degree, betweenness centrality, and
average shortest path length and closeness centrality were
used as reference standards, and the genes with scores
greater than the average score were selected as the core tar-
gets. The top 30 targets were plotted in a bar graph using
R3.6.0 (Figure 2(b)).
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3.4.3. Core Target Screening Based on Cluster Analysis. The
constructed PPI network was introduced into Cytoscape
3.7.2, and the MCODE module was used to analyze gene
clusters and screen core targets. Two gene clusters
(Figure 2(c)) and two core genes (nuclear receptor subfamily
3, group C, member 1 (NR3C1) and MAPK8) were obtained.
It is speculated that the effective components of Cynanchum
paniculatum may play a major therapeutic role through
NR3C1 and MAPK8.

3.4.4. GO Analysis. The 30 common targets were subjected
to GO analysis for the biological process, cellular compo-
nent, and molecular function categories. GO analysis
showed that the intersecting genes were enriched for a total
of 868 biological process terms, mainly including the hyp-
oxic response, regulation of chemical synaptic transmission,
glucose metabolism, drug metabolism, antimicrobial action,
regulation of trans-synaptic signaling, and neurotransmitter
metabolic process terms (Figure 3). The intersecting genes
were enriched for 76 cellular component terms, mainly the
cytoplasm, cell membrane, presynaptic membrane, cell-
basal node, inherent components of presynaptic membrane,
and inherent components of the presynaptic membrane
terms (Figure 4). The intersecting genes were enriched for
a total of 78 terms related to molecular function, mainly
the acetylcholine binding, hormone binding, neurotransmit-
ter binding, growth factor receptor binding, ammonium ion
binding, excitatory extracellular ligand-gated ion channel
activity, protein serine/threonine kinase activity, MAP
kinase activity, and acetylcholine-gated cation-selective
channel activity terms (Figure 5).

3.4.5. KEGG Pathway Enrichment Analysis. A total of 133
KEGG pathways were obtained by running the 30 common
targets through R software. The top 20 pathways were used
to create a bubble plot of KEGG functional enrichment
(Figure 6), with the P value representing the significance of
the enrichment and a redder color indicating greater signif-
icance. The ERbB signaling, Alzheimer’s disease, endocrine
resistance, Fc epsilon RI signaling, prolactin signaling, and
cholinergic synapse pathways had the highest relevance;
the cholinergic synapse signaling pathway is the most clini-
cally relevant pathway and may play key roles in many of
the other signaling pathways. The red dots in the cholinergic
synaptic signaling pathway are important links of the com-
mon targets involved in the process. The main targets
involved are PIK3CA, MAPK1, MAP2K1, JAK2, FYN,
ACHE, CHRNA7, CHRNA4, and CHRNB2.

4. Discussion

Chinese herbs consist of multiple compounds with complex
mechanisms of action that may affect multiple targets and
pathways in humans [50]. Cynanchum paniculatum is a
Chinese herb used to treat venomous snake bites with good
clinical efficacy, but its therapeutic mechanism is still not
well known. In this study, a network pharmacology
approach was used to screen the active compounds against
BGT and to analyze the network pathways and therapeutic
mechanisms of this herb using multiple databases. All the
chemical constituents contained in Cynanchum panicula-
tum were screened by using the TCMSP database. According
to the results combined with previous literature reports, 7

256

Cynanchum paniculatum Bungarotoxin

15630

(a) (b)

Figure 1: Venn diagram and network diagram for describing the interaction. (a) Venn diagram of the overlapping targets of Cynanchum
paniculatum and Bungarotoxin. (b) A network diagram of Cynanchum paniculatum component-bungarotoxin target interactions.
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compounds with good OB and DL properties were selected.
After further screening using the SwissTargetPrediction
database, 286 drug targets and 30 common drug-disease tar-
gets were obtained. Topological analysis of the 30 common
targets revealed that MAPK8, PIK3CA, JAK2, ACHE, and
AR were the most likely targets through which Cynanchum
paniculatum antagonizes BGT. Given the clinical symptoms
of BGT toxicity, ACHE may be the most important target.
Network analysis (Figure 2) showed that paeonol exerts
antagonistic effects by interacting with ACHE. Similarly, it
has been demonstrated that paeonol also has efficacy against
Agkistrodon toxin [33].

PPI analysis and topology analysis revealed that MAPK1,
SRC, and MAPK8 were the most important core targets,
while cynapanoside C and cynatratoside B were the active
ingredients corresponding to the three core targets. MAPK
is an important transmitter of signals from the surface of
the cell to the inside of the nucleus and can regulate a variety
of important cellular physiological and pathological pro-

cesses, such as the stress response and inflammatory
response. Studies have suggested that MAPK1 is an impor-
tant anti-inflammatory and antivenom target [51]. Hossen
et al. pointed out that Persicaria chinensis L. might play a
pivotal ethnopharmacologic role as an anti-inflammatory
herbal medicine by targeting Syk and Src kinases and their
downstream transcription factor NF-κB [52]. Another study
has reported that inhibiting the MAPK8/ERK signaling
pathway can protect H9C2 cells from oxidative stress dam-
age [53]. Additionally, gene cluster analysis screened out
two core genes, NR3C1 and MAPK8, that corresponded to
tomentolide A, cynapanoside C, and cynatratoside B. Mylka
et al. found that NR3C1 contributes to effective anti-
inflammatory therapy [54]. In summary, these findings indi-
cated that MAPK1, SRC, NR3C1, and MAPK8 may be
important targets that antagonize the effects of BGT.

GO analysis showed that the main cellular components
involved in the biological processes of chemical synaptic trans-
mission modulation, trans-synaptic signaling regulation, and
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Figure 2: Targets screening. (a) The network diagram of PPI. (b) Ranking score of core targets by topology analysis. (c) MCODE Gene
cluster analysis.

5BioMed Research International



neurotransmitter metabolism are the presynaptic membranes
and posterior membranes of nerve cells. The corresponding
molecules that perform these biological functions include

receptors on the presynaptic membranes and posterior mem-
branes of nerve cells and various excitatory or inhibitory neu-
rotransmitters, among which MAP kinase and acetylcholine
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Regulation of trans–synaptic signaling
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Figure 3: Biological processes associated with the 30 common targets, as determined by GO analysis.
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Figure 4: Cellular components associated with the 30 common targets, as determined by GO analysis.
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are the main ones. BGT contains very potent neurotoxins [55]
and is a heterodimer containing two different subunits (α-
BGT and β-BGT) [56]. α-BGT binds to motor endplate acetyl-
choline receptors and then dissociates very slowly from the
receptors. In contrast, β-BGT acts on the presynaptic mem-
brane, first inhibiting the release of neurotransmitters and
then promoting the release of neurotransmitters, both of
which act together to cause persistent muscle paralysis [57,
58]. Clinically, a bungarus multicinctus bite can cause nerve
paralysis, such as limb numbness and weakness, drooping eye-
lids, and respiratory muscle paralysis. The results of GO anal-
ysis are consistent with clinical findings and with modern
toxicological and pharmacological research.

KEGG pathway enrichment analysis and clinical studies
have shown that the cholinergic synaptic pathway plays key
roles in many signaling pathways. ACHE, the most impor-
tant target in the signaling pathway, plays important roles
in the release and transmission of neurotransmitters.
Figure 2(b) shows that sarcostin, paeonol, and ACHE are
the common (overlapping) targets. The mechanism of action
may involve blockade of the binding of bungarotoxin to
ACHE; alternatively, sarcostin and paeonol may directly
bind to bungarotoxin to change its structure and prevent it
from binding to the ACHE receptor, thereby exerting a
detoxification effect. Modern pharmacological studies have
indicated that paeonol has a wide range of pharmacological
activities, including anti-inflammatory, antioxidant, antipy-
retic, analgesic, neuroprotective, anticancer, and antiviral
activities [23, 59, 60]. Han et al. found that paeonol inhibited
the reduction and degeneration of dendritic spines in the
frontal cortex of the brain in a rat model of Alzheimer’s dis-
ease [61]. Miao et al. found that paeonol alleviated inflam-
mation in the nucleus by restricting HMGB1 [62]. Guo

et al. found that paeonol protected melanocytes from
H2O2-induced oxidative stress through an Nrf2-mediated
antioxidant pathway [63]. These experimental findings on
anti-inflammatory, antioxidant, and nerve cell protection
also support the evidence obtained in this network pharma-
codynamic analysis.

At present, the main drug for the treatment of Bungarus
multicinctus bites is anti-Bungarus multicinctus bites venom
serum. Xu Changqing, as an important adjuvant therapy
drug, also plays an important role in clinical treatment.
However, the compounds contained in Xu Changqing are
much more complex, and until now, it has not been con-
firmed which chemical components play the key role of anti-
toxin. Therefore, this study analyzes its possible mechanism
of action through the analysis method of network pharma-
cology. However, the data of the article through network
pharmacology analysis is theoretically credible, which still
needs to be confirmed by further animal experiments.

Until now, there have been many research reports
in vivo and in vitro that have confirmed that Cynanchum
paniculatum has extensive antivenom effects [21, 30]. And
the clinical efficacy of Cynanchum paniculatum in the treat-
ing cobra bites and the modern pharmacological evidence of
bungarotoxin has corroborated the results of our study:
firstly, modern toxicology has proved that the toxin of bun-
galow mainly exerts its toxic effect by blocking the conduc-
tion of the nerve-muscle junction [64–66]; so the poisoned
patients can have symptoms of muscle paralysis. However,
in the actual treatment, it was found that Cynanchum pani-
culatum can alleviate these clinical symptoms, which can be
seen that the action site of Cynanchum paniculatum’s
treatment is also located at the nerve-muscle junction [67,
68]. It mainly includes neurotransmitters secreted by the
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Figure 5: Molecular functions associated with the 30 common targets, as determined by GO analysis.
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presynaptic membrane and acetylcholine receptors on the
motor end plate of the postsynaptic membrane; secondly,
the results of network pharmacology analysis showed that
Cynanchum paniculatum may play a therapeutic role
mainly through the cholinergic synaptic signaling pathway
and ACHE targets. From these points, it can be seen that
the two views are mutually confirmed.

5. Conclusion

In conclusion, network pharmacology revealed that the anti-
bungarotoxin effects of Cynanchum paniculatum may occur
through multiple components, multiple targets, and multiple
signaling pathways. Among the components, paeonol is the
most important and mainly acts on ACHE in the cholinergic
synaptic signaling pathway. The mechanism of the anti-
bungarotoxin effects of paeonol may involve blockade of
the binding of α-BGT to motor endplate acetylcholine recep-
tors or interference with the action of β-BGT on the presyn-
aptic membranes of motor nerves. This study reveals, for the
first time, the molecular mechanism of the treatment of
snakebite with Cynanchum paniculatum. The focus of this
study is to emphasize the role and contribution of network
pharmacology in the field of snakebite research. The analysis
results and clinical observations of network pharmacology

support that the cholinergic synaptic signaling pathway
and the ACHE target are the main therapeutic action points
of Cynanchum paniculatum, which is an important pathway
and target for the treatment of Bungalow snake bites. The
results of this study can be used as an important direction
and target for the development of new drugs against cobra
toxins; however, this is only the starting step in the research
and development of new drugs, and then our research group
will conduct in-depth research on molecular mechanisms
in vitro and in vivo. The ultimate goal is to successfully
screen out high-titer antivenoms from Cynanchum panicu-
latum’s compounds for the development of new drugs; how-
ever, this process not only takes a long time to complete but
also requires a lot of financial support. Therefore, more
researchers are required to work together, which can advance
the research process faster. Therefore, the publication of this
study may provide a direction for scientific researchers
engaged in the research field of snake bite, and provide certain
clues for the development of new anti-Bungarus toxin drugs.

Abbreviation

PPI: Protein-protein interaction
PIK3CA: Phosphatidylinositol-4,5-bisphosphate 3-kinase
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Alzheimer disease
ErbB signaling pathway
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Figure 6: KEGG enrichment analysis of the pathways associated with bungarotoxin treatment using Cynanchum paniculatum.
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MAPK: Mitogen-activated protein kinase
MAP2K1: Mitogen-activated protein kinase 1
JAK2: Janus kinase 2.
FYN: FYN proto-oncogene Src family tyrosine kinase.
ACHE: Acetylcholinesterase (cartwright blood group)
CHRNA7: Cholinergic receptor nicotinic alpha 7 subunit
CHRNA4: Cholinergic receptor nicotinic alpha 4 subunit
CHRNB2: Cholinergic receptor nicotinic beta 2 subunit
HMGB1: High mobility group box 1
AR: Androgen receptor
SRC: SRC proto-oncogene, nonreceptor tyrosine

kinase
NR3C1: Nuclear receptor subfamily 3 group C member 1
PLA2: Phospholipase A2
BGT: Bungarotoxin
GO: Gene ontology
KEGG: Kyoto encyclopedia of genes and genomes
OB: Oral bioavailability
DL: Drug-likeness
TCMSP: Traditional Chinese medicine systems pharma-

cology database and analysis platform
WHO: World Health Organization.
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