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Tumor microenvironment (TME) has been revealed as an important determinant of diagnosis and treatment response in AML
patients. The scores of immune and stromal cell scores of AML in the intermediate-risk group from The Cancer Genome Atlas
(TCGA) database were calculated using the Estimation of STromal and Immune cells in MAlignant Tumor tissues using
Expression data algorithm. Differentially expressed genes were identified between high and low scores. Gene set enrichment
and pathway analyses were performed. A risk score model based on TME for six immune-related genes was established and
validated. Patients with a lower immune score had a longer overall survival than those with a higher score (P = 0:044). A total
of 805 intersected genes as differentially expressed genes were identified and selected according to the comparison of both
immune and stromal scores. The functional enrichment analysis shows that these genes are mainly associated with the
immune/inflammatory response. The risk score model based on TME for six immune-related genes (including MEF2C,
ENPP2, FAM107A, CD37, TNFAIP8L2, and CASS4) was established and validated in the TCGA database and well validated
in the TARGET database (P = 0:005). A key microenvironment-related gene signature was identified that affects the outcomes
of AML patients in the intermediate-risk group and might serve as therapeutic targets.

1. Introduction

Acute myeloid leukemia (AML) is a highly heterogeneous
and urgent hematopoietic malignancy. Genetic abnormali-
ties in hematopoietic progenitors eventually lead to tumori-
genesis in immature myeloid cells [1]. Patients are usually
mainly stratified according to genomic risk factors based
on their initial disease status [2, 3]. Treatment regimens
especially in postremission consolidation therapy were sig-
nificantly different among patients with different risk strati-
fications [4]. As patient-related and disease-related factors
contribute to the individual’s response to treatment and
long-term survival, the disease prediction more accurately
for AML patients is essential. Although individualized preci-
sion therapy has made some progress, it is still not enough to

meet the needs of AML patients, especially for the patients in
the intermediate-risk group. Therefore, new molecular bio-
logical indicators are still needed to refine and guide the
treatment and prognosis of patients.

Tumor initiation is influenced by the host immune sys-
tem, and immunological biomarkers are becoming more
and more important for prognosis prediction. It has been
proposed that the immune scoring staging system is applied
to solid tumors to predict the prognosis of solid tumors
[5–7]. Tumor microenvironment (TME) has been revealed
as an important determinant of diagnosis and treatment
response in cancer patients. The high complexity of TME
is reflected in multiple interactions among tumor, stromal,
immune, and mesenchymal cells through changes in some
soluble factors and extracellular matrix components [8, 9].
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Immune and stromal cells are considered to play a pivotal
role in disease progression and prognosis assessment [10].

Yoshihara et al. designed an algorithm called Estimation
of STromal and Immune cells in MAlignant Tumor tissues
using Expression data (ESTIMATE) which is an algorithm
used to estimate and sequence populations of immune and
stromal cells within TME to assess nontumor cell invasion
by analyzing specific gene expression characteristics [11].
This algorithm has been successfully applied to the analysis
of immune-related characteristics of some solid tumors,
such as breast cancer [12], prostate cancer [13], and colon
cancer [14]. However, only a few reports have used the
ESTIMATE algorithm in the analysis of AML patients to
reveal the mechanism of bone marrow immune microenvi-
ronment and find some special immune-related genes in
AML patients [15, 16].

In this study, we used this algorithm to analyze the bone
marrow microenvironment of AML patients in the
intermediate-risk group. We have found some immune-
related genes and constructed a risk score prognosis model
based on TME, which is aimed at finding new immune-
biological molecular markers to guide the precise prognosis
and treatment of patients in intermediate-risk AML.

2. Materials and Methods

2.1. Data Source. From The Cancer Genome Atlas (TCGA)
database, we downloaded the RNA-Seq data of AML
patients in the intermediate-risk group and corresponding
clinical profiles. 81 AML patients of the intermediate-risk
group were included in this analysis. Using the ESTIMATE
algorithm, we obtained the immune scores of the AML
patients screened and the stromal scores of chosen samples
were calculated [11]. Meanwhile, 129 AML patients in
intermediate-risk group from the TARGET database were
extracted for external validation.

2.2. The Identification and Obtaining of Differential Gene
Expression (DEGs). ESTIMATE is defined as the use of the
unique properties of the cancer sample transcription profile
to infer the contents of tumor cells as well as the different
infiltrating normal cells [11]. We installed the ESTIMATE
package using R software by reading transcriptome files.

The scores based on TME for each AML sample were
calculated. All the enrolled AML patients chosen were iden-
tified as high-/low-score groups according to the median
scores. Data analysis was performed with the R package
limma [17]. In this study, DEGs were selected based on
adjusted P value < 0.05 and absolute fold change > 1. The
heatmaps of the DEGs were drawn using R language.

2.3. Gene Enrichment and Pathway Analyses. Gene set
enrichment and pathway analyses were performed using
the R package clusterProfiler (Bioconductor package version
3.8) for the obtained differential genes [18].

2.4. Protein Network Construction. As a powerful tool for
analyzing protein network interactions, STRING (http://
www.string-db.org/) was exploited to explore potential rela-

tionships among DEGs [19]. We reconstructed the network
using Cytoscape software [20].

We imported the PPI Web figure of 361 DEGs generated
by STRING into Cytoscape software. The cytoHubba plugin
in Cytoscape software was used for hunting the top 30 nodes
of genes known as hub genes. The number of nodes for each
hub gene can be calculated by the software or by R. We
ranked hub genes by the degree from low to high.

2.5. Risk Scoring Model Construction. First, the survival-
related DEGs were screened and identified by the log-rank
test using the survival R package from all the genes using
the following two models [21]. Then, we used univariate
cox regression analysis and Lasso regression to screen
survival-related genes included in the model from the genes
chosen in the first step [22]. Lasso regression was used to
avoid overfitting. The candidate mRNAs were subjected to
multiple proportional risk regression to construct a risk
scoring model: risk score ðpatientÞ =∑I coefficient ðmRNAi
Þ ∗ expression ðmRNAiÞ.
2.6. Nomogram Drawing. We drew a nomogram to predict
the survival rate of the constructed model. The immune
genes screened from the risk score model were used to con-
struct. A patient’s score was first derived from the coeffi-
cients of individual immune genes in the model. The
corresponding score for each immune gene is then added
up to get a total score. Patient’s survival was predicted
according to the length of the line corresponding to the total
score.

All analyses were performed by R 4.0.2 and Bioconduc-
tor package version3.8.

3. Results

3.1. Association of Immune and Stromal Scores with Clinical
Characteristics of AML Patients in the Intermediate Risk
Group. 81 AML patients in the intermediate-risk group were
retrieved from the TCGA database. Their clinical character-
istics and immune/stromal scores were shown in Table 1.
There were 38 female cases (46.3%) and 44 male cases
(53.7%). According to classification of the FAB subtype,
there were 6 cases of M0 (undifferentiated subtype), 21 cases
of M1, 23 cases of M2, 18 cases of M4, and 11 cases of M5.
Each of the other subtypes has only one case. The scores of
these patients calculated using ESTIMATE displayed that
the value of immune scores ranged from 1577.53 to
3094.61, while stromal scores ranged from −1644.36 to
4140.67. The median values of patients for clinical character-
istic were listed in Table 1. We, respectively, made an analy-
sis about the age, gender, FAB subtype, and FLT3/NPM1
gene mutations in relation to immune scores between the
two groups. The results showed that the immune score was
higher in older patients (P = 0:041) but not correlated with
the FAB subtype or gene mutations (P > 0:05).

3.2. Differential Expression Gene Screening Based on the
Immune Score. To assess the correlations between the scores
and overall survival (OS) in intermediate-risk AML patients,
the patients were then separated into the high- or low-score
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group. We found that the OS in patients with a lower
immune score were longer than those in patients with a
higher immune score (P = 0:044, Figure 1(a)). At the same
time, patients with a low stromal score had longer OS than
those with a high stromal score but the difference was not
significant (P = 0:615, Figure 1(a)).

In order to find the differential expression genes in the
immune microenvironment, 81 AML patients were divided
into two groups based on the median immune score. The
high- and low-score groups showed different gene expres-
sion patterns (Figure 1(b)), suggesting that gene expression
profiles may be used to describe differences between the
two groups. According to the comparison of immune scores,
1173 genes were upregulated and 406 genes were downregu-
lated. At the same time, 1020 genes were upregulated and
442 genes were downregulated between the high- and low-
stromal score groups (jlog FCj > 1, FDR < 0:05). Further-
more, common differentially expressed genes in the high-
expression group and the low-expression group were ana-
lyzed. A total of 710 genes were upregulated and 95 genes
were downregulated (Figure 1(c)). We selected these 805
intersected genes as DEGs for subsequent analysis to explore
their correlation with the BM microenvironment in interme-
diate risk of AML.

3.3. Functional Pathway Enrichment Analysis. To investigate
the identified genes’ functions, we used the R language clus-

terProfiler package to conduct the GO term and KEGG path
enrichment analysis (corrected P value < 0.05). There were
698 GO items of the biological process (BP), 64 GO items
of the molecular function (MF), and 46 GO items of the cel-
lular component (CC).

In terms of the first 30 GO biological processes, DEGs
are mainly concentrated in regulating the immune response
process, cytokine secretion, inflammatory response, and
tumor necrosis. The biological processes of these DEGs
mainly include T cell activation, leukocyte proliferation,
lymphocyte activation regulation, leukocyte adhesion
between leukocytes, and leukocyte migration and regulation
(Figure 2(a)). Molecular functions include immunoglobulin
binding, cytokine receptor activation, and mucopolysaccha-
ride binding (Figure 2(b)).

In KEGG analysis, a total of 36 pathways were enriched,
including hematopoietic generation associated with the
blood system, tumor and immune processes, and correlation
between cytokine receptors, such as the B cell receptor sig-
naling pathway, Toll-like receptor, NF-κB cell pathway,
and HSA05221 myeloid leukemia directly associated with
AML (Figure 2(b)).

3.4. Protein Network Interaction Analysis. To analyze the
potential connection patterns between transcripts of the
DEG gene set, the network between PPI (protein-protein
interactions) was constructed by the STRING database. We
loaded the PPI network from STRING with Cytoscape and
a plugin called cytoHubba for flexible reconstruction
(Figure 3(a)). The top 32 hub genes were listed as FPR2,
C3, PTAFR, GNGT2, ITGAM, CKAP4, FPR1, HLA-
DQA1, HLA-DQB1, HLA-DRB5, CXCL10, CYBB,
FCER1G, FCGR1A, PSAP, CCR1, CCR2, CCR5, CLEC4D,
FCAR, C5AR1, CCL1, CX3CR1, CXCL16, IL10, IRF4,
LILRB2, P2RY13, S1PR3, LYZ, PTPRJ, and TNFRSF1B
(Figure 3(b)). It should be noted that most of these key
nodes are composed of proteins/genes involved in immune
regulation. The subnetwork was composed by 32 hub genes
screened. The rank of the edges according to degree was
shown in Figure 3(c).

3.5. Establishment of a Risk Score Model for Immune-Related
Prognostic Genes. To establish a risk score model for prog-
nostic genes, 92 differentially expressed genes were first fil-
tered and screened using univariate Cox analysis. There
were 63 survival-related key DEGs that showed statistically
significances in the univariate analysis (P < 0:05). According
to the Lasso regression and multivariate Cox regression
analysis, 6 independent predictors entered the risk scoring
model. The coefficient and crossvalidation of Lasso regres-
sion were shown in Figure 4(a). There were 6 genes that
entered into the multifactor risk regression model: MEF2C,
ENPP2, FAM107A, CD37, TNFAIP8L2, and CASS4. The
forest map of the multivariate Cox regression model was
shown in Figure 4(b). The concordance index was 0.78.

The risk scoring model was constructed as follows:
riskscore = 1.064015∗(MEF2C)exp+1.215766∗(ENPP2)exp
+ 9.98E − 05∗(FAM107A)exp+ 1.020001∗(CD37)exp
+ 1.027994∗(TNFAIP8L2)exp+1.192386∗(CASS4)exp.

Table 1: The clinical characteristics and the immune score/stromal
score.

Characteristic Category Cases
Immune score

(median)
Stromal score
(median)

Age
<60
years

45 2926.378 −914.957

≥60 years 36 3233.629 −826.588

Gender
Male 43 3031.757 −881.792
Female 38 3106.435 −925.398

FAB subtype

M0 6 3009.567 −833.614
M1 21 2880.161 −1033.32
M2 23 2901.244 −976.13
M4 18 3243.899 −700.734
M5 11 3274.568 −677.531
M6 1 3511.771 −637.973
M7 1 2684.707 −177.338

Karyotype

Normal 68 3070.489 −884.783
Others 3 2998.283 466.029

NA 10 — —

FLT3 gene

Mutant 25 2930.084 −954.845
WT 46 3096.285 −839.960
NA 10 — —

NPM1 gene

Mutant 28 3088.594 −918.332
WT 43 3066.435 −872.269
NA 10 — —
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After we obtained the immune-related gene risk score
model, we calculated the risk value of each AML patient in
the intermediate-risk group based on the expression of the
model candidate gene for each patient. According to the
median value, patients were divided into two groups. There
were significant differences in survival curves between the
two risk groups (P < 0:001). The areas under the ROC curve
of 1-/2-/3-year survival rates were 0.893, 0.907, and 0.882,
respectively (Figure 4(c)). We plotted the nomogram of the
constructed gene risk model. The score of each risk gene
can be obtained through the array diagram, and a corre-
sponding score can be obtained according to the expression
level of each risk gene. Then, the scores can be added
together to obtain a comprehensive score, and then, the final
score can be corresponding to the survival line to obtain the
1-year, 2-year, and 3-year survival rates of the patient
(Figure 4(d)).

3.6. Risk Score Model Validated in TARGET. Gene expres-
sion and survival information of 129 AML patients in inter-
mediate cytogenetic risk from the TARGET database were
extracted. The risk score for each sample in TARGET was

calculated based on the immune gene risk score formula
established. The results showed that there were significant
survival differences between the two groups (P = 0:005,
Figure 5). It suggested that the immune-gene risk score
model was well validated in the TARGET database.

4. Discussion

AML is one of the most common hematopoietic malignan-
cies in adults [23]. The therapeutic options and prognosis
of patients is highly varied among AML patients [24]. Espe-
cially among patients in the intermediate cytogenetic risk
group, the choice of treatment and prognosis are heteroge-
neous and even difficult to choose. Bone marrow TME plays
a crucial role in the development, progression, and clinical
outcome of AML. In this study, we used the ESTIMATE
algorithm to identify TME genes and construct an
immune-related risk score model which could predict the
clinical outcome in patients with AML in the intermediate-
risk group from the database of TCGA.

As pointed out, immune scores were associated with sur-
vival and prognosis in patients with AML or solid tumor. It

1.0

0.8

0.6

Su
rv

iv
al

 ra
te

0.4

0.2

0.0
0 2 4

Time (year)
6 8

1.0

Immunescore(p=0.044) Stromal score(p=0.615)

0.8

0.6

Su
rv

iv
al

 ra
te

0.4

0.2

0.0
0 2 4

Time (year)
High
Low

6 8

(a) (b)

nwoDpU

463

Stromal

enummIlamortS

Immune

710 310
347 95 310

(c)

Figure 1: The differentially expressed genes (DEGs) of the immune score and stromal score. (a) The survival analysis between low- and
high-score groups. (b) Heat maps between high- and low-score groups. (c) Common DEGs of upregulated and downregulated DEGs.
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may be due to the different signaling pathways triggered by
these immune-related gene groups, which is worthy of fur-
ther discussion and research.

According to the median score value, we made an anal-
ysis of correlation between parts of clinical features and
immune scores. As a result, we found that the immune score
was only associated with age, but neither with FLT3 or
NPM1 gene mutation nor with the FAB subtype. We specu-
lated that the correlation between the immune score and
known prognostic gene mutations remains unclear in
patients with AML in the intermediate-risk group, which is
worth further study by expanding the sample size.

The relationship between the survival time and immune/
stromal score was calculated separately. The results showed
that the survival time in the low-score group was signifi-

cantly longer than that in the high-score group. Huang
et al. found that the OS in the high-score group was shorter
[15]. Ni et al. revealed that a higher immune score and ESTI-
MATE score were associated with worse OS days [25]. These
observations were consistent with our research, which sug-
gested that patients with high immune scores have worse
prognostic outcomes. We inferred that the immune score
might be an adverse prognostic factor in AML. Studies have
also shown a correlation between immune scores in the
tumor microenvironment and survival in solid tumors [26].

In order to find out the reasons for the differences in sur-
vival and clinical characteristics between the two score
groups, we conducted functional enrichment analysis of
the DEGs in the intersection of the two parts. The results
showed that the DEGs were mainly concentrated in T cell
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activation and proliferation, globulin secretion, and cytokine
receptor interaction. They also participated in cytokine-
cytokine receptor interaction, chemokine signaling pathway,
Toll-like receptor signaling pathway, NF-κB signaling path-
way, and AML-related pathway HSA05221. These analyses
indicate that these differential genes may participate in a
critical part in AML initiation and merit further verification
of the function of related differential genes by molecular
experiment. These may provide some research ideas in the
pathogenesis of AML on immunology.

A total of 96 DEG genes were associated with OS in
patients with AML in the intermediate-risk group. After
multiple regression analysis, we finally established a six-

TME-related gene model. It was validated in a separate
cohort of target-AML patients. In the gene risk score model
based on TME, a total of six candidate genes were identified,
including MEF2C, ENPP2, FAM107A, CD37, TNFAIP8L2,
and CASS4. Not only was a single gene of the risk-score
model associated with survival in patients with AML in
intermediate risk separately, the model also could be used
to predict the outcome of AML patients in the
intermediate-risk group.

MEF2C is one member of the MADS transcription factor
family. It is involved in the regulation of self-renewal and
differentiation for the hematopoietic system [27]. Recent
studies have focused on improving targeted therapies in
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AML [28]. Brown et al. [29] used high-precision mass spec-
trometry to indicate that high levels of phosphorylated
MEF2C S222 are obviously associated with chemotherapeu-
tic resistance observed in a cytogenetic normal and MLL-
recombinant leukemia cohort. This verifies that MEF2C
phosphorylation may promote chemotherapy resistance
and its blocking could be used to improve AML treatment.
Tarumoto et al. [30] used a CRISPR screening to reveal the
important role of LKB1 and its salt-induced kinase effector
(SIK3 and SIK2 partial redundancy) in maintaining MEF2C
function in AML. It was found that MEF2C-dependent leu-

kemia was sensitive to chemical inhibition-targeted SIK
activity.

ENPP2 (ectonucleotide pyrophosphate phosphodiester-
ase 2) is an enzyme present in blood circulation that func-
tions both as a phosphodiesterase and as a phospholipase.
This gene product stimulates the motility of tumor cells,
which is upregulated in several kinds of carcinomas [31].
In an analysis of 672 normal karyotype AML patients, an
analysis between FLT3-ITD and FLT3-TKD revealed a dis-
tinct difference for STAT5 target gene expression as well as
deregulation of ENPP2 [32].

37
5

0

–5

–10

Log lambda

–3.5 –3.0 –2.5 –2.0 –1.5

30 26 21 10 37 35 32 29 27 27 24 21 15 11 2626

Pa
rt

ia
l l

ik
el

ih
oo

d 
de

vi
an

ce

14

13

12

11

10

9

8

–3.5 –3.0 –2.5 –2.0 –1.5

(a)

MEF2C
1.0640

(1.0e+00 – 1.10)

Hazard ratio

FAM107A (N=77)

(N=77)

(N=77)TNFAIP8L2

# Events: 54; Global p–value (Log01–Rank): 9.7049e–10
A/C: 347.25; Concordance Index: 0.78

1.0001
(1.0e+08 – 0.97)

1.0280
(1.0e+00 – 1.06)

1e–09 1e–07 1e–05 0.001 0.1

0.055

0.049 

<0.001 

(b)

Se
ns

iti
vi

ty

1.0

0.8

0.6

0.4

0.2

0.0

0.0 0.2 0.4 0.6 0.8 1.0

p<0.001

Su
rv

iv
al

 p
ro

ba
bi

lit
y

Ri
sk

1.00

0.75

0.50

0.25

0.00

High risk
Low risk

38 7 1
39 30 20

0
13

Time (years)

0
8

0
3

0
2

0
1

0
0

0 1 2 3 4 5 6 7 8

Time (years)

0 1 2 3 4 5 6 7 8

AUC at 1 years: 0.893

AUC at 2 years: 0.907

AUC at 3 years: 0.882

Risk

High risk
Low risk

(c)

0

Points

MEF2C

ENPP2

CD37

CASS4

Total points

1-year survival

2-year survival

3-year survival

TNFAIP8L2

FAM107A

10 20 30 40 50 60 70 80 90 100

0.2 0.16 0.12 0.08 0.04 0

10

0

20 40 60 80

0.9 0.8 0.7 0.5 0.3 0.1

0.9 0.8 0.7 0.5 0.3 0.1 0.01

0.8 0.7 0.5 0.3 0.1 0.01

100 120 140 160 180 200 2200

10 2 3 4 5 6 7 8 9 10 12

5 35 45 552515

2 3 4 5 6 7 8 9 10 11 12 13 14

0 5 1510 20 25 30 35 40 45 50 55 60 65

20 40 60 80 100 120 140 165 180 200 220

(d)
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CD37 is a transmembrane protein of the 4 superfamily
that plays a role in the regulation of cell activation, growth,
and motility in mediating signal transduction events [33].
It has been focused as a therapeutic target recently. In the
analysis of CD37 expression in normal tissues and malig-
nancies, it was found to be expressed in T cell lymphoma
and AML [34]. They developed an antigen drug called
AGS67E-binding compound targeting CD37 for the treat-
ment of B/T cell malignancies. It demonstrated that CD37
was well expressed in AML and is a potential drug target.
The results of Zhang et al.’s research showed that mRNA
expression of CD37 was significantly upregulated in patients
with AML compared with healthy controls [35]. The result
showed that patients with high CD37 expression had shorter
OS and disease-free survival (DFS), which was in some
agreement with our conclusion.

By identifying differential genes, we established and val-
idated a risk score model based on TME for six immune-
related genes. In these genes, MEF2C and CD37 could be
novel immune tumor markers associated with prolonged
survival in AML and may have an important relationship
with the tumorigenesis and progression of AML. We hope
that our findings will contribute to better guidance of prog-
nosis and treatment for AML in the intermediate-risk group.
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