
Review Article
Research Progress of Population Pharmacokinetic of Metformin

Xiaohu Wang ,1,2 Jin Tang ,2 Chaozhuang Shen ,1,2 Xingwen Wang ,2 Hua Hu ,1

and Haitang Xie 1

1Anhui Provincial Center for Drug Clinical Evaluation, Yijishan Hospital of Wannan Medical College, No. 2, Zheshan West Road,
Jinghu District, Wuhu 241000, China
2Wannan Medical College, No. 22, Wenchang West Road, Yijiang District, Wuhu 241000, China

Correspondence should be addressed to Hua Hu; 115906005@qq.com and Haitang Xie; xiehaitang@sina.com

Received 16 August 2022; Revised 21 November 2022; Accepted 3 December 2022; Published 19 December 2022

Academic Editor: Maria Bayliak

Copyright © 2022 Xiaohu Wang et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Metformin is commonly used as first-line treatment for T2DM (type2 diabetes mellitus). Owing to the high pharmacokinetic (PK)
variability, several population pharmacokinetic (PPK) models have been developed for metformin to explore potential covariates
that affect its pharmacokinetic variation. This comprehensive review summarized the published PPK studies of metformin, aimed
to summarize PPK models of metformin. Most studies described metformin pharmacokinetics as a 2-compartment (2-CMT)
model with 4 study describing its pharmacokinetics as 1-compartment (1-CMT). Studies on metformin PPK have shown that
obesity, creatinine clearance (CLCr), gene polymorphism, degree of renal function damage, and pathological conditions all have
a certain impact on the PK parameters of metformin. It is particularly important to formulate individualized dosing regimens.
For future PPK studies of metformin, we believe that more attention should be paid to special populations.

1. Introduction

Metformin is a full-course drug for the treatment of type 2
diabetes mellitus (T2DM), and its main pharmacological
effect is to lower blood sugar by reducing hepatic glucose
output and improving peripheral insulin resistance [1, 2].
Metformin is recommended in the guidelines for the diagno-
sis and treatment of diabetes formulated by many countries
and international organizations as the first-line drug for con-
trolling hyperglycemia in T2DM patients and the basic drug
in drug combination [3].

Metformin is mainly absorbed and distributed in intes-
tinal epithelial cells and hepatocytes, and is transported by
organic cation transporters 1(OCT1), organic cation trans-
porters 3 (OCT3), and novel organic cation transporters 1
(OCTN1) [4, 5]. After absorption, it is transported by
MATE (mammal multidrug and toxin extrusion protein),
and finally discharged by kidney and urine in proto-
type [6].

Studies have shown that the plasma concentrations of
metformin vary greatly among humans, and about 1/3 of
patients cannot achieve satisfactory hypoglycemic effects [7,
8]. Gene polymorphism, renal function, obesity, and other fac-
torsmay be important factors for individuals’ response tomet-
formin [9, 10]. Christensen et al. [11]. showed that the plasma
steady-state trough concentration of subjects taking the same
dose of metformin was 54~4133ng/ml, suggesting that there
may be large individual differences in the pharmacokinetic
behavior of the drug, and the dosage of some patients needs
to be adjusted to achieve satisfactory therapeutic effects.

Population pharmacokinetic combines classical pharma-
cokinetic principles with population statistical models, and
is a research method to study the causes and correlations
of drug concentration differences between individuals. Cur-
rently, it is used in a variety of drugs, including anesthetic
drugs [12], anti-infective drugs [13, 14], and antituberculosis
drugs [15] and other drug regimen formulations, and the
expected effects are obtained.
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The population pharmacokinetics study of metformin
can explore the population characteristics of metformin
and its related influencing factors, and by simulating the
drug exposure under different dosing schemes, make the
clinical dosing scheme reasonable and effective, improve
the curative effect and reduce the occurrence of adverse reac-
tions. Thus, this review aims to compile all published PPK
models of metformin, focusing on PK parameters and the
influence of covariates to optimize treatment in order to pro-
vide reference for clinical rational use of metformin and its
population pharmacokinetics.

2. Methods

2.1. Literature Search Strategy. The EMBASE and PubMed
databases were searched (up to June 2022) using the follow-
ing terms: “metformin” AND (“population pharmacokinet-
ics model” OR “pharmacometrics” OR “pharmacokinetic
model” OR “nonlinear mixed effect model” OR “NON-
MEM” OR “model”). The reference lists from the relevant
studies were analyzed for additional literature.

2.2. Inclusion Criteria and Exclusion Criteria. Studies were
included in this systematic review if they met the following
criteria:

(1) Human studies; main indication was T2DM; both
patients and healthy subjects; (2) metformin as study drug;
providing PPK analyses; (3) employing a nonlinear mixed
effect modeling approach. (4) Not written in English; reviews
conducted in vitro and animal studies were excluded.

2.3. Data Extraction. The following information were
extracted from each included study:

(1) The study characteristics. e.g. authors, year, study
size, type of study (Prospective/Retrospective), num-
ber of participants, and dosage regimens

(2) The characteristics of the target population, e.g.
patients or healthy subjects, male/female, race, col-
lected samples, age, and weight range; and

(3) The information on PPK analyses, e.g. structural and
statistical models, data analysis software, covariates,
parameter estimates, sampling schedule (sparse sam-
pling/intensive sampling), estimation method (First-
order conditional estimation with interaction,
FOCE-I; First-order conditional estimation, FOCE),
interindividual variability (IIV), residual variability
(RV), and model evaluation approaches

3. Results

3.1. Study Identification. A total of 1721 articles were identi-
fied from PubMed and EMBASE of relevant studies. After
preliminary reading and repeated review, 1483 articles were
not deemed to be in accordance with the inclusion criteria.
In the remaining 238 articles, 4 record was a review article,
and 223 articles did not provide PPK analyses or did not
use NONMEM [16, 17]. Finally, only 11 studies were
included in this systematic review. The specific process is
shown in Figure 1.
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Figure 1: The selection process of the studies included in the systematic review.
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3.2. Study Characteristics. All included studies were published
between 2006 and 2020. The characteristics of each study are
summarised in Table 1. Among the 11 studies, 4 were retro-
spective studies and 7 were prospective studies. Almost all of
these studies were conducted in adults, with only one in ado-
lescents. Of these, 4 were in patients with type 2 diabetes (2
special population studies: pregnant women and patients
receiving haemodialysis), 4 are in healthy volunteers, and the
remaining 2 include T2DM patients and healthy volunteers;
the overall aim of most population pharmacokinetic studies
of metformin has been to identify factors influencing metfor-
min pharmacokinetics and to provide population estimates
of the PK parameters. The number of participants in each
study ranged from 12 to 336.

3.3. Population Pharmacokinetic Models, Pharmacokinetic
Parameters, and Covariates. The reported sampling sched-
ule, model structure, PK parameters, Estimation method,
covariates, and conclusion are summarized in Table 2. All
metformin PPK studies included in this review were con-
ducted with NONMEM® software. In terms of disposition,
7 studies described metformin pharmacokinetics using a 2-
CMT models; FOCE was the method most frequently
employed, while some studies used the FOCE-I method.
Many factors were investigated in the process of modeling,
such as age, gender, genetic variants in transcription factors,
liver function (ALT), creatinine clearance (CLCr), and
weight. Three studies used CLCr as a covariate, and CLCr
was positively correlated with CL/F. One study included
total body weight (TBW) as a covariate, and TBW was pos-
itively correlated with CL/F too. One study identified the
strongest association of SP1 variants with metformin, PK,
and PD. In addition, a study showed that the OCTN1-
917C>T gene variant and the OCT2-808G>T gene poly-
morphism can be used to determine the optimal dose of
metformin. All the models were internally validated by a
visual predictive check (VPC) [18–23], normalized predic-
tion distribution error (NPDE) [19, 24], boot-strap analysis
[18–21, 23–25], diagnostic plots [18–21, 23–27], and the
prediction error test [23, 28]. In terms of pharmacokinetic
parameters, except for studies in special populations, CL/F
is basically between 50-80 l/h (Figure 2). Ka generally ranged
from 0.4 to 0.6, and the Ka in the study of Li et al. [24, 25]
differed from the rest, possibly due to the small number of

subjects included and the number of blood samples col-
lected. However, in patients with late pregnancy, Ka was
slightly lower and may have to significant anatomical, phys-
iological, and biochemical differences resulting in maternal
pharmacokinetic changes. For the random effect model,
IIV was modeled using exponential error model in most
studies (Table 3). As for RV, three studies used combined
additive and proportional error model. The rest were mod-
eled using additive (n = 4), exponential (n = 1), and propor-
tional (n = 2) error model. The fixed effect parameters of CL/
F and V/F are summarized in Table 4.

4. Discussion

Although metformin has many years of clinical application
experience, there are significant individual differences in the
efficacy and adverse reactions of metformin. Metformin not
only has appetite loss, nausea, diarrhea, and gastrointestinal
reactions, but also has serious adverse reactions such as lactic
acidemia and ketosis. It is an effective measure to reduce the
adverse reactions and improve the curative effect by reducing
the dosage. Many studies have put forward effective opinions
that controlling the blood concentration of metformin below
5mg/L can reduce the risk of lactic acid poisoning. Diabetic
patients are often accompanied by a variety of complications
and require a combination of drugs to achieve satisfactory
therapeutic effects. Previous studies have shown that drug
transporter gene polymorphisms and the interaction of drugs
of different properties may change the PK parameters of met-
formin, thereby affecting its clinical efficacy, and even causing
serious complications or adverse reactions. Dosing regimens
can be optimized through population pharmacokinetic studies
that provide quantitative evidence of efficacy and safety. Cur-
rently, PPK models for metformin have covered a wide range
of disease patient populations, with most studies incorporat-
ing Bayesian feedback and some using Monte Carlo simula-
tions for optimization of metformin dosing regimens. In the
11 PPK studies collected in this study, themain PK parameters
were CL and Vd. Of these, CLcr was the main influence on
clearance, while the main influence on Vd was body mass
(Table 4). In addition, the study of metformin PPK model
should consider the special population as the object such as
in patients with hepatic impairment, chronic kidney disease
(stage 2, 3(a), 3(b), and 4) [29–32], acute myeloid leukemia,

2016 Sam et al
2020 Ling et al
2018 Choi et al

2014 Goswami et al
2013 Duong et al

2012 Jung-woo et al
2008 Hong et al

2006 Charles et al

0 1 2 3 4 5

Ka (1/h)

2016 Sam et al
2016 Chitnis et al

2020 Ling et al
2018 Choi et al

2014 Goswami et al
2013 Duong et al

2013 Yoon et al
2012 Jung-woo et al

2008 Hong et al
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Figure 2: Metformin clearance and Ka included in the study.
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pregnant [33–35], elderly [36], overweight and obese adoles-
cents [37], and so on [38–40] (Figure 3). For example, OCT1
is a major determinant of metformin uptake by hepatocytes,
and genetic polymorphisms in OCT1 are associated with var-
iability in metformin PK; promoter variants of the transporter
proteins MATE1 and MATE2K, which determine metformin
excretion into the urine, are also associated with metformin
disposition and response, and understanding variability in
metformin response and disposition is important for the ratio-
nal use of metformin. Stocker et al. [41] studied the effect of
novel promoter variants in the gene encoding the MATE
transporter on the pharmacokinetic and pharmacodynamic
parameters of metformin in healthy volunteers and showed
that diabetic patients carrying the MATE1 rs2252281 (T>C)
mutation gene had better efficacy on metformin than wild
type. Song et al. [42] showed that metformin renal tubular
excretion was mainly affected by the OCT2 (586C > T, 602C
> T, and 808G > T) mutation, and plasma concentrations of
metformin were higher in mutant subjects. In pregnant
women, the increased clearance of metformin during preg-
nancy is due to enhanced renal clearance. From a pharmaco-
kinetic perspective, this may require a metformin dose
increase of ≥20% to maintain the given therapeutic effect
[33], which can be simulated by population pharmacokinetic
methods of dosing. Of concern is that lactate clearance is sig-
nificantly limited in patients with severely impaired liver func-
tion, and some studies suggest that metformin should be
avoided in patients with serum transaminases above 3 times
the upper limit of normal or with severe hepatic insufficiency.
Studies on different populations suggest that the PK parame-
ters of metformin vary among populations, and although
some studies have given specific recommendations for dosing
regimens, considering the small sample size in the study pop-
ulations, future PPK studies of metformin should pay more
attention to special populations, and more and more extensive

studies with large samples are needed to validate them in order
to make specific recommendations on the use of metformin in
special populations. The dosing of metformin in special popu-
lations should be recommended. Besides, previously published
models, as well as future models, should be evaluated exter-
nally for a more accurate description of models’ performance.
More importantly, the clinical background needs to be fully
considered when including covariates. Although we managed
to cover a series of important articles on the popPK analysis of
metformin, certain limitations still exist. On the one hand, the
pharmacokinetic and pharmacodynamic aspects of metfor-
min have been well studied in terms of genetic polymorphisms
and ethnic differences, while population pharmacokinetics
have been rarely addressed. For example, there are also studies
showing that metformin monotherapy is more effective in
Hispanic and non-Hispanic whites compared to non-
Hispanic blacks [43]. Mean CL/F and Q/F estimates were sig-
nificantly higher in African Americans compared to European
Americans and Asian Americans. A 26% increase in dose
should be considered for African Americans to achieve similar
metformin exposure as European Americans [20]. On the
other hand, there are aspects of interest regarding drug-drug
interactions between metformin and other drugs, as well as
new potential in therapeutic treatments beyond glycemic con-
trol, especially in the prevention of cancer and treatment of
fertility problems in polycystic ovary syndrome, which are
not discussed in this review. Apart from that, there were also
a small number of population pharmacokinetics of metformin
that did not use NONMEM and were not included for corre-
lation analysis. Finally, the review could provide information
on the utilized model structure, population pharmacokinetic
parameters, influential covariates, as well as the degree of
pharmacokinetic variability. We hope to provide some refer-
ence for future population pharmacokinetic studies of
metformin.

Overweight
and obese

adolescents

Gene polymorphism
such as
specificity protein 1
............

Other diseases
such as acute myeloid leukemia
undergoing hemodialysis
............

Chronic kidney
disease

Hepatic
impairment

Gestational diabetes mellitus

Figure 3: Special populations in which metformin therapeutic drug monitoring (T2DM) may be warranted. Created with http://BioRender
.com.
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5. Conclusion

This review summarizes information on PPK of metformin.
Pharmacokinetic parameters of metformin are affected by
many factors, including respects of transporter gene poly-
morphism, kidney function, body weight, and physiological
function. However, there are few studies on metformin in
populations with special metabolic profiles, such as obese
adolescents, patients with gestational diabetes mellitus, liver
insufficiency, and it is of great clinical value to study the
population pharmacokinetics of metformin in special popu-
lations. In conclusion, novel or potential covariates represent
an important direction for further research; metformin PPK
model in special population patients is still lacking and is
recommended.
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