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Background. This study is aimed at identifying the important biomarkers associated with bone metastasis (BM) in breast cancer
(BRCA). Methods. The GSE175692 dataset was used to detect significant differential expressed genes (DEGs) between BRCA
samples with or without BM, and DEG-related pathways were then explored. Further, we constructed the protein-protein
interaction (PPI) network on GEGs and filtered 5 vital nodes. We then performed the Cox regression, Kaplan-Meier analysis,
nomogram, and ROC curve to filter the most significant prognosis genes. The GSE14020 and GSE124647 datasets were used to
verify the expression and prognostic value of hub genes, respectively. Finally, the gene set enrichment analysis (GSEA) was
performed to reveal the potential mechanism. Results. Totally, 74 DEGs were detected, which mainly correlated with infectious
disease, signaling molecules, and interaction. The 5 important DEGs were then filtered, and the Cox regression further showed
that 2 genes, including prominin 1 (PROM1) and C-C motif chemokine ligand 2 (CCL2), were related to the prognosis of
BRCA metastasis patients. Especially, PROM1 presented a better prognostic performance on the survival probability of patients
than CCL2. Verification analysis further confirmed the abnormal expression and significant prognostic influence of PROM1.
Finally, GSEA revealed that PROM1 was negatively related to IGF1 and mTOR pathways in BRCA metastasis. Conclusion.
PROM1 was an important biomarker associated with BRCA bone metastasis and affected the prognosis of metastatic BRCA
patients. It may play a vital role in metastatic BRCA by negatively regulating IGF1 and mTOR pathways.

1. Introduction

Metastasis accounted for more than 90% of cancer-related
mortality [1]. The bone is one of the most preferred sites
of metastatic spread from different cancer types, including
breast cancer (BRCA). BRCA has become a critical health
care issue that substantially affected women worldwide.
Besides the lung, liver, and brain, the most common site
for metastasis in BRCA is the bone [2]. The bone is also
the first site of distant metastasis in 25% to 40% of patients

with advanced BRCA [3]. It should be noted that different
subtypes of BRCA exhibited distinct metastatic behavior in
terms of kinetics and anatomic sites of relapse [4, 5]. For
example, bone-only metastases were more common in the
hormone receptor- (HR-) positive group than in the other
subtypes [6]. The bone metastasis in BRCA was able to
influence the survival of patients. It was reported that a 5-
year survival rate of BRCA patients without metastasis was
greater than 95% but close to only 20% once bone metastasis
occurred [7]. In addition, BRCA bone metastasis also caused
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a series of bone-related complications such as pain, pathologic
fractures, and spinal cord compression, which significantly
affected the patient’s quality of life [6], also increased the med-
ical costs and mortality risk. As such, new targets and thera-
peutic strategies associated with BRCA bone metastasis are
urgently required.

Over the past few decades, a great deal of biomarkers
about BRCA bone metastasis has been generated, which
facilitated the studies on cancer pathogenesis. Pantano
et al. found that integrin alpha 5 (ITGA5) was highly
expressed in bone metastases, compared to lung, liver, or
brain metastases [8]. Awolaran et al. identified 15 proteins
expressed by BRCA cells as factors that mediated BRCA
bone metastasis, and upregulation of them could promote
BRCA metastasis to bone, except for the C-C motif chemo-
kine ligand 2 (CCL2) which showed a reduced expression
[7]. Westbrook et al. identified and validated the dedicator
of cytokinesis protein 4 (DOCK4) as a potential biomarker
for risk of bone metastasis development in patients with
early BRCA [9]. In addition, Zhang et al. found that
microRNA-429 can inhibit BRCA bone metastasis by regu-
lating matrix metallopeptidase 9 (MMP-9) [10]. More and
more useful biomarkers should be detected to reveal the
cancer pathogenesis involved in BRCA bone metastasis.

The present study was conducted to detect significant
bone metastasis-associated biomarkers involved in BRCA.
The differential expressed genes (DEGs) between BRCA
bone metastasis and nonmetastatic samples were initially
screened out through the Gene Expression Omnibus (GEO)
dataset. Then, the impacts of significant DEGs on the survival
probability of metastasis BRCA samples were predicted.
Regarding significant prognostic biomarkers, we explored
associated regulatory pathways involved in BRCAmetastasis.
This study was conducive to reveal useful biomarkers and
potential mechanisms involved in BRCA bone metastasis.

2. Methods

2.1. DEG Identification and Function Analysis. The proper
dataset for screening the differential expressed genes (DEGs)
was selected from the Gene Expression Omnibus (GEO)
database (https://www.ncbi.nlm.nih.gov/geo/). Finally, the
GSE175692 dataset which contained 33 BRCA bone metas-
tasis samples and 151 nonbone metastasis samples was used
to detect significant DEGs. According to the threshold of P
< 0:05 and absolute log fold change ðFCÞ > 1, the DEGs
between the 2 groups were identified by the limma R pack-
age. And the top 20 up- and downregulated DEGs were
presented. Subsequently, the significant Kyoto Encyclopedia
of Genes and Genomes (KEGG) pathway and Gene Ontol-
ogy (GO) terms about DEGs were explored through the
clusterProfiler R package. GO terms were annotated from
the biological process (BP), cellular component (CC), and
molecular function (MF) aspects.

2.2. PPI Network Construction and Hub Genes
Determination. The protein-protein interaction (PPI) network
among DEGs was constructed using the online tool String
(https://cn.string-db.org/) setting the interacting score as

medium, followed by visualization through Cytoscape. The
top 10 hub genes among the whole PPI network were detected
by the degree gene ranking method using the Cytohubba plug-
in of Cytoscape. The Venn analysis was then performed to filter
overlapped nodes between the top 10 hub genes and top 20
DEGs. Finally, 5 consistent nodes were identified for further
investigation.

2.3. Expression and Prognosis Analysis on Hub Genes.
Differential expression of 5 hub genes between BRCA samples
with or without bone metastasis was firstly evaluated using
the dataset of GSE175692. Prognosis associated hub genes in
BRCA metastasis was then evaluated through the univariate
Cox regression analysis. The Kaplan-Meier analysis was per-
formed to explore the influence of hub genes expression on
the overall survival of BRCA metastasis samples. Further,
nomogram and receiver operating characteristic (ROC) curve
analyses were conducted to reveal the prognostic performance
of hub genes. Through a series of filtration, the 2 most impor-
tant hub genes (C-Cmotif chemokine ligand 2 (CCL2) and pro-
minin 1 (PROM1)) were finally identified.

2.4. Expression and Prognostic Value Verification on Hub
Genes. Regarding the most important hub genes, the
GSE14020 dataset which contained 18 bone metastasis and
47 nonbone metastasis BRCA samples was used to verify
their mRNA expression. Moreover, the prognostic value of
2 hub genes on the overall survival of BRCA metastasis
patients was also verified by the Kaplan-Meier analysis
using the GSE124647 dataset which included 140 BRCA
metastasis samples.

2.5. GSEA on Significant Prognostic Factors. Due to the dif-
ferential expression and vital prognostic effect of significant
prognostic factors in metastasis BRCA samples, we per-
formed the gene set enrichment analysis (GSEA) to explore
the possible mechanism associated with BRCA metastasis.
The gene expression profile for GSEA was obtained from
the GSE175692 dataset which included 184 BRCA metastasis
samples. All the patients were divided into high and low
expression groups according to the median gene expression
level. Then, the potential pathway enriched in high-/low-
expression groups was predicted by GSEA. The threshold
for GSEA was set as follows: the number of permutations
(1000), enrichment statistic (weighted), and metric for rank-
ing genes (Pearson).

2.6. Statistical Analysis. The expression difference between
the 2 groups was compared with the independent-samples
t-test or Mann–Whitney test, and the results were presented
with the violin chart and box scatter which contained the
expression median, upper quartile, lower quartile, maxi-
mum, and minimum. The effects of gene expression on the
survival of patients were evaluated through survival analysis
and Cox regression showing hazard ratio (HR) and 95%
confidence interval (CI). P < 0:05 was considered statistical
significance.
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3. Results

3.1. DEGs Identification and Function Analysis. The
GSE175692 dataset was used to filter the DEGs between
BRCA samples with or without bone metastasis. A total of
74 significant DEGs were found according to absolute
LogFC > 1 and P value < 0.05, and the top 10 upregulated
and 10 downregulated DEGs were marked (Figure 1(a)).
The KEGG analysis showed that 74 DEGs were mainly asso-
ciated with infectious disease, signaling molecules, and
interaction (Figure 1(b)). The enriched pathway of partial
DEGs is shown in Figure 1(c).

Functional enrichment analysis was then performed to
reveal the role of 74 DEGs in cancer progression (Figure 2).

The significant enriched KEGG pathway included ECM-
receptor interaction, cytokine-cytokine receptor interaction,
and human papillomavirus infection. For cellular compo-
nent, the DEGs were largely located at the collagen-
containing extracellular matrix and extracellular matrix.
For biological process, DEGs primarily participated in
extracellular structure organization. In terms of molecular
function, DEGs were significantly enriched in receptor
regulator activity and receptor ligand activity.

3.2. Hub Gene Determination and Differential Expression
Analysis. The protein-protein interaction (PPI) network
among DEGs was constructed using String and Cytoscape.
The PPI network contained 60 nodes and 167 edges
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Figure 1: The DEG identification and mechanism exploration. (a) Volcano plot and top 20 DEGs presentation. (b) KEGG pathway and
classification. (c) Correlation between the DEG and KEGG pathway. Abbreviation: DEGs: differential expressed genes; KEGG: Kyoto
Encyclopedia of Genes and Genomes.
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(Figure 3). Using the degree gene ranking method, we iden-
tified the top 10 hug genes, namely the estrogen receptor 1
(ESR1), matrix metallopeptidase 9 (MMP9), bone morpho-
genetic protein 2 (BMP2), secreted phosphoprotein 1
(SPP1), C-C motif chemokine ligand 2 (CCL2), progester-
one receptor (PGR), Wnt family member 2 (WNT2), matrix
metallopeptidase 3 (MMP3), integrin subunit beta 3
(ITGB3), and prominin 1 (PROM1).

The consistent genes between the top 20 DEGs and 10
hub genes were determined. The 5 most significant hub

genes were subsequently found, which contained 3 upregu-
lated (MMP9, ITGB3, and BMP2) and 2 downregulated
(CCL2 and PROM1) DEGs (Figure 4(a)). The detailed
information of 5 hub genes in GSE175692 is presented in
Figure 4(b). Differential expression of 5 hub genes between
bone metastasis and nonbone metastasis BRCA samples
was then compared (Figure 4(c)), and results showed that
5 hub genes were abnormally expressed in BRCA bone
metastasis group compared with that in the nonbone
metastasis group.
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Figure 2: Functional enrichment analysis on 74 DEGs containing the KEGG pathway and GO annotation. Abbreviation: DEGs: differential
expressed genes; KEGG: Kyoto Encyclopedia of Genes and Genomes; GO: Gene Ontology.
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3.3. Prognostic Value Analysis on Hub Genes. We firstly
performed the univariate Cox regression to screen the
prognosis-related biomarkers in metastatic BRCA and found
that PROM1 and CCL2 showed a significant correlation
with the overall survival of patients (Figure 5(a)). Survival
analysis indicated that high expression of PROM1 and
CCL2 shortened the overall survival time of metastatic
BRCA patients (Figure 5(b)). We also explored their prog-
nostic impacts on the survival of BRCA patients with single
bone metastasis. However, both PROM1 and CCL2 exerted
no significant impacts on the survival of single BRCA bone
metastasis patients (Figure 5(c)), which might be due to
the insufficient sample size.

Subsequently, the prognostic performance of PROM1
and CCL2 in metastatic BRCA was evaluated. A nomogram
analysis showed that PROM1 possessed the largest contri-
bution to the survival probability of patients, contributing
100 points (Figure 6(a)). The ROC analysis indicated that
the prediction ability of PROM1 was slightly superior to
CCL2 (Figure 6(b)).

3.4. Expression and Prognostic Value Verification of Hub
Genes. The above results indicated the significance of
PROM1 and CCL2 in metastatic BRCA; we further verified
their expression and prognostic value in metastatic BRCA.
Quantitative analysis just revealed the significant expression
difference of PROM1 between BRCA samples with or with-
out bone metastasis (Figure 7(a)). The survival analysis
(Figure 7(b)) also showed the significant prognostic impact
of PROM1 on the patients. Verification analysis further
disclosed the significance of PROM1 in metastatic BRCA.

3.5. GSEA on PROM1. PROM1 was determined as a vital
downregulated gene in bone metastasis and played an

important role in metastasis BRCA progression. Finally, we
explored the potential mechanism of PROM1 involved in
metastasis BRCA. The GSEA indicated that PROM1 was
negatively associated with insulin-like growth factor 1
(IGF1) and mechanistic target of rapamycin kinase (mTOR)
pathways (Figure 8). We speculated that PROM1 might
influence metastasis BRCA development through negatively
regulating IGF1 and mTOR pathways.

4. Discussion

It has been reported that 70% of patients with metastatic
BRCA have a marked tendency to spread to the bone, result-
ing in significant skeletal complications and mortality [11].
Despite advances in diagnosis, the identification of patients
at high risk of bone recurrence is still an unmet clinical need.
Therefore, identifying useful biomarkers was conducive to
improve the clinical outcome of metastatic BRCA patients.
Spadazzi et al. have identified trefoil factor 1 (TFF1) as
strictly correlated to bone metastasis from estrogen receptor
(ER) + breast cancer, and TFF1 upregulation could be use-
ful to identify patients at high risk of bone metastasis [12].
Pantano et al. determined integrin subunit alpha 5 (ITGA5)
as a predictive of poor bone metastasis-free survival [8]. As
the bone is the most frequent organ for breast cancer
metastasis, thus it is essential to predict the bone metastasis
of breast cancer.

In this study, we firstly identified 74 significant DEGs
between BRCA samples with or without bone metastasis.
These 74 DEGs mainly participated in ECM-receptor inter-
action and cytokine-cytokine receptor interaction, which
referred to signaling molecules and interaction. The previous
study has indicated that ECM-receptor interaction signifi-
cantly participated in breast cancer metastasis to the bone
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[13] and brain [14]. The ECM-receptor interaction pathway
was also correlated to lung metastasis in osteosarcomas [15],
lung adenocarcinoma metastasis [16], and liver metastasis of
colorectal cancer [17]. In addition, virus infection such as
human papillomavirus (HPV) infection was also proved to

correlate with DEGs in our study. During the last decades,
great interest has been given to the viral pathogenesis of breast
cancer. Habyarimana et al. showed that human papillomavi-
rus (HPV) DNAwas found in 46.81% of Rwandese breast can-
cer cases, HPV16 being the most prevalent subtype (77.27%)
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followed by HPV33 (13.64%) and HPV31 (9.09%) [18], sug-
gesting high-risk HPV infections as a risk factor in breast can-
cer development. Cavalcante et al. found that the high
frequency of HPV infection in breast cancer samples indicated
a potential role in breast carcinogenesis [19]. However, Hedau
et al. found no evidence of HPV pathogenesis of breast cancer
in Indian women [20]. And the low frequency of HPV was
detected in Ghaffari et al.’s study, which also did not support
the association between breast carcinoma and HPV infection
[21]. It followed that effect of HPV infection in BRCA was
not uniform, and it was possible that HPVmay be responsible
for breast carcinogenesis only in a small percentage of all
breast cancer.

Subsequently, we found the 5 most important hub genes
among all GEGs, namely MMP9, ITGB3, BMP2, CCL2, and

PROM1. A univariate Cox regression initially identified that
PROM1 and CCL2 expressions were related to the prognosis
of metastatic BRCA patients. Survival analysis, nomogram,
and ROC curve analyses further presented the significance
of PROM1 on the survival probability in metastatic BRCA.
Expression analysis showed that PROM1 was upregulated
in BRCA bone metastasis samples compared with no bone
metastasis samples. The above results showed that PROM1
was an important DEGs involved in bone metastasis of
BRCA and presented a good prediction performance on
the patient’s survival probability.

Prominin 1 (PROM1), also called CD133, is a trans-
membrane glycoprotein which is expressed in stem cell line-
ages [22]. The importance of PROM1 in BRCA has been
reported. Priedigkeit et al. reported that PROM1 was related
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Figure 7: The expression and prognostic value verification of PROM1 and CCL2. (a) Differential expression of hub genes between BRCA
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to transcriptional remodeling in long-term estrogen-
deprived locoregional breast cancer recurrences [23].
Bertheau et al. identified PROM1 as a mutant TP53-
associated gene involved in breast cancer [24]. Xia analyzed
the prognostic roles of PROM1 mRNA in the subtypes of
BRCA and concluded that PROM1 mRNA may be a suitable
prognostic marker for human BRCA [25]. Liu et al. found
that PROM1 was not expressed in the cells of normal breast
tissue, but the expression rate increased with progression of
lesions from usual hyperplasia, through atypical ductal
hyperplasia, ductal carcinoma in situ, and invasive carci-
noma, suggesting that PROM1 positive breast cancer cells
were closely related to invasiveness and its expression may
predict a poor prognosis [26]. Bock et.al found that N-
cadherin and PROM1 expressions were strongly correlated,
which suggested the role of PROM1 in the migration of
breast cancer [27]. Regarding the bone metastasis of BRCA,
Leni et al. indicated that PROM1 showed a highly significant
value regarding metastatic localizations in the bone [28]. At
present, few studies reported the role of PROM1 in the
BRCA bone metastasis, and more investigations are needed
to be performed in the future.

This study has indicated the important function of
PROM1 in BRCA metastasis, and we finally explored the
potential mechanism associated with PROM1. GSEA indi-
cated that PROM1 was significantly related to mTOR and
IGF1 pathways with a negative correlation. The mTOR
critically regulated several essential biological functions,
such as cell growth, metabolism, survival, and immune
response [29]. However, the mTOR was frequently deregu-
lated in human cancers [30]. It has demonstrated that PROM1
played a key role in the regulation of autophagy via upstream
suppression ofmTOR signaling in the human retinal pigment
epithelium [22]. Kholodenko et al. found that cells with the
complete knockout of PROM1 showed the highest resistance
to mTOR inhibitors in colorectal cancer [31]. Our study sug-
gested that low expression of PROM1 might activate the
mTOR pathway in BRCA metastasis samples.

IGF are the most abundant growth factors in bone and
are required for normal skeletal development and function.
Via activation of the IGF1 receptors (IGF1R) and variant
insulin receptors, IGFs promote cancer progression, aggres-
siveness, and treatment resistance [32]. Preclinical evidence
has suggested that a high IGF1 environment in primary
tumor stimulated tumor cells metastasis to bone, suggesting
that bone metastases may reflect IGF dependency [32].
Several studies have indicated that IGF signaling systems
were able to regulate BRCA growth, progression, and metas-
tasis [33, 34]. It followed that the IGF1 pathway played a
vital function in the progression of BRCA metastasis. How-
ever, this study just indicated the negative correlation
between PROM1 and IGF1/mTOR pathways; the detailed
regulation in BRCA metastasis especially bone metastasis
was worth further investigating.

There are limitations that consist in this article. First,
PROM1 expression in clinical samples should be detected
by qPCR or IHC, and its prognostic significance needs to
be further confirmed in clinical cases. Second, we have
explored the potential pathways associated with PROM1

with the public databases, but how PROM1 modulates
mTOR and IGF1 pathways in metastasis BRCA remains
unclear, and both in vivo and in vitro experiments need to
be investigated.

5. Conclusion

This study identified 74DEGs betweenBRCA samples with or
without bone metastasis, and 5 important DEGs were finally
filtered, namely, MMP9, ITGB3, BMP2, CCL2, and PROM1.
Through the Cox regression and Kaplan-Meier survival anal-
ysis, PROM1 and CCL2 were determined as the significant
prognosis-related biomarkers associated with metastatic
BRCA. Prognosis verification analysis further indicated the
importance of PROM1 rather than CCL2. Especially, both
nomogram and ROC analyses presented the better prediction
ability of PROM1 on the survival probability of metastatic
BRCApatients. Finally, we found that PROM1negatively cor-
related with IGF1 and mTOR pathways involved in BRCA
metastasis. This study identified PROM1 as an important
prognosis-related biomarker associated with metastatic
BRCA, and detailed function needed further investigation
via experimental verification and clinical cohort.
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