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Mandibular bone regeneration is still a big challenge in those diabetic patients with poorly controlled blood glucose. In this study,
we prepared a novel glucose-sensitive controlled-release fiber scaffold (PVA-HTCC/PEO-rhBMP2-glucose oxidase (PHPB-G)),
which contained the recombinant human bone morphogenetic protein 2 (rhBMP2) by coaxial cospinning and grafted with
glucose oxidase (GOD). We presented evidence that PHPB-G could undergo a series of structural changes with the blood
glucose and promoted bone regeneration in diabetic rat. PHPB-G expanded the voids in nanofibers when blood glucose levels
elevated. More importantly, its slow-release rhBMP2 effectively promoted the healing of bone defects. These data suggested
that the PHPB-G delivery system may provide a potential treatment strategy for patients with severe diabetic alveolar bone defects.

1. Introduction

Diabetes mellitus is chronic metabolic disease characterized
by hyperglycemia. Recent studies reported that diabetes
can be associated with oral pathological changes, which are
usually ignored in clinic [1]. There is a prediction that 10%
of adults would suffer from diabetes in 2030 [2]. In China,
the total rate of diabetes or prediabetes is about 24.2% [3].
A couple of diseases including cyst, cancer, and chronic
inflammation in maxillofacial often cause the lack of jaw
bone. How to promote the bone repairment of diabetic
patients is still a big challenge in clinic [4].

Present researches showed that diabetes was closely
related to periodontitis [5]. What is more, the risk of peri-
odontitis in diabetic patients is almost three times higher
than that in nondiabetic patients [6]. Therefore, the control
of blood glucose plays a key role in patients with diabetic
periodontitis [7]. Periodontitis destroys periodontal sup-
porting tissue and causes alveolar bone resorption. Hyper-
glycemia can promote the secretion of inflammatory
factors, which result in alveolar bone absorption. That is
the main reason for periodontitis patients with tooth loss [8].

In recent years, many natural or synthetic biomaterials,
such as chitosan and nanosilica-functionalized scaffolds,
proved to be active and beneficial to cure bone defects
[9–11]. Electrospun fiber membranes can be loaded with
growth factors, such as BMP2, to form sustained-release or
controlled-release systems for tissue defect repair [12]. Elec-
trospinning can produce nanofibers, which promote cell
adhesion, proliferation, and differentiation by changing the
diameter, pore size, and shape of the fibers [13]. However,
the traditional electrospinning technology could not respond
to the fluctuation of blood glucose rapidly, which result in a
low effective drug release. It is urgent to develop glucose-
responsive biological scaffolds for the treatment of bone
regeneration in patients with diabetic periodontitis.

GOD has been widely used in the delivery system, which
has the ability to respond to glucose on a therapeutically rel-
evant time scale [14]. When the concentration of glucose
fluctuated, GOD can transform glucose into gluconic acid.
As a result, the physical properties of pH-responsive mate-
rials altered. Finally, the controlled release of loaded drugs
is realized [15]. In the present study, coaxial cospinning elec-
trostatic pinning of nanofiber membrane grafted with GOD
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(PHPB-G) was utilized for the repairment of bone tissue
engineering. The purpose of this study was to provide evi-
dence that PHPB-G delivery system is sensitive to the fluctu-
ation of glucose and can promote the bone reformation by
controlling the delivery of rhBMP2, which may hold as novel
potential biomaterials for the treatment of diabetic peri-
odontal disease.

2. Materials and Methods

2.1. Polymeric Membrane Preparation. Glucose and glucose
oxidase (GOD) were from Sigma-Aldrich Inc., St. Louis,
Missouri, USA. Quaternized chitosan (HTCC, 300 kDa)
was from Dongying Tianhua Biomaterial Co., Ltd., China.
Recombinant bone morphogenetic protein 2 (rhBMP2)
was from Centocor Inc., Pennsylvania, USA. Polyvinyl alco-
hol (PVA) has a degree of polymerization of 1700 and a
degree of alcoholysis of 88%. Polyethylene oxide (PEO,
molecular weight: 1 million) was from Chengdu West Asia
Chemical Co., Ltd., China.

PVA and HTCC were mixed as shell spinning solution.
PEO and rhBMP2 were mixed as core layer spinning solu-
tion. To reduce the solubility of the fibers, PVA-HTCC/
PEO-rhBMP2 was crosslinked after electrospinning as nano-
fibers. In short, the fiber membrane was transferred into a
vacuum drying oven equipped with glutaraldehyde, in which
the glutaraldehyde completely interacted with PVA for 12
hours. Followed by vacuum drying for 3 hours without glu-
taraldehyde, the fiber membrane was soaked in a solution of
toluene diisocyanate (TDI) in dichloromethane (DCM) at a
concentration of 0.2mg/ml for 12 hours. A certain amount
of 1-(3-dimethylaminopropyl)-3-ethylcarbodiimide (EDC),
N-hydroxysuccinic acid imine (NHS), and GOD (50μg/
30ml) was dispersed in the aqueous solution. Finally, after
being soaked for 12 hours, the fiber membrane was vacuum
dried overnight.

2.2. Scanning Electron Microscope Analysis. To analyze the
cross-sectional shape of PHPB-G, SEM (JeolJSM-400LV,
Jeol Ltd., Tokyo, Japan) was utilized to observe the cross-
sectional morphology of PHPB with certain concentration
glucose solutions (0, 7, 13, and 15mmol/l) for immersion.
Briefly, the samples were put into liquid nitrogen for 20
minutes and then cut to expose the cross section and
sprayed with gold. The operating voltage was 20 kV, and
the analysis magnification was 500 times and 2000 times,
respectively.

2.3. Drug Release Study. According to previous studies [16,
17], the evaluation of drug release was applied in the present
study. In short, PHPB scaffolds were added into 100ml of
different glucose solutions (0, 5, 17, and 25mmol/l, dissolved
in PBS buffer, pH = 7:4). In order to simulate the fluctuation
of blood glucose during the process of drug releasing, glu-
cose or PBS buffer was added into the PHPB scaffold system
and observed at certain time, respectively. After being cul-
tured for 0, 0.25, 0.75, 1, 2, 4, 8, 12, 24, 48, 96, and 168 hours,
the supernatant of media was collected and centrifuged at
3000 rpm for 10min. According to the protocol from the

manufacture’s instruction, the concentrations of supernatant
rhBMP2 were then detected by ELISA kit (R&D Systems,
Minneapolis, MN, USA).

2.4. BMSC Preparation. Bone marrow stromal cells (BMSCs)
were obtained from male SD rats (7 days old) in the ways
described above [18]. High-glucose Dulbecco’s modified
Eagle medium (DMEM) contains glucose concentration of
25.5mmol/l, and low-glucose DMEM contains glucose con-
centration of 5mmol/l. In the present study, high-glucose
medium was used to mimic the high-glucose culture envi-
ronment, and low-glucose medium is used to simulate nor-
mal blood glucose environment. BMSCs were cultured
with 1ml of medium containing 10% fetal bovine serum
(10 nmol/l dexamethasone, 0.1mmol/l ascorbic acid, and
1mol/l β-glycerophosphate) and 1% penicillin/streptomy-
cin. All the cells were incubated at 37°C under an atmo-
sphere of 5% CO2.

2.5. Cell Proliferation Assay. According to the protocol, Cell
Counting Kit-8 (CCK-8, Dojindo Molecular Technologies,
Kumamoto, Japan) was used to evaluate BMSC prolifera-
tion. After cocultivation for 1, 3, and 5 days, 100μl of
CCK-8 solution was added into the 96-well plates (1/104

cells/well) at a rate of 10% per well and incubated at 37°C
and 5% CO2 for 2 h. After three days of cocultivation, detect-
ing with a microplate reader (SpectraMax M5, Molecular
Devices, CA, USA), the CCK-8 kit measures cell viability.
The optical density value (OD value) of each well was mea-
sured at 450nm.

2.6. Immunofluorescence Analysis. Immunofluorescence
staining was followed by the methods reported previously
[19]. In short, BMSCs were cultured on glass coverslips,
fixed in 50% (v/v) methanol/50% (v/v) acetone for 5min,
rinsed in DPBS, and incubated with rhodamine tag ghost
pen cyclic peptide (F-actin) and FITC labeled OCN (1 : 200
dilution; Abcam, Cambridge, MA, United States) at 4°C
overnight. Goat anti-rabbit IgG (Beyotime, Shanghai, China)
was incubated for 60min. DAPI (Solarbio, Beijing, China)
counterstained cell nucleus for 10min. Images were calcu-
lated by confocal laser scanning microscope system (Nikon,
Tokyo, Japan).

2.7. Surgical Procedure. A total of 80 male SD rats (weight
160-180 g) were randomly selected and followed by 4-week
high-fat food (60 kcal% fat) feeding; intraperitoneal (i.p.)
injection of streptozotocin (35mg/kg) was performed to
induce diabetes SD rat. Fasting blood glucose over
16.6mmol/l was considered as diabetes 3. After the estab-
lishment of diabetes, all SD rats were fed a regular rat diet
(12.3 kcal% fat) and their blood glucose was monitored
regularly. All diabetic rats received bilateral maxillary alve-
olar bone defect surgery. In short, followed by cutting the
skin and muscle tissues along the lower edge of the man-
dible, peeling off the muscle tissue and periosteum, a cir-
cular defect with a diameter of 5mm in the mandibular
corner area was made by a twist drill. The defect area
was replaced by PHPB scaffold loaded with or without
rhBMP2. To prevent animals from infection, penicillin
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was utilized for 3 days after scaffold implantation surgery.
All the diabetes animals were divided into four groups.
The control group was implanted without PHPB scaffolds.
The nanofiber group contained no GOD or rhBMP2. The
PHPB group had no glucose response but loaded with
rhBMP2. The PHPB-G group was implanted with PHPB
scaffolds that contained GOD and rhBMP2. After scaffold
implantation surgery, the diabetes rats were sacrificed. The
maxillary alveolar bones were collected at 4 and 8 weeks,
respectively. Alternate slides were stained with Masson
staining for histological description. The pictures were
captured by an optical microscope (Nikon 80i, Tokyo,
Japan) and analyzed by Lane-Sandhu histological scoring
standard [16].

2.8. Statistical Analysis. All the in vitro tests were performed
in triplicate, and the average was used as the results. Data
were calculated and shown as mean ± standard deviation.
Differences in parameter mean values were analyzed using

one-way analysis of variance (ANOVA) test followed by
SNK-q multiple comparisons using SPSS software (SPSS
17.0, Chicago, IL, USA). P values < 0.05 were considered sta-
tistically significant.

3. Results

3.1. Glucose-Responsive Characterization of PHPB-G. Since
PVA and HTCC dissolved quickly in water at room temper-
ature, the fibers were crosslinked to reduce the solubility in
this study. The schematic diagram of PHPB scaffold cross-
linked and grafted with GOD is shown in Figure 1(a). The
morphology of PHPB after long-term immersion was
observed under a scanning electron microscope and trans-
mission electron microscope (Figure 1(b)). The un-
crosslinked drug-loaded fibers were staggered into a network
with uniform diameter and smooth fiber surface without
obvious beading or other defects. The PHPB fibers grafted
with GOD showed more sensitivity to glucose concentration
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Figure 1: Characterization of PHPB-G. (a) Schematic diagram of crosslinking of PVA-HTCC/PEO-rhBMP2 fiber membrane and
immobilization of GOD. (b) Morphology of crosslinked PVA-HTCC/PEO-rhBMP2 fibers. Scale bar = 100 nm (magnification, ×2000). (d)
Core-shell structure of PVA-HTCC/PEO-rhBMP2 fiber by TEM. Scale bar = 200 nm (magnification, ×4000). (c) Diameter variation of
PHPB fibers grafted with GOD or ungrafted with GOD in different concentrations of glucose solution. (d) pH variation in different
concentrations of glucose solution after PHPB fibers were grafted with GOD or ungrafted with GOD soaking.
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than the control group, which means PHPB-G might have
the potential ability of glucose-responsive controlled release
performance (Figures 1(c) and 1(d)).

3.2. Drug Release Performance. When fixed with GOD, the
drug release rate of PHPB increased with the growth of glu-
cose (Figure 2). In the first 12 hours, the rhBMP2 released
rapidly. The 12-hour accumulative drug release rate was
10:5 ± 1% in 0mmol/l glucose solution and 21 ± 1:4% in
response to 5mmol/l glucose solution. When immersed in

17mmol/l glucose solution, the accumulative release rate
upregulated to 75:2 ± 1:6%. What is more, it reached 89:4
± 1:8% in 25mmol/l glucose solution. Briefly, the drug
release rate reached a plateau at 24 hours, and the accumu-
lative release rate of PHPB in 25mmol/l glucose solution
was 91:4 ± 2:7%. There are three main ways of drug release
in the glucose response drug release system: drug exudation,
fiber degradation, and drug releasing. That might explain
why the increased glucose concentration accelerated the
rhBMP2 releasing.
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Figure 2: The drug release performance test of PHPB-G. (a) rhBMP2 accumulative release of PHPB-G in different concentrations of glucose
solution. (b) pH variation of different concentrations of glucose solution following time. (c) rhBMP2 release dynamics in fluctuate
concentration of glucose solution.
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3.3. Biocompatibility and Osteogenesis of PHPB-G. In high-
glucose DMEM (17mmol/l), BMSCs were cocultured with
or without PHPB-G scaffold for 7 days. The results of
CCK-8 showed that the cell viability of the PHPB-G group
was higher than that of the control group (Figure 3). To
detect the promotion of osteogenesis by PHPB-G, the
cytoskeleton (F-actin) was stained with rhodamine-
labeled phalloidin (red), the nucleus was counterstained
with TPDI (blue), and OCN (green) was immunofluores-
cently stained with FITC-labeled OCN antibody after
being cocultured 7 days (Figure 4). The results indicated
that PHPB-G expressed more F-actin than the control

group. What is more, PHPB-G increased the expression
of OCN than PHPB when cocultured with BMSCs in
high-glucose DMEM.

3.4. Alveolar Bone Regeneration of PHPB-G in Diabetic SD
Rats. After three days of streptozotocin (STZ) injection, the
blood glucose of SD rats was measured with Roche blood
glucose meter. When the blood glucose values kept higher
than 16.6mmol/ml, the model was treated as successful.
Subsequently, the blood glucose was monitored every week.
As shown in Figure 5(a), the blood glucose concentration
fluctuated between 25:750 ± 1:022mmol/l and 27:048 ±
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Figure 3: Cell viability of BMSCs cocultured with different materials by CCK-8 in vitro. Data are represented asmeans ± standard deviation
(n = 3). ∗∗∗P < 0:001 when compared with control. ns P > 0:05, no significant difference when the PHPB-G group is compared with the
PHPB group or the nanofiber group.
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Figure 4: Immunofluorescence analysis to detect the promotion of osteogenesis by PHPB-G. Scale bar = 50 μm (magnification, ×400). (a)
The LSCM image of BMSCs cocultured with PHPB and stained with F-actin (red) antibody and FITC-labeled OCN antibody (green).
Control group. (b) The relative expression of F-actin. Data are represented as means ± standard deviation (n = 3). ∗P < 0:05 when
compared with control. (c) The relative expression of OCN. ∗∗P < 0:01 when compared with PHPB.
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Figure 5: Alveolar bone regeneration of PHPB-G in diabetic SD rats. (a) The average blood glucose concentration of diabetic SD rats. (b)
The schematic diagram of fabrication of PHPB-G glucose-sensitive drug-controlled release fiber membrane and its effects on the repairment
of mandibular bone defect.
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0:675mmol/l, which indicated that the SD rats maintained
diabetic state.

The preparation and function diagram of PHPB-G
glucose-responsive drug-loaded releasing system is shown
in Figure 5(b). PHPB-G scaffold implantation surgery was
carried out to repair the mandibular bone defects. Animals
were randomly selected and sacrificed at 4 weeks and 12
weeks after surgery. In the present study, X-ray and Masson
staining were utilized to observe the bone tissue repairment
by PHPB-G scaffold. The results of X-ray showed that no
significant bone reformation was observed at 4 weeks. How-
ever, the PHPB-G group showed an increased density in the
defect area at 12 weeks (Figure 6). Detected by the Masson
staining, inflammatory cells were found around the defect
area at 4 weeks (Figure 7). As the inflammatory reaction
was involved in the early bone formation, new bone forma-
tion can also be found in the PHPB-G group at 12 weeks
(Figure 7). Due to the decrease of systemic resistance of dia-
betes mellitus and the increase of local inflammatory factor
secretion in diabetic SD rats, the infiltration of inflammatory
cells was observed, which indicated that the inflammatory
action time prolonged. However, the PHPB-G group showed
an increased capability of new bone reformation particularly
in diabetic SD rats.

4. Discussion

Environmentally responsive controlled release systems, also
known as intelligent controlled-release systems or stimulat-
ing controlled-release systems, are synthesized from “smart”
materials that can undergo structural or chemical changes in
response to external stimuli to achieve drug targeting and
regular and quantitative release [20]. In recent years,
environmental-responsive controlled release systems have

been widely used in biomedical and tissue engineering
[21]. Diabetes is a kind of chronic metabolic disease that is
widely prevalent all over the world. Long-term high blood
glucose causes various histopathological changes including
bone tissue [22]. Although some previous studies have
reported that the risk of complications could be reduced in
well-controlled diabetic patients [23, 24], a large proportion
of diabetic patients is still in poor control of blood glucose
[25]. In addition, even if some patients have low blood glu-
cose levels, they will be accompanied by some progressive
diseases, such as periodontitis and coronary heart disease
[26, 27]. In this study, a novel glucose-sensitive drug release
system, PHPB-G, was investigated to control the on-demand
release of drugs based on glucose fluctuations in diabetic
patients.

Compared to the control group, PHPB showed much
more active morphological changes when grafted with
GOD. It exhibited an expansion trend of nanofiber diameter
when immersed in high concentration of glucose solution.
What is more, the accumulative release rate of rhBMP2
reached 91:4 ± 2:7% when the glucose concentration
increased to 25mmol/l. By controlling the composition of
electrospinning solution and electrospinning technology,
nanofiber scaffolds with different diameters, shapes, and
drug loading can be formed to control the releasing rate of
drugs [28]. Fiber degradation in response to glucose concen-
tration may explain why PHPB-G accelerated the rhBMP2
releasing. All these data suggested that PHPB grafted with
GOD could sensitively respond to the changes of glucose
levels and control the releasing of rhBMP2 more efficiently.

Chitosan, the most important structure of PHPB-G, has
been reported to have positive effects in the reduction of bac-
terial biofilms, surgical healing of oral wounds, and harden-
ing of teeth [11]. As being loaded with rhBMP2, the result of
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Figure 6: X-ray image of mandibular defect repairment of diabetic SD rats after implanting surgery. Scale bar = 5mm (magnification, ×40).
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Figure 7: Masson staining for the detection of the inflammatory reaction and new bone regeneration in diabetic SD rats. (d/f) New bone
and collagen fiber formation indicated by the arrow. Scale bar = 1mm (magnification, ×20).
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immunofluorescence staining showed that PHPB increased
the expression of F-actin and OCN when cocultured with
BMSCs. Particularly, in the PHPB-G group, cell viability
and OCN expression showed to be significantly increased
than in the control group in high-glucose DMEM culture
environment. Ashraf et al. [29] proved that electrospun fiber
membrane can be conducive to cell adhesion, proliferation,
differentiation, and tissue growth. Park et al. [30] treated
recombinant human bone morphogenetic protein 2
(rhBMP2) to have a key role in affecting bone formation.
Fennema et al. [31] reported that rhBMP2 was efficient in
improving ectopic bone tissue formation in mesenchymal
stromal cells (MSCs) and has been widely applied in ortho-
paedics and dentistry.

In the present study, X-ray showed that no significant
bone reformation was observed at 4 weeks, but the density
increased in the defect area at 12 weeks. What is more, the
bone density of the PHPB-G group increased more than that
of the other groups. The secretion of inflammatory factors in
diabetic rats was higher than that in normal rats, which indi-
cated that the capability of new bone reformation decreased
in diabetic rats. The PHPB-G group showed an increased
bone reformation in the present study. The data suggested
that PHPB-G might promote the releasing of rhBMP2 in
response to high blood glucose. That may explained why
the PHPB-G group promoted bone formation more effi-
ciently in diabetic SD rats. The biological scaffolds can carry
a variety of biological factors, including TGF-β, BMP2, and
cellular exosomes [32–34]. However, the true bone remodel-
ing environment in diabetic patients may be much more
complex [35]. With the increased bone resorption and
reduced bone mass, the risk of fractures increased in diabetes
patients [36]. Meanwhile, diabetes affects blood supply and
osseointegration of the fracture site [37]. In diabetic patients,
the increase of reactive oxygen species and the formation of
advanced glycation end products (AGEs) can affect the func-
tion of osteoblasts and eventually lead to the decrease of
mineral deposition [38]. Mangialardi et al. [39] reported
pericyte dysfunction in the bone marrow of type 2 diabetic
patients. PHPB-G proved to be sensitive to the fluctuation
of blood glucose and controllable to the releasing of active
factors, but it still needs a long-term tracking of clinical
experiments in further research.

In total, PHPB-G is mainly made up of quaternized chi-
tosan and collagen for the controlled release of rhBMP2. Its
honeycombed pore shape and porosity showed advantages
in bone regeneration. PHPB-G also exhibits the potential
ability of anti-inflammation and promoting osteogenesis
on alveolar bone defect. This glucose-sensitive drug delivery
system offers a promising method for oral pathological alter-
ations regarding diabetes.
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