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Objective. The goal of this study was to understand the possible core genes associated with hepatocellular carcinoma (HCC)
pathogenesis and prognosis. Methods. GEO contains datasets of gene expression, miRNA, and methylation patterns of diseased
and healthy/control patients. The GSE62232 dataset was selected by employing the server Gene Expression Omnibus. A total
of 91 samples were collected, including 81 HCC and 10 healthy samples as control. GSE62232 was analysed through GEO2R,
and Functional Enrichment Analysis was performed to extract rational information from a set of DEGs. The Protein-Protein
Relationship Networking search method has been used for extracting the interacting genes. MCC method was used to calculate
the top 10 genes according to their importance. Hub genes in the network were analysed using GEPIA to estimate the effect of
their differential expression on cancer progression. Results. We identified the top 10 hub genes through CytoHubba plugin.
These included BUB1, BUB1B, CCNB1, CCNA2, CCNB2, CDC20, CDK1 and MAD2L1, NCAPG, and NDC80. NCAPG and
NDC80 reported for the first time in this study while the remaining from a recently reported literature. The pathogenesis of
HCC may be directly linked with the aforementioned genes. In this analysis, we found critical genes for HCC that showed
recommendations for future prognostic and predictive biomarkers studies that could promote selective molecular therapy for
HCC.
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1. Introduction

Cancer, also known as malignancy, is characterized by the
irregular cellular growth. More than 100 different types of
cancers exist, in which most common are breast, skin, pros-
tate, lungs, colon, and lymphoma [1]. Cancer is present in
human as the most considerable public health concern
worldwide, and liver cancer adds greatly to the morbidity
and mortality in cancer [2]. Liver cancer (hepatocellular car-
cinoma) is the fourth leading cause of cancer-related death
globally, ranking sixth in prevalence [3, 4]. Hepatocellular
carcinoma (HCC) constitutes about 85–90% of all primary
malignant liver tumors. Chronic hepatitis B virus (HBV)
infection, hepatitis C virus (HCV), smoking, aflatoxin, obe-
sity, chronic liver disease, and type 2 diabetes are the main
risk factors [3, 5–7]. Of these variables, recurrent liver dis-
ease is the primary cause of liver cancer [8].

The prevalence of viral infection in HCC cases varies
from developed to developing nations, where HBV reflects
60% in developing nations and 23% in developed nations,
while HCV infection is responsible for 23% in emerging
nations and 20% of patients in developed nations [9]. More-
over, the highest incidence of HBV is in sub-Saharan Africa,
South-eastern Asia, and East Asia, while HCV is high in the
USA, Europe, and Japan [8]. The prevalence of nonalcoholic
fatty liver disease (NAFLD) also adversely affects individual
health, causing increased obesity and other metabolic disor-
ders [10]. Around 25-30% of patients having a western life-
style possess more fats in their liver, 2-5% of which have
NAFLD, and 1-2% suffer from non-alcoholic steatohepatitis
cirrhosis [11].

The World Health Organization (WHO) estimates that
in 2030 over one million people are going to die of liver can-
cer [12]. The key factor that affects HCC mortality is the
poor diagnosis, which results in just 18% survival rate [13]
less than the cancers of the breast (77.1%), renal pelvic
(74.8%), and myeloma (52.2%). The high risk of recurrence
and metastasis of the HCCs also contribute to a shorter life
span and poor survival after hepatectomy [14]. Different
variables participate in the HCC diagnoses, such as cell pro-
liferation, apoptosis, and genes linked to the mTOR path-
way. Different variables participate [15]. HCC is on a
global increase, but early detection and therapy of HCC
remain a concern [8]. In developing countries, the HCC
prevalence is growing as a consequence of low levels of
health and treatment, with a global rate of liver cancer per
100000 people approximately at 9.3 in 2018 [16], as well as
poor prognosis [17].

The diverse factors implicated in liver cancer are cellular
tumor antigen p53 (TP53), axin-1 (AXIN1), catenin β-1
(CTNNB1), and telomerase reverse transcriptase (TERT)
promoters as well as other primary genes for mutation gen-
eration, p53 cell cycle system, WNT/β-catenin, oxidative
stress, RAS/RAF/MAPK, and PI3K/AKT/MTOR pathways
along with other main primary signaling pathways. Liu
et al. used highly efficient microarray technology to screen
molecular indicators across all human cancerous tumors,
especially for liver cancer, by using Gene Expression Omni-
bus (GEO) datasets and The Cancer Genome Atlas (TCGA)

RNA-sequence, and analysed with the help of bioinformatics
methods [18–22]. Gene chip technology can also reliably
represent the molecular expression profile and detect genetic
variants correlated with HCC in liver cancer studies [23, 24].
The data, information, knowledge, and wisdom (DIKW)
model is widely used in life science, including medicine
[25–27]. Recently, genome-wide screening has significantly
improved the knowledge of the genetic context and path-
ways that lead to the HCC [28–31].

Four core genes and two essential pathways of develop-
ing HCC from cirrhosis have been established by GEO data-
set using a bioinformatics methodology, including DEG
screening and networking of protein-protein interactions
(PPIs) [32]. Zhang et al. screened the genes and pathways
associated with HCC development and prevalence through
a series of bioinformatics observations, such as DEG recog-
nition, functional enrichment analysis, PPI network and
module analysis, and weighted network correlation analysis
[24]. Zhou et al. identified HCC critical genes and micro-
RNAs through raw data processing by using Gene Ontology
(GO), GEO2R, and Kyoto Encyclopaedia of Genes and
Genomes (KEGG) pathway enrichment processing and PPI
network creation [33, 34]. Li et al. identified 89 out of 320
consistent differentially expressed genes in HCC patients.
The five most expressed genes include Collagen alpha-2(I)
chain (COL1A2), osteopontin (SPP1), lipoprotein A (LPA),
Insulin-like growth factor I (IGF1), and Galectin-3
(LGALS3) [35]. Another study characterized the 247 upreg-
ulated and 516 downregulated DEGs which were predomi-
nantly enhanced in the oxidation-reduction process,
epoxygenase P450 pathway, and metabolism-related path-
ways. Investigations have shown that CDC20, CDK1,
MAD2L1, BUB1, BUB1B, CCNB1, and CCNA2 are linked
to the poor overall survival of HCC patients [36]. Meng
et al. identified 11 hub genes as closely connected to patho-
genesis and HCC prognosis (CCNB2, CDK1, CCNB1,
CDC20, CCNA2, TOP2A, MELK, TPX2, PBK, KIF20A,
and AURKA) [37]. Yan and Liu identified five hub genes
CCNA2, PLK1, CDC20, UBE2C, and AURKA of hepatic
cancer, which were dramatically elevated in the Cancer
Genome Atlas [19]. Zhang et al. screened 293 frequent
DEGs, comprising 103 upregulated and 190 downregulated
genes. CDK1, TPX2, AURKA, CCNA2, KIF11, HMMR,
BUB1B, TOP2A, TPX2, and CDC45 were the top 10 hub
genes found in HCC of Chinese population [20]. The meth-
ylation role in gene expression was identified from 162
hypermethylated genes (downregulated) and 190 hypo-
methylated genes (upregulated). In biological processes,
such as keratinocyte growth and calcium homeostasis, over-
regulated genes with poor methylation were identified [38].
PTK2, ITGA2, and VWF were found as highly expressing
hypomethylated hub genes detected in the PPI network
[38]. Three gene methylation levels, KPNA2, MCM3, and
LRRC1, were linked to HCC clinical characteristics [39].

Applied bioinformatics research with the current geno-
mic evidence offers an in-depth insight into therapeutic
resistance and disease progression processes. This study
focuses on the expression profiling of HCC patients com-
pared to healthy ones. The GSE62232 dataset (GEO:
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https://www.ncbi.nlm.nih.gov/geo/) has been chosen.
GSE62232 was analysed through GEO2R (https://www
.ncbi.nlm.nih.gov/geo/geo2R) [40] to evaluate and recalcu-
late the genes that are differentially expressed in healthy
and diseased samples. However, new prognostic biomark-
ers are needed to improve HCC diagnosis and treatment.

2. Results

2.1. DEG Identification. Expression profile of genes for
GSE62232, titled in NCBI as “Large-Scale Gene Expression
Profiling of 81 Hepatocellular Carcinomas” was obtained
from the GEO dataset, which was generated on the GPL570
platform (Affymetrix Human Genome U133 Plus 2.0 Array).
After getting data of 91 liver samples (81 HCC patients and
10 control) of GSE62232 study, the data was analysed
through GEO2R to identify the DEGs of both upregulated
and downregulated genes using a p value of ≤0.05 and log
FC > 1:5 as selection criteria. Overall, 598 genes out of a total
19982 were differentially expressed in HCC samples with 233
upregulated and 365 downregulated genes (Supplementary
Table 1). The DEGs are represented by a volcano plot con-
structed using Prism (http://www.graphpad.com/scientific-
software/prism) for a better graphical representation of over-
all genes (Figure 1).

2.2. Enrichment Analysis of DEGs. In order to explore GO
terms and cellular mechanisms affected by these DEGs, both
over- and downregulated genes were imported into an
online DAVID server to conduct the annotation process.
The annotated GO terms were divided into MF, BP, and
CC ontologies (p value < 0.05, FDR < 0:05). The GO BP
analysis revealed that the majority of DEGs were enriched
into oxidation-reduction (GO:0055114), metabolic (steroids,
drug, and xenobiotic) and catabolic (exogenous drug, trypto-
phan), cell division (GO:0051301), response to the drug
(GO:0042493), and p450 pathways (GO:0097267). For the
GO MF analysis, most of the genes were significantly
enriched in oxygen (GO:0019825) and iron (GO:0005506)
ion binding, oxidoreductase activity (GO:0016705), mono-
oxygenase activity (GO:0004497), heme binding
(GO:0020037), steroid hydroxylase (GO:0008395), and elec-
tron carrier activity (GO:0009055). Concerning the GO CC
analysis, commonly DEGs were enriched in extracellular
space (GO:0070062, GO:0005615), organelle membrane
(GO:0031090), and condensed chromosome kinetochore
(GO:0000777) (Table 1).

The KEGG signaling pathway examination of DEGs by
applying the filter of p value < 0.05 and FDR < 0:05 sorted
mainly metabolic pathways such as retinol metabolism
(hsa00830), biosynthesis and metabolism of amino acids
(hsa01230), antibiotics (hsa01130), and drug metabolism-
cytochrome P450 (hsa00982) (Table 2). Some additional
signaling pathways, i.e., chemical carcinogenesis (hsa05204),
cell cycle (hsa04110), and p53 signaling pathway (hsa04115),
were also markedly enriched by DEGs. The complete list of
GO terms and KEGG pathways is enlisted in Supplementary
Table 2.

2.3. STRING PPI Network Analysis and Interrelation between
Pathways. For a better understanding the role of the DEGs
in HCC development, we constructed coexpression protein
networks. The insertion of DEGs list into STRING and
application of confidence score of >0.70 established a PPI
network containing 1715 edges and 322 nodes, with each
node connected with 11.6 other proteins on average. Differ-
ent topological parameters for PPI network included net-
work density of 0.040, network heterogeneity of 1.335,
network centralization of 0.180, clustering coefficient of
0.523, and characteristic path length of 4.689. A complete
interaction network is shown in Figure 2(a), in which
degree and betweenness of topological features were calcu-
lated to distribute genes into different size circles and colors.
The higher the value of these quantitative terms, the greater
the importance in the network [41]. Through this PPI net-
work, top clusters were sorted using Cytoscape plugin
MCODE with score > 4 and nodes > 4. Cluster 1 was the
densest interaction network showing MCODE score of
40.53, followed by cluster 2 and cluster 3 with scores 10.72
and 8.0, respectively (Figure 2(b)). Subsequently, several cru-
cial hub genes including cyclin-dependent kinase (CDK1),
cyclins (CCNA2, CCNB1, and CCNB2), serine/threonine-
protein kinase (BUB1), NDC80, BUB1B, NCAPG, MAD2L1,
and CDC20 were determined by CytoHubba plugin
(Figure 2(b)). These selected hub genes were either involved
in the cell cycle and its regulation or the main components
of kinetochore-microtubule interaction.

Protein clusters were processed through ClueGO plugin
of Cytoscape which suggested that cluster genes were mostly
associated with nuclear and cellular division during meiosis
and mitosis, chromosome reorganization, deoxyribonucleo-
tide biosynthetic processes, and regulation of ubiquitin-
protein ligase activity (Figure 3).

2.4. Survival Analysis through GEPIA and Expression Level of
Hub Genes. GEPIA servers provide a platform for integrated
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Figure 1: Volcano plot of the DEGs in HCC patients compared
with control from the GSE62232 dataset. Each black dot
represents one gene. The black and colorful dots above and side
of the dotted line corresponds to those genes having p value ≤
0.05 and fold change j1:5j. Blue dots are downregulated, and red
dots are upregulated genes.
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information of gene expression from TCGA and GTEx data-
bases regarding multiple cancer types [42]. To evaluate the
overall prognostic importance of hub genes in this study,
Kaplan-Meier survival analysis was performed to examine
the association between different expression levels of genes
and survival time of patients with HCC. The logrank p value
was estimated, where p value smaller than 0.05 indicates a
statistically significant difference in mortality between the
high-level and low-level groups. These high and low-level

groups of patients were separated based on the median level
of expression. The high expression level of CCNB2 (logrank
p = 0:052) and NDC80 (logrank p = 0:013) demonstrated
poor prognosis, while HCC patients showing high level of
BUB1 (logrank p = 0:001), CDK1 (logrank p = 0:00017),
NCAPG (logrank p = 0:00097), BUB1B (logrank p = 0:0028),
CCNB1 (logrank p = 0:00015), CDC20 (logrank p = 3:8e −
06), and MAD2L1 (logrank p = 0:0047) had a higher risk
of mortality (Figure 4). Furthermore, GEPIA boxplot

Table 1: Top 10 GO terms regarding biological process, molecular function, and cellular components after applying p value < 0.05 and
FDR < 0:05 filter.

GO terms Count p value FDR

Biological process (BP)

GO:0055114~oxidation-reduction process 60 9:88E − 16 1:78E − 12
GO:0019373~epoxygenase P450 pathway 12 5:33E − 13 9:45E − 10
GO:0042738~exogenous drug catabolic process 8 1:70E − 08 3:01E − 05
GO:0008202~steroid metabolic process 12 4:80E − 08 8:52E − 05
GO:0017144~drug metabolic process 10 6:41E − 08 1:14E − 04
GO:0006805~xenobiotic metabolic process 15 9:23E − 08 1:64E − 04
GO:0097267~omega-hydroxylase P450 pathway 6 3:03E − 06 0.00537

GO:0006569~tryptophan catabolic process 6 3:03E − 06 0.00537

GO:0042493~response to drug 26 8:00E − 06 0.0142

GO:0051301~cell division 28 1:13E − 05 0.02011

Molecular function (MF)

GO:0019825~oxygen binding 16 3:59E − 12 5:58E − 09
GO:0005506~iron ion binding 25 2:89E − 11 4:50E − 08
GO:0016705~oxidoreductase activity, acting on paired donors,
with incorporation or reduction of molecular oxygen

16 7:99E − 11 1:24E − 07

GO:0004497~monooxygenase activity 16 1:05E − 10 1:63E − 07
GO:0020037~heme binding 22 7:83E − 10 1:22E − 06
GO:0008392~arachidonic acid epoxygenase activity 9 3:30E − 09 5:14E − 06
GO:0008395~steroid hydroxylase activity 10 3:61E − 08 5:62E − 05
GO:0016491~oxidoreductase activity 23 1:56E − 07 2:43E − 04
GO:0070330~aromatase activity 9 8:28E − 07 0.00129

GO:0009055~electron carrier activity 14 2:70E − 06 0.0042

GO:0016712~oxidoreductase activity, acting on paired donors, with
incorporation or reduction of molecular oxygen, reduced flavin or
flavoprotein as one donor, and incorporation of one atom of oxygen

7 2:80E − 06 0.00436

GO:0015171~amino acid transmembrane transporter activity 10 8:99E − 06 0.01399

Cellular components (CC)

GO:0070062~extracellular exosome 152 1:98E − 14 2:72E − 11
GO:0031090~organelle membrane 21 6:51E − 13 8:96E − 10
GO:0005615~extracellular space 80 2:68E − 09 3:68E − 06
GO:0000777~condensed chromosome kinetochore 13 9:00E − 06 0.01238

GO:0072562~blood microparticle 17 1:10E − 05 0.01514

GO:0005829~cytosol 138 1:16E − 05 0.01594

GO:0005576~extracellular region 78 1:45E − 05 0.01989

GO:0030496~midbody 15 2:75E − 05 0.03775
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Table 2: Top 10 pathways in which most of the DEGs enriched at p value < 0.05 and FDR < 0:05 filter.

Pathways ids Pathways p value FDR

hsa01100 Metabolic pathways 9:19E − 10 1:19E − 06
hsa05204 Chemical carcinogenesis 6:68E − 08 8:63E − 05
hsa00830 Retinol metabolism 1:39E − 07 1:79E − 04
hsa04110 Cell cycle 3:38E − 07 4:37E − 04
hsa04115 p53 signalling pathway 1:69E − 06 0.002182762

hsa01130 Biosynthesis of antibiotics 2:94E − 06 0.003797444

hsa00980 Metabolism of xenobiotics by cytochrome P450 5:43E − 06 0.007016019

hsa03320 PPAR signalling pathway 1:02E − 05 0.01318125

hsa00982 Drug metabolism - cytochrome P450 1:20E − 05 0.01544763

hsa00260 Glycine, serine and threonine metabolism 1:59E − 05 0.020548859

hsa01230 Biosynthesis of amino acids 2:19E − 05 0.028277953

1.0000 63.000032.0000
Degree

Number of nodes
Number of edges
Avg. number of neighbors
Network diameter
Network radius
Characteristic path length
Clustering coefficient
Network density
Network heterogeneity
Network centralization
Connected components

322
1715
11.647
12
6
4.689
0.523
0.040
1.335
0.180
13

String interaction with confidence score of 0.70
summary statistics

(a)

Cluster 1 Cluster 2 Cluster 3 Top 10 hub genes 

(b)

Figure 2: Protein-protein interaction and protein cluster formation. (a) Using the online STRING tool, a PPI network was developed which
was further visualized by Cytoscape software. The size and color map nodes are determined by the degree value, which renders a gradual
setting in small size with low degree in blue, large size with a high degree in yellow. (b) Top clusters determined by MCODE with score
> 4 and node > 4. The top 10 genes derived from the MMC method were chosen using the CytoHubba plugin.
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representation of hub genes expression in 369 HCC patients
and 160 normal/healthy persons described considerable
increase in the level for all hub genes (Figure 5). These
hub genes with high expression and low survival rate in
patients suggested their association with the pathophysiol-
ogy of liver cancer to varying extents, and these could be
potential biomarkers for HCC prognosis to monitor the
severity of liver cancer or a therapeutic target.

3. Discussion

Over recent years, tumor initiation and progression in HCC
have been extensively researched; still, early diagnosis of
HCC is truly a big challenge, because the exact mechanism
of the induction of HCC needs a full understanding. Also,
incidence and cancer-specific mortality worldwide are
increasing due to limited therapeutic strategies; therefore,
there is an urgent need to identify the potential key genes
and mechanisms to precisely predict the HCC onset and
progression and to develop novel therapeutic agents. Bioin-
formatics has become increasingly popular to evaluate
changes in the gene expression profiles during the initiation
and progression of diseases by the integrated microarray
analysis, it helps to investigate the screened hub genes for
cancer diagnosis and therapy.

In this study, we identified a total of 598 DGEs compris-
ing 233 upregulated and 365 downregulated genes between
HCC patients in comparison to healthy ones chosen from
the GSE62232 expression profile datasets. Using the DAVID
software, GO functional, and KEGG pathway enrichment
analyses of the DEGs were performed. The results revealed
that the identified DEGs were closely related to various bio-
logical processes and pathways such as metabolic, heme
binding, drug detoxification, cell cycle, meiosis, and mitosis.
We had also screened out ten hub genes, including cell cycle
regulatory cyclins and cyclin-dependent proteins CCNA2,
CCNB1, and CDK1. Besides, a PPI network was constructed

to analyse the interactional relationships between the DGEs,
and survival analyses of hub genes were performed using the
GEPIA. These hub genes have been extensively researched in
recent years.

Recent genetic evidence has revealed interphase cyclin-
dependent kinases (CDKs) are essential for the proliferation
of tumor cells. CDK1 belongs to the CDK family, a member
of the Ser/Thr protein kinases necessary for cell-cycle pro-
gression, triggering cell cycle transitions, namely, G1/S and
G2/M [43]. Clinical implications of deregulated CDK1 are
closely related to HCC tumorigenesis. Research has found
that overexpression of CDK1 in HCC is significantly nega-
tively correlated with HCC patients’ survival. Zhang et al.
[44] suggested that miR-582-5p regulated the progression
of HCC by directly targeting the CDK1. Elevated levels of
CDK1 were also shown to be directly associated with
advanced stage portal vein invasion, increased AFP levels,
and poor patient survival in HCC [45]. Wu et al. [43]
revealed higher levels of CDK1 in HCC patients than healthy
individuals, which was in agreement with the present study’s
findings.

CCNA2, CCNB1, and CCNB2 genes are all members of
the highly conserved cyclin family. In this study, high
expression of CCNA2 was closely associated with poor prog-
nosis in HCC patients. CCNA2 protein functions as regula-
tors of the cell cycle by activating cyclin-dependent kinases,
and CCNA2 expression in the cell cycle was driven mostly
by E2Fs [46]. CCNA2 overexpression has been observed in
several types of cancers; also, a study has demonstrated that
inhibition of CCNA2 led to the suppression of HCC, cell
proliferation, and tumorigenesis [47]. The aberrant expres-
sion of CCNA2 is related to reduce survival in patients with
HCC and breast cancer [46, 48]. Chai et al. [49] revealed that
CCNB1 is highly expressed and associated with the unfavor-
able prognosis for patients with HCC, consistent with our
findings. This suggested the plausibility of CCNB1 as a
potential therapeutic target for the treatment of HCC. This

% terms per group 

Deoxyribonucleotide biosynthetic
process 1.41%

Regulation of ubiquitin protein ligase
activity 1.41%⁎⁎

Protein localization to kinetochore
1.41%⁎⁎

Regulation of exit from mitosis
2.82%⁎⁎

Actomyosin contractile ring assembly
4.23%⁎⁎

Metaphase plate congression
4.23%⁎⁎

Negative regulation of mitotic sister
chromatid separation 9.86%⁎⁎
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organization 11.27%⁎⁎

Regulation of mitotic nuclear division
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cell cycle 23.94%⁎⁎
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26.76%⁎⁎

Figure 3: GO analysis of 10 hub genes mapped into 11 different biological processes. The group information and percentage are represented
by different colors. Major portion of percent was mapped in mitotic nuclear division, positive regulation of mitotic cell cycle, regulation of
mitotic nuclear division, negative regulation of chromosome organization, and negative regulation of mitotic sister chromatid separation.
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conclusion is further proved by a study that CCNB1
knockdown by miR-144 inhibited HCC cell migration,
invasion, and proliferation [50]. Previous research [51]
has shown that CCNB1 inhibits the growth of cells by
inducing cell cycle arrest at the G2/M phase suggesting

CCNB1 may be an effective anticancer agent in future
therapy. Furthermore, CCNB2 was found to be overex-
pressed in several malignant tumors, and high expression
of CCNB2 is associated with poor prognosis in HCC and
invasive breast carcinoma [52, 53].
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Figure 4: Kaplan-Meier survival analysis curve of the hub genes expressed in the HCC. The survival curves were plotted using the GEPIA
web server. The gene candidates with high expression in the cohorts are shown in red, and the blue line indicates the low-expression cohort;
the survival curve is represented in a dotted line, whereas the solid line is the 95% confidence interval. The logrank p value represents the
overall significance of analysis, and HR stands for hazard ration; patient number ðnÞ = 182.
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In the case of BUB1, several studies have found high
expression of the BUB1 in a variety of human tumors.
Serine/threonine-protein kinase BUB1 binds centromeres
during mitosis [54] and has been involved in apoptosis and
cell cycle [55], as well as in reducing the overall survival
(OS) rate of HCC patients. BUB1B was reported to be
involved in tumor cell cycle regulation, and overexpression
of BUB1B is related to the progression and recurrence of
HCC [56]. NDC80 is highly conserved, a core component
of the kinetochore-microtubule interaction machinery
which is identified as a requirement for proper chromosome
segregation. NDC80 has also been associated with the HCC
progression [57], and NDC80-knockdown in pancreatic
cancer inhibited cell cycle and cell proliferation [58].
NCAPG organizes the coiling topology of individual chro-
matids. Liu et al. [59] demonstrated NCAPG functioning
as an oncogene in the development of HCC.

CDC20 is an essential cell-cycle regulator, which plays
an important role in promoting the onset of anaphase and
mitotic exit. The increased expression levels of CDC20 have
been linked with the development and progression of HCC
[60]. Additionally, research has shown that silencing
CDC20 and HPSE expression activated cell apoptosis; thus,
targeting inhibition of both CDC20 and HPSE expression
is an ideal therapeutic option of HCC [61]. As for MAD2L1,
Yun et al. [62] demonstrated that MiR-200c-5p inhibits
HCC cell proliferation, migration, and invasion by targeted
suppression of MAD2L1, suggesting that the high expression

levels of MAD2L1 are associated with poor prognosis of
patients with HCC. Moreover, MAD2L1 may potentially
be used as a prognostic and therapeutic target in HCC
patients.

4. Material and Methods

4.1. Data Collection and Expression Profiling of DEGs. GEO
contains datasets of gene expression, miRNA, and methyla-
tion patterns of diseased and healthy/control patients [63].
This study was focused on the expression profiling of HCC
patients in comparison to healthy ones. A total of 91 samples
were collected, including 81 HCC samples and 10 healthy
samples as control [64]. GSE62232 was analysed through
GEO2R [43] to evaluate and recalculate genes expressed
uniquely in healthy and unhealthy samples. Analysis pro-
vided a lot of genes whose expression differed in both sam-
ples. To minimize the background noise, statistical filters
of p value and fold-change value were used.

4.2. Functional Enrichment Annotation of DEGs. Functional
enrichment analysis was performed to extract rational
information from a set of DEGs. This provided us with
the most prominent pathways being affected by the change
of gene expression in diseased samples. The database
named Database for Annotation, Visualization, and Inte-
grated Discovery (DAVID; http://david.ncifcrf.gov) has
been used to perform functional enrichment analysis.

BUB1
5

4

4

2

1

0

5

4

4

2

1

0

8 7

6

5

4

3

2

1

0

6

5

4

3

2

1

0

6

4

2

0

BUB1B CCNB1 CCNB2

CDC20

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

LIHC
(num (T) = 369; num (N = 160)

CDK1 MAD2L1 NCAPG NDC80

CCNA2

8

6

4

2

0

5

4

3

2

1

0

6

4

2

0

5

4

3

2

1

0

5

4

3

2

1

0

⁎ ⁎ ⁎ ⁎ ⁎

⁎⁎

Figure 5: Gene expression analysis based on TCGA and GTEx data in GEPIA. The expression level of hub genes was validated in 369 LIHC
(liver hepatocellular carcinoma) patients and 160 healthy controls. Interestingly, all hub genes were remarkably overexpressed in LIHC
patients.
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DAVID annotates the provided set of genes into the most
affected processes such as Biological Processes (BP), Molecu-
lar Functions (MF), and Cellular Components (CC) [65]. We
used GO and KEGG datasets in DAVID to annotate the most
affected processes. KEGG is a database of molecular path-
ways containing detailed information about functional and
biological systems [66]. The p value filtering ≤ 0.05 was used
to exclude the results with a low confidence level.

4.3. Protein-Protein Interaction Network Backbone Analysis.
Search Tool for the Retrieval of Interacting Genes (STRING;
http://string-db.org) has been used to establish PPI network
[67]. A confidence score of ≥0.07 was used to scrutinize sta-
tistically significant results. The PPIs network was visualized
using Cytoscape (open-source platform), in which the most
considerable module with a Molecular Complex Detection
(MCODE) score of >5 and node score-cut-off of 0.02 was
scanned with the Cytoscape plug-in MCODE.

4.4. Hub Gene Identification, Expression, and Survival
Analysis. CytoHubba is a Cytoscape module that has been
used in the PPI network for identifying primary hub genes.
The MCC method was used to calculate the top 10 genes
according to their importance in the system because it is
comparatively recent and is highly recommended [68]. These
top 10 genes having the highest MCC score were considered
as hub genes. However, the Gene Expression Profiling Inter-
active Analysis (GEPIA) server provided a correlation of
gene expression and their effect on the survival chances in
specific cancer types [42]. Hub genes were analysed using
GEPIA to calculate the impact of their differential expression
on cancer progression.

4.5. Functional Annotation of MCODE Cluster Genes.
ClueGO plugin was utilized to functionally annotate the
top 3 MCODE Cluster genes into the biological process. It
classified gene products into crucial biological processes
using GO datasets as the reference [69]. This paper is pub-
lished as preprint previously with the title “Identification of
Novel Potential Biomarkers in Hepatocarcinoma Cancer; A
Transcriptome Analysis” [70].

5. Conclusion

In summary, the purpose of the present study was to screen
and verify hub genes that may provide new insights into the
development, prognosis, and treatment of HCC. In total, 598
DEGs were identified via integrated bioinformatics analysis,
of which ten were identified as hub genes that may be used
as biomarkers for the diagnostic and prognostic evaluation
of HCC. However, because the results of this study were
based on data analysis only, further experimental verifica-
tion via animal experiments and clinical trials are required
to confirm these results.
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