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PregTox: A Resource of Knowledge about Drug Fetal Toxicity
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Background. It is of vital importance to determine the safety of drugs. Pregnant women, as a special group, need to evaluate the
effects of drugs on pregnant women as well as the fetus. The use of drugs during pregnancy may be subject to fetal toxicity, thus
affecting the development of the fetus or even leading to stillbirth. The U.S. Food and Drug Administration (FDA) issued a toxicity
rating for drugs used during pregnancy in 1979. These toxicity ratings are denoted by the letters A, B, C, D, and X. However, the
query of drug pregnancy category has yet to be well established as electronic service. Results. Here, we presented PregTox, a
publicly accessible resource for pregnancy category information of 1114 drugs. The PregTox database also included chemical
structures, important physico-chemical properties, protein targets, and relevant signaling pathways. An advantage of the
database is multiple search options which allow systematic analyses. In a case study, we demonstrated that a set of chemical
descriptors could effectively discriminate high-risk drugs from others (area under ROC curve reached 0.81). Conclusions.
PregTox can serve as a unique drug safety data source for drug development and pharmacological research.

1. Introduction

The safety of a drug is as important as its efficacy [1]. Phar-
maceutical companies consistently invest numerous mate-
rial, financial, and human resources into clinical trials to
discover the possible safety risks of drugs [2]. Pregnant
women, as a special group of people, are more rigorous in
clinical trials, and some drugs cannot be tested due to
unknown safety risks [3, 4]. In many cases, pregnant women
need to take medication for a combination of medical condi-
tions. As drug toxicity may harm not only the mothers but
also the fetuses, by affecting the intrauterine growth and
inducing malformation or even stillbirth. Nevertheless, the
vast majority of drugs have yet to be clarified for fetal toxic-
ity risks due to limited pharmacological and clinical
evidence.

Thalidomide was initially marketed as a treatment for
hyperemesis gravidarum and received favorable reviews
due to its low hepatotoxicity. But in subsequent years, there
was a succession of malformed fetus who had no arms or
legs and had hands and feet attached directly to their bodies.
The drug is classified as class X in pregnancy, which means
thalidomide is not allowed during pregnancy [5–7]. Thalid-
omide also has some other side effects, such as heart and uri-
nary tract abnormalities, blindness, and deafness [8]. The
researchers proposed several possible reasons for the forma-
tion of fetal deformities caused by thalidomide, such as DNA
mutagenesis, disturbance on chondrogenesis, or inhibition
of cell adhesion [9–11]. Thalidomide incident brought heavy
disaster to the society and the family. Higher and more strin-
gent requirements were put forward for drug development
and use during pregnancy [12].
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In many cases, medication use during pregnancy is
unavoidable. It is estimated that 1% to 3% of the newborns
are subject to various birth defects, among which 2–3% are
related to drugs used in the course of pregnancy [13]. A
study on 1626 pregnant women suggested that 56% of the
participants used prescription drugs [14]. Another study
on 205 pregnant and recently delivered women reported
an average of over 3 prescription drugs received during preg-
nancy [15]. Therefore, it is of great importance for clinicians
to know the accurate fetal toxicity information of drugs, so
as to help patients make informed decisions. And the knowl-
edge on fetal toxicity of marketed drugs can help pharma-
ceutical industry rule out the risky compounds in future
research and development efforts [16, 17].

In order to warn the risk of drug-induced fetal injury, the
U.S. FDA established category labels in 1979 [18], which
consist of five ranks (i.e., A, B, C, D, and X) standing for
escalating risk levels. This classification system has been
widely accepted in the United States and around the world.
Category A indicates that adequate and well-controlled stud-
ies in pregnancy women showed no adverse effects on fetus.
Category B indicates that animal reproduction studies dem-
onstrated no risk to the fetus, while no adequate well-
controlled studies in pregnant women were conducted. Cat-
egory C indicates that no adequate and well-controlled stud-
ies in pregnancy women showed risk, but animal studies
indicated adverse effect on fetus. Category D indicates evi-
dence of human fetal risk based on adverse reaction data
from investigational and marketing experience or studies
in humans. Potential benefits may warrant use of the drugs
of categories C and D during pregnancy despite potential
risks. Category X indicates that controlled studies in animals
or humans have demonstrated fetal abnormalities; thus, the
risks clearly outweighed potential benefits. Several public
resources contain information relevant to drug toxicity
(e.g., websites from regulatory agencies, World Health Orga-
nization’s consolidated list for withdrawn drugs, and scien-
tific literature). Even so, in most circumstances, the
information is hidden in regulatory documents and not eas-
ily accessible, thus impeding comprehensive analyses based
on a complete list of risky drugs.

With the development of information technology, a
plenty of databases have been built in Asia and all over the
world to facilitate biomedical research. For instance, Dock-
CoV2 is a database of compounds against SARS-CoV-2,
which aims at speeding up the discovery of potential drugs
[19]. Similarly, DDInter is an online drug–drug interaction
database towards improving clinical decision-making and
patient safety [20]. And ADReCS is an ontology database
for the purpose of standardization and hierarchical classifi-
cation of adverse drug reaction terms [21]. These examples
suggested that a bioinformatics database with comprehen-
sive data and powerful visualization tools could provide a
highly useful research platform for clinicians and drug
developers.

Based on the current uncertainty about fetal toxicity of
some drugs during pregnancy and to provide a user-
friendly access to drug label information and facilitate
data-driven drug safety research, here, we present Preg-

Tox—a resource of knowledge about drug fetal toxicity. A
total of 1114 drugs were collected with category labels,
chemical characteristics, and clinical information. Further-
more, PregTox provides multiple search options to systema-
tically analyze molecules of interest for drug development
and toxicity prediction.

2. Methods

2.1. Data Collection. The pregnancy category information
was extracted from the DailyMed database (https://
dailymed.nlm.nih.gov/dailymed) and manually curated by
two independent researchers (inconsistencies were resolved
by a third researcher). We ultimately defined 1114 drugs that
had pregnancy categories. For drugs corresponding to two
or more categories (e.g., rabeprazole corresponds to both
categories “B” and “C” from different packagers), the cate-
gory indicating the higher risk was selected. Other basic drug
information was extracted from DrugBank [22], UniProt
[23], and BioGRID [24] databases (Figure 1).

2.2. Database Construction. PregTox is based on a nonrela-
tional MongoDB database with high performance (https://
www.mongodb.com/). All data concerning PregTox is stored
on the MongoDB database, and PregTox is hosted on a
Linux virtual server as a Go web application which was com-
piled into a binary executable file, accessible at http://pregtox
.gzhmu.edu.cn. Although we make every effort to solve
many cross-browser compatibility issues, limited by the poor
support ability for the new feature of a low version browser,
we highly suggest using the latest version of Mozilla Firefox,
Google Chrome, or Microsoft Edge browser with JavaScript
option enabled for normal visual presentation.

2.3. Statistical Analyses. The molecular descriptors of drugs
were generated by ChemDes online server [25]. QSAR data
were analyzed in the R software (version 4.0.3). The follow-
ing functions or packages were used in our analyses: Princi-
pal component analysis was carried out with the “PCA”
function in the “FactoMine” R package and the “fviz_pca_
ind” function in “Factoextra” package. Analysis of similari-
ties (ANOSIM) was performed with the “vegan” package.
Leave-one-out cross-validation of k-nearest neighborhood
model was carried out with the “kknn” and “class” package.
And the “ROCR” package was used to calculate the area
under ROC curve.

3. Results

3.1. Data Summary. The current version of PregTox encom-
passes various knowledge of 1114 drugs using in pregnancy.
The risk category information was curated from FDA drug
labels, with category C accounting for the largest proportion
of drugs (60.2%), followed by category B (19.7%), category D
(12.9%), category X (6.6%), and category A (less than 1%,
Figure 2(a)). The top common target genes are mostly neu-
rotransmitter receptors (e.g., adrenoceptors, cholinergic
receptors, and 5-HT receptors, as shown in Figure 2(b)).
The data thus suggested that drugs with uncertain risks con-
stitute the bulk of approved drugs, and the well-known risky
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and safe drugs are both interacted with a variety of target
proteins.

3.2. User Interface. The PregTox website is characterized by a
user-friendly interface for exploring and visualizing drug
information. The homepage has links to “Search,” “Browse,”
“Downloads,” and “Contact” functions (Figure 3). The
“Browse” page provides the entry to explore the datasets by
different drugs, therapeutic targets, or risk categories. When
browsing a specific drug, all related information is shown in

a single page, such as chemical properties, drug indications,
and drug targets, along with pregnancy category informa-
tion. Particularly, the protein-protein interactions (PPI)
were retrieved from the BioGRID database, which can help
the analysis and visualization of drug-gene network. Fur-
thermore, there are external links pointing to the sources
(e.g., DrugBank, UniProt, and BioGRID) of certain informa-
tion, so as to facilitate in-depth exploration. The complete
list of drugs can be obtained by clicking on the “Downloads”
link in the homepage, which enables data mining and

8.USE IN SPECIFIC POPULATIONS

8.1 Pregnacy
Pregnancy category C.Pregnancy category D from 30 weeks of gestation onward. Teratogenic effects:
Celecoxib at oral doses ≥150 mg/kg/day (approximately 2-fold human exposure at 200 mg twice daily
as measured by AUC0 to 24), caused an increased incidence of ventricular septal defects, a rate event,
and fetal alterations, such as ribs fused, sternebrae fused and sternebrae missphapen when rabbits were
treated throughout organogenesis. A dose-dependent increase in diaphragmatic hernias was observed
when rats were given celecoxib at oral doses ≥30 mg/kg/day (approximately 6-fold human exposure
based on the AUC0 to 24 at 200 mg twice daily) throughout organogenesis. There are no studies in
pregnant women. Celecoxib should be used during pregnancy only if the potential benefit justifies
the potential risk to the fetus. 
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Figure 1: The derived informational resources of PregTox database.
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training of prediction models. In case of any inquiries or
technical problems, the email address of administrators can
be found in the “Contact” page.

3.3. Application Case: Naive Machine Learning on Fetal
Toxicity Risks. To illustrate the utility of PregTox, we per-
formed a pilot analysis on the 2D molecular descriptors of
compounds in the data inventory. Using categories A and
B as positive data set while categories D and X as negative
set, we analyzed the association between drug chemical

structure and fetal toxicity. We first preformed the principal
component analysis (PCA) to summarize patterns of multi-
variate variation between drugs. The results showed a signif-
icant separation between the positive and negative datasets
(Figure 4(a), ANOSIM P = 0:002). Additional analysis was
carried out by training anaïvek-nearest neighborhood
(KNN) classification model with the chemical features. With
k = 8 that gave the best performance (Figure 4(b)), leave-
one-out cross-validation suggested that area under the
ROC curve (AUC) reached 0.81 (Figure 4(c)). This
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Figure 2: Statistics of PregTox contents: (a) distributions of drug categories; (b) the top 10 common drug target genes.
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Figure 3: Overview of PregTox user interface.
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application case indicated that data stored in PregTox could
serve as a unique resource to support fetal safety assessment
on candidate drugs under development.

4. Discussion

PregTox is a rich resource of knowledge about fetal toxicity
of drugs. Due to a number of drugs reported for previously
unknown fetal toxicity, we will continually update the data-
base to ensure coverage and accuracy of information. The
PregTox contains not only FDA-established category labels
of fetal toxicity, but also chemical features, defined daily
dose and drug-target information. Such information can
expand the usefulness of PregTox. For instance, the illus-
trated application case suggested that connecting risk cate-
gory labels and drug chemical structures could help build

up the QSAR models to predict the risk of fetal injury for
new drugs.

Traditional methods for drug safety evaluation are gen-
erally cost-ineffective, time-consuming, and labor-intensive,
so various computational approaches have been developed
to predict drug toxicity. In recently years, technological
advancements motivated detection of drug safety risks based
on deep learning methods [26–29]. However, well-labeled
data for model training remain scarce resources. Even
though a variety of pharmacopeias databases (e.g., Drug-
Bank [22], TTD [30], VARIDT [31], INTEDE [32], and
ClinicalTrials.gov) have been developed to provide data
sources for bioinformatics analysis, the lack of authoritative,
comprehensive, and structured data in fetal toxicity hinders
professionals from conveniently analyzed the chemical and
biological features of potentially risky drugs. These prior
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Figure 4: Application of PregTox data. (a) PCA plot demonstrated a significant separation between positive and negative compounds. (b, c)
After selecting the optimal k number, the KNN model achieved an AUC of 0.81.

5BioMed Research International



works showed that machine learning techniques can be har-
nessed with a good description of chemical descriptors to
more efficiently process large amounts of data [33, 34]. We
believe that the data in PregTox can provide specific infor-
mation on drug fetal toxicity, which enabled naïve machine
learning models to achieve a desired level of performance.
Therefore, it is reasonable to expect broader applications of
the PregTox database in deep learning. Moreover, the ratio-
nale of PregTox could shed lights on new frontiers in various
types of drug toxicity. A well-structured data source will also
facilitate the intensive data mining on cardiotoxicity, drug-
induced liver injury, and other risks.

5. Conclusions

In this context, the knowledge presented in PregTox will
facilitate systematic analysis on chemical and biological
characteristics of drugs with fetal toxic effects. Also, PregTox
can serve as a data source for safety assessment during drug
development and scientific research in mechanisms of drug-
induced fetal toxicity.
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