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Computerized tomography (CT) is widely used for clinical screening and treatment planning. In this study, we aimed to reduce X-
ray radiation and achieve high-quality CT imaging by using low-intensity X-rays because CT radiation is damaging to the human
body. An innovative vision transformer for medical image super-resolution (SR) is applied to establish a high-definition image
target. To achieve this, we proposed a method called swin transformer and attention network (STAN) that uses the swin
transformer network, which employs an attention method to overcome the long-range dependency difficulties encountered in
CNNs and RNNs to enhance and restore the quality of medical CT images. We adopted the peak signal-to-noise ratio for
performance comparison with other mainstream SR reconstruction models used in medical CT imaging. Experimental results
revealed that the proposed STAN model yields superior medical CT imaging results than the existing SR techniques based on
CNNs. The proposed STAN model employs a self-attention mechanism to more effectively extract critical features and long-
range information, hence enhancing the quality of medical CT image reconstruction.

1. Introduction

Computerized tomography (CT) images are used by doctors
in clinical practice to judge a patient’s condition. Good image
quality is crucial for effective and accurate screening and diag-
nosis of a patient’s condition [1]. CT imaging played a vital
role in the diagnosis and treatment of COVID-19 [2–4]. CT
images are obtained using X-rays. However, X-ray radiation
is harmful to the human body. Therefore, to reduce the auxil-
iary radiation, the X-ray intensity is reduced during operation,
resulting in low resolution and blurring of CT images. There-
fore, how to obtain high-definition medical CT images
through superresolution (SR) is an important research topic.
For high-quality medical CT images, plenty of deep learning-
(DL-) based SR techniques have been proposed [4–6].

Convolutional neural networks (CNNs) have been used
to accomplish SR tasks. Initially, the SRCNN network and
CNN were used for performing high-resolution reconstruc-
tion tasks [7]. This is the earliest reconstruction from low-
resolution to high-resolution images by using CNNs and

point-to-point nonlinear feature mapping and reconstruc-
tion. Currently, DL is widely used in SR applications
[8–10]. Shan et al. [11] improved the initial CNN-based SR
method by introducing residual learning and attention
mechanism.

Powerful reconstruction algorithms have been proposed
to improve SR capability. In 2016, FSRCNN [12] was pro-
posed to improve the SRCNN model, and upsampling was
performed to increase the running speed. Many CNN-
based SR algorithms have been proposed to improve residual
learning, attention mechanism, model depth, speed, com-
plexity reduction, and SR performance [13–22].

CNNs are used in the mainstream medical CT image SR
algorithms because they provide a very high-performance
advantage for the image domain. However, CNNs cannot real-
ize long-range feature extraction. The transformer is mostly
employed in the audio industry, but it has been, recently,
employed for SR as a replacement for CNNs [23, 24] because
the transformer can support long-range feature extraction by
using a self-attention (SA) mechanism and yields very good

Hindawi
BioMed Research International
Volume 2022, Article ID 4431536, 8 pages
https://doi.org/10.1155/2022/4431536

https://orcid.org/0000-0001-9926-3318
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.1155/2022/4431536


performance in the image domain. Transformer models in the
field of medical imaging have been extensively studied [25].
The transformer network and the shared attention approach
to limit feature extraction improve the SR performance. Nev-
ertheless, few studies have used the transformer network to
improve the SR of medical images. As such, in this study, we
attempted to use the transformer network for SR reconstruc-
tion of medical CT images.

To reconstruct medical CT images, in this study, we
developed the swin transformer and attention network
(STAN) model. The main advantage of STAN is that it can
learn feature information better. STAN consists of three
types of blocks: the low-frequency feature extraction block,
deep feature extraction block (including attention trans-
former blocks (ATBs)), and high-resolution image recon-
struction block.

To preserve the low-frequency information, the low-
frequency feature extraction block is directly connected to the
reconstructed model. The deep feature extraction module
mainly consists of ATBs. To extract image edge and texture
information, a shift window size is used, which reduces resource
consumption. Finally, in the high-resolution image reconstruc-
tion block, the features of the first twomodels are first obtained,
multilayer feature fusion is performed, and finally, low-
resolution to high-resolution reconstruction is realized.

The main contributions of this study are as follows:

(1) A swin transformer is proposed in this paper for an
SR network of medical CT images. The use of the
attention mechanism improves the network’s ability
to extract features and edge and flat area information
from medical CT images and reconstruct high-
quality CT images

(2) We developed a low-frequency extraction module
with an attention mechanism to capture the long-
range dependency feature of the image

(3) To handle long-range dependency images, we used a
shift window mechanism, overcoming the traditional
transformation limitation of dividing the input
image into fixed-size patches

2. Related Work

The traditional SR algorithm uses a bicubic interpolation
algorithm to upsample an image and has the disadvantages
of losing details and blurring the image. Therefore, neural net-
works have been employed for SR. The transformer network
can further improve the performance of a traditional CNN.
With the development of SR, many scholars have applied the
SR technology to improve the clarity and reliability of medical
CT images by employing the following three approaches:

(1) Obtaining SR images by using CNNs: CNNs are
mainly used to perform transformations between
images of different resolutions (e.g., LR image to
HR image). Due to the different characteristics of
the image, different image scaling methods need to
be used to recover different image details. Therefore,

nonlinear mapping is performed to recover the lost
high-frequency details. CNNs are widely used to
reconstruct high-quality images and realize SR
through dense connection convolution, multichan-
nel networks, and symmetric jump connections
[26, 27]

(2) The use of transformer networks in the field of image
applications: transformer networks are generally
used in the audio field. Because of their local atten-
tion mechanism and long-term compliance, trans-
former networks are highly suitable for image
feature extraction. Therefore, the transformer [28,
29] is widely used in the field of image processing
because of its ability to better access information
and integrate the CNN and transformer. Pan et al.
[23] proposed a high-quality reconstruction trans-
former to capture image global features for medical
CT image reconstruction

(3) The use of SR in the field of medical CT imaging: DL
technology is extensively employed for medical CT
imaging [30–32]. Many scholars have applied SR
technology to the medical field [33–35]. SR technol-
ogy is used to reconstruct high-definition images for
the characteristics of medical images, which can
effectively improve image quality and reduce X-ray
radiation to the human body

In this study, we designed the STAN model to recon-
struct medical CT images. In addition, we introduced a
self-information mechanism in the network model to enable
updates to be performed on long-range information; more-
over, the medical image quality smoothing area enables
better image quality.

3. Methods

The architecture of the medical CT image performance
enhancement network is presented here. For the SR recon-
struction of medical CT images, a transformer and an atten-
tion network are employed. To improve the extraction of
low-frequency and high-frequency medical feature informa-
tion, we designed the STAN model. We used a transformer
network instead of traditional CNNs to considerably
increase the quality of medical CT images and edge informa-
tion. The proposed system comprises three types of blocks:
low-frequency feature extraction block, deep feature extrac-
tion block, and high-resolution image reconstruction block.

3.1. Network Architecture. The structure of the proposed
STAN model is illustrated in Figure 1. STAN employs an
efficient long-range attention transformer network for
reconstructing high-resolution images from low-resolution
medical CT images. STAN includes the low-frequency fea-
ture extraction block (for the extraction of flat area image
information), deep feature extraction block (including six
ATBs), and high-resolution CT image reconstruction block
(for the feature extraction of image edge information).
Low-resolution images are inputted into the STAN model.
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The low-frequency feature extraction block extracts the low-
frequency feature information from medical CT images by
using multilayer CNNs. The deep feature extraction block
employs the self-attention mechanism transformer network
to extract the edge information of medical CT images, and
multichannel image information is obtained by adding to
the previous network. The high-resolution CT image recon-
struction block fuses the low-frequency and high-frequency
information; in addition, it extracts the characteristic data
of multiple channels and upsamples the image to obtain an
SR medical CT image.

The proposed STAN algorithm is shown below. The
low-resolution input image is ILQ. Transform HLF is a low-
frequency feature extraction block. In the deep feature
extraction block, there are M ATBs, and each ATB has L
STLs and a convolution operation. After the deep feature
extraction block, the high-quality picture is reconstructed
through high-resolution CT image reconstruction.

3.2. Low-Frequency Feature Extraction Block. As shown in
Figure 2, the low-frequency feature extraction block realizes
low-frequency information extraction and includes three

layers. A low-resolution image is input in. After feature
extraction by using 3 × 3 convolution operations, fine feature
extraction is performed using 1 × 1 convolution. Finally, the
low-frequency information extraction output of the current
block is obtained using a convolution kernel size of 3 × 3.

A low-resolution image is input as ILQ. Then, two 3 × 3
and one 1 × 1 convolution layer are used to obtain the low-
frequency feature output as follows:

F0 =HLF ILQ
� �

: ð1Þ

This module uses a multilayer network to better accom-
plish the extraction of low-frequency information.

3.3. Deep Feature Extraction Block. Deep features FDF ∈
RH×W×C are extracted from the low-frequency feature output
F0 as follows:

FDF =HDF F0ð Þ, ð2Þ

where comprises six ATBs. The composition and principle
of the ATB are described in detail here.
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Figure 1: The architecture of the proposed STAN model. The STAN includes the low-frequency feature extraction block (for the extraction
of flat area image information), deep feature extraction block (including six ATBs), and high-resolution CT image reconstruction block (for
the feature extraction of image edge information).

Input: low-resolution image input ILQ
Output: high-resolution image output IRHQ
1: F0 =HLF ∗ ILQ
2: For i = 1⟶Mdo//i denotes the i-th ATB, here M is 6
3: //Fi =HATB ðFiÞ
4: For j = 1, 2,⋯, L do//j denotes the j-th STL layer, L is 6
5: Fi,j =HSTLi,j ðFi,j − 1Þ
6: End for
7: Fi,out =HCONVi ðFi,LÞ + Fi,0
8: End for
9: FDF =HCONV ðFMÞ
10: IRHQ =HREC ðF0 + FDFÞ
11: Return IRHQ//high-resolution image output

Algorithm 1: The implementation steps of our STAN for medical superresolution.
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As shown in Figure 3, ATBs are composed of swin trans-
former layers (STLs) and convolutional layers with self-
awareness functions. The STL is the base component of the
ATB. The base network comprises multiple STLs and ends
with a convolutional layer to form the ATB. In this study,
the number of STLs in an ATB was set as 6 to achieve a bal-
ance between extraction performance and model
complexity.

Fi,0 indicates the i-th ATB. Information features Fi,1, Fi,2,
…, Fi,L are extracted by the ATB layers as follows:

Fi,j =HSTLi, j Fi,j−1
� �

, j = 1, 2,⋯, L, ð3Þ

where HSTLi, j(·) is the i-th ATB and J denotes the j-th STL.

This design offers two advantages: spatial variation convolu-
tion and residual connection reconstruction module.

The output of ATB can be formulated as

Fi,out =HCONVi
Fi,L + Fi,0ð Þ, ð4Þ

where HCONVi
ð·Þ is the i-th ATB swin transformer.

The STL enables the self-attentive mechanism through
the transformer layer. Its most important feature is the use
of local attention and shift window mechanism. By the size
H ×W × C, the ATB splits the input into nonoverlapping
M ×M local windows. In this manner, the input size is

reshaped into the ðHW/M2Þ ×M2 × C feature, where HW/
M2 is the number of windows.

The STL consists of three components: layer specifica-
tion (LN) layer (used for regularization), multicontrol head
SA (MCSA) layer, and multilayer control perceptron
(MLCP) layer. The MLCP layer is composed of two
completely connected neural networks, and feature extrac-
tion is performed between them through nonlinear transfor-
mation. The LN layer is added before the MCSA and MLCP
layers, and then, the residuals are used to connect the two
modules. The process is as follows:

X =MCSA LN Xð Þð Þ + X, ð5Þ

X =MCLP LN Xð Þð Þ + X: ð6Þ
3.4. High-Resolution Image Reconstruction Block. The low-
frequency feature extraction of high-quality images is per-
formed from medical CT images according to the conver-
gence:

IRHQ =HREC F0 + FDFð Þ, ð7Þ

where HRECð·Þ indicates the reconstruction model. The low-
frequency information mainly includes low frequencies,
while the deep features are used to repair the missing high
frequencies. Sloshing inverter circuits are used to transmit
low-frequency information to the medical CT image

Conv (1 × 1) Conv (3 × 3)Conv (3 × 3) ReLU

Low-frequency feature extraction

ReLU OutputInput

Figure 2: Low-frequency feature extraction block.
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Figure 3: Attention transformer block.
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reconstruction module through a high skip connection and
help the deep-level feature collection module to focus on
high-frequency information.

The high-resolution image reconstruction block
(Figure 4) comprises a 64-channel CNN with channel size
H/2,w/2, 64. The 64-channel feature map output is obtained
using the pixel shuffle upsampling method. Finally, a 3-
channel CNN is used to generate the high-definition image
output.

The primary function of pixel shuffle is to convert the
multichannel feature map r ∗ r into size of w ∗ r and h ∗ r
(e.g., the original feature map size is 4 × 128 × 128, which is
then adjusted to size 1 ∗ ð128 × 2Þ ∗ ð128 × 2Þ), where r is
the upsampling factor, which is the magnification of the
image.

4. Results

We evaluated the performance of the proposed model on
open-source datasets and evaluated the image quality by
using the peak signal-to-noise ratio (PSNR) metric. Com-
pared with other advanced SR methods, the proposed model
offers obvious performance advantages.

4.1. Dataset. We used the largest medical CT medical image
dataset, DeepLesion [36], for training and testing the model.
This dataset not only includes key CT slices containing the
important lesions but also provides the three-dimensional
context (additional slices of 30mm above and below the
key slices). The size of the dataset is 221GB. Because of the
huge amount of data, 11,500 high-quality CT images were
randomly selected and divided into three parts. The majority
of the images were used for training (10,000), and the
remaining were used for verification (1000) and testing
(500). This dataset consists of the original image and the
downsampled image through bicubic interpolation by using
the function torchvision.transforms.resize() in the PyTorch
library. The source HR medical CT image was reduced to a
LR image as the input data, and the original HR medical
CT medical image was used as the data label to be used as
the input dataset of the DL neural network for training.
For the sake of accuracy of model training, the training set
was added through data enhancement to improve the gener-
alization ability.

4.2. Implementation Details. The three-channel (RGB) pixels
of the input image and the original data were linearly
reduced to obtain the LR image, and the original data were
used as label data and inputted into the network. Six ATBs
were used. The sliding window size of each transform net-

work was set as 8, and the patch size corresponding to the
LR image resolution was 48.

Adam optimizer was adopted with two improvements:
gradient sliding average and bias correction. The learning
rate decayed with each update factor decay set as 0.999,
and the initial learning rate was 2 × 10−4. The pixel shuffle
method was used for image upsampling.

4.3. Evaluation Index. We evaluated the reconstructed SR
images by using two methods: subjective evaluation and
objective evaluation. Many factors influence subjective eval-
uation, and the reconstructed SR images are evaluated
mainly based on human visual perception. In this study,
the PSNR was measured as the objective evaluation metric
to study the performance of high-resolution restoration net-
works for medical CT images. To demonstrate the superior-
ity of the proposed model visually, we calculated the PSNR
values of the SR images generated using the proposed
method and other methods and compared them.

PSNR is an objective criterion for evaluating images. The
calculation method is as follows:

MSE =
1
mn

〠
m−1

i=0
〠
n−1

j=0
J i, jð Þ − L i, jð Þk k2: ð8Þ

Then, PSNR can be obtained as follows:

PSNR = 10 log10
MaxValue2

MSE
= 10 log10

2bits − 1
MSE

, ð9Þ

where J and L are the two pixel values and the size of the
image is m × n. The greater the PSNR, the better the medical
CT image effect, and vice versa.

4.4. Ablation Study. To better understand how STAN per-
forms SR in medical CT images, a comprehensive ablation
study on ATBs was performed to evaluate the role of key
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Figure 4: High-resolution image reconstruction blocks.

Table 1: Ablation study on ATB design.

ATB number
Number of ATBs X4 PSNR

1 √ 23.3

2 √ 25.78

4 √ 28.967

6 √ 31.34

8 √ 31.90

10 √ 32.02
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parts of the proposal STAN model, as well as the degree of
depth and the choice of shared attention mechanism.

As can be seen in Table 1, we studied the effect of the
removal and addition of ATB modules on the performance
of the medical CT image reconstruction network. To analyze
the effect of the low-frequency feature extraction block and
ATB on the performance of the STAN model, we conducted
ablation experiments by using different numbers of modules
and studied their corresponding PSNR performance under
the ×4 scaling condition. The number of ATBs affects the
PSNR, i.e., the higher the number of ATBs, the higher the
PSNR.

As shown in Figure 5, we studied the relationship
between the number of ATBs and the PSNR performance
on DeepLesion for image SR (×4). To obtain a relatively
lightweight model, the number of ATBs was selected as 6,
and the number of convolutional layers was 3 in the final test
performance experiment.

4.5. Analysis of Experimental Results. Network optimization
was performed. The performance comparison results in
terms of PSNR with ×2 and ×4 scale factors are presented
in Table 2. We analyzed different algorithms on the DeepLe-
sion testing set. Compared with the bicubic method, the
PSNR of STAN improved by 9.58 and 13.36 dB when the
scale factor was ×2 and ×4, respectively. Compared with
the method using the DL neural network, the PSNR of
STAN improved by 3.81 and 3.56 dB when the scale factor
was ×2 and ×4, respectively.

As can be seen in Figure 6, the bicubic reconstruction of
medical CT images yielded the worst effect and the lowest
PSNR. The SR algorithm based on DL performed better than
the algorithm based on interpolation. The STAN model
based on transform networks proposed in this paper per-
formed relatively better than the CNN-based SR method

by 0.76 and 0.23 dB when the scale factor was ×2 and ×4,
respectively.

Thus, the proposed STAN model exhibited superior
performance to the CNN-based SR method, demonstrating
that the transformer network yields obvious performance
advantages in medical CT imaging.

By using different algorithms, the medical CT image was
reconstructed with multiple resolutions. The results of dif-
ferent algorithms on the DeepLesion are shown in Figure 6.

5. Conclusions

For SR of medical CT images, we proposed an improved
STAN model that uses the SA mechanism for feature extrac-
tion and solves the long-range dependency problem encoun-
tered in CNNs and RNNs. In addition, it can obtain more
important feature information. In STAN, nonoverlapping
feature values are computed using different window sizes,
and feature extraction is performed using a shared-attention
mechanism.

We experimentally demonstrated the SR effectiveness of
the proposed STAN model in medical CT images. We used
the PSNR metric for performance comparison. The results

20
0 2 4 6

ATB number

8 10 12

22

24

26

28

30

PS
N

R 
(d

b)
32

34

36

38

40

Figure 5: Relationship between PSNR and number of ATBs in STAN.

Table 2: PSNR (dB) values for the proposed STAN model.

Model ×2 ×4
Bicubic 23.32 21.76

SRCNN [37] 33.17 27.78

DRRN [38] 34.56 29.65

MDSR [39] 34.85 29.90

RDN [40] 34.96 30.24

RCAN [41] 34.99 30.35

LTE [42] 36.22 31.11

STAN (our) 36.98 31.34
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revealed that the PSNR of the proposed STAN model is
much better than that of the CNN SR method. The use of
the SA mechanism in STAN yields clearer reconstruction
results, and the reconstruction effect in the low-frequency
regions of medical CT images is better. However, medical
imaging may generate image noise due to the influence of
hardware equipment and the external environment. As such,
the next step is to denoise medical CT images in the SR
process.

Data Availability

The medical CT medical image data used to support the
findings of this study have been deposited in the https://
nihcc.app.box.com/v/DeepLesion repository. This is an open
source medical open source dataset, you can download and
use it freely.
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