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Erythronium japonicumDecne (Liliaceae) flowers in early spring after overwintering. Its sexual reproduction process includes an
underground development process of floral organs, but the underlying molecular mechanisms are obscure. The present study is
aimed at exploring the transcriptional changes and key genes involved at underground floral developmental stages, including
flower primordium differentiation, perianth differentiation, stamen differentiation, and pistil differentiation in E. japonicum.
Multistage high-quality transcriptomic data resulted in identifying putative candidate genes for underground floral
differentiation in E. japonicum. A total of 174,408 unigenes were identified, 28,508 of which were differentially expressed
genes (DEGs) at different floral developmental stages, while only 44 genes were identified with conserved regulation between
different stages. Further annotation of DEGs resulted in the identification of 270 DEGs specific to floral differentiation. In
addition, ELF3, PHD, cullin 1, SE14, ZSWIM3, GIGNATEA, and SERPIN B were identified as potential candidate genes
involved in the regulation of floral differentiation. Besides, we explored transcription factors with differential regulation at
different developmental stages and identified bHLH, FAR1, mTERF, MYB-related, NAC, Tify, and WRKY TFs for their
potential involvement in the underground floral differentiation process. Together, these results laid the foundation for future
molecular works to improve our understanding of the underground floral differentiation process and its genetic regulation in
E. japonicum.

1. Background

Erythronium japonicum Decne (Liliaceae) is a spring
ephemeral plant commonly known as the Asian fawn lily
[1]. The known geographic origins of E. japonicum are
Northeast China, Japan, and Korea [1, 2]. E. japonicum pro-
duces an eye-appealing florescence with reddish-purple
flowers [3]. Its vernal characteristics and florescence in early
spring make it a perfect ornamental plant. In ephemeral
spring plants, flower buds are usually initiated before dor-
mancy induction and continue during the dormancy period
[4]. Many studies have been conducted to understand the
life cycle, growth habits, reproduction, morphological dis-
tinctions, and environmental dynamics in E. japonicum

[2, 3, 5–8]. However, there is an apparent lack of studies
concerning the molecular mechanisms underlying the
underground floral differentiation in E. japonicum.

The floral structures are originated in the floral primor-
dium; however, the specific differentiation of stamens and pis-
tils governs the further floral development [9]. Therefore, it is
important to understand the regulatory pathways underlying
floral differentiation. Floral differentiation has beenwidely stud-
ied in many plant species viz., Jatropha curcas [9], Brassica
napus [10],Camellia sinensis [11], Populus [12]Dianthus caryo-
phyllus [13], Litsea cubeba [14], Rosa chinensis [15], Lilium [16],
and Juglans regia [17]. In Arabidopsis, multiple pathways have
been identified responsible for floral differentiation including,
gibberellic acid (GA), vernalization pathways, aging pathway,
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and sugar signaling pathway [18–20]. FLOWERING LOCUS T
(FT) is the integral component in flowering regulation, and
most of the flowering-related pathways converge to FT regula-
tion [11]. Regulation of flowering is a complex mechanism
and is generally triggered by environmental variables, i.e., tem-
perature and humidity [21]. Furthermore, an overlap between
pathways governing flowering and dormancy has been reported
[21]. For instance, FLOWERING LOCUS C (FLC) and FRI-
GIDA (FRI) have been reported with reduced expression dur-
ing vernalization [22, 23]. The considerable overlap between
flowering and dormancy needs to be explored further to exploit
their regulation.

Advances in omics have increased our understanding of
complex mechanisms regulating plant growth and develop-
ment [24–29]. Multiple approaches including, transcripto-
mics [30–32], genomics [33, 34], phenomics [35, 36], and
proteomics [37, 38] have been used for uncovering flowering
mechanism in plants. RETARDED PALEA1 [39], MADS-
box [40], SDRLK, PEBP [41], FLOWERING LOCUS C
(FLC) [42], SHORT VEGETATIVE PHASE (SVP), FLOW-
ERING LOCUS M (FLM) [42], LEAFY (LFY) [43], and
APETALA1 (AP1) [44] have been previously identified for
their subtle role in the regulation of flowering in different
plants species. The characterization of these genes through

targeted approaches is complemented by high-throughput
technologies [30].

This study investigated the transcriptional changes dur-
ing floral differentiation in E. japonicum at four develop-
mental stages viz., flower primordium differentiation,
perianth differentiation, stamen differentiation, and the pistil
differentiation period. Our analysis of underground the flo-
ral differentiation in E. japonicum provides an overview of
differentially expressed genes and their roles in developing
flower organs after overwintering.

2. Methods

2.1. Plant Materials and Sample Collection. The study area
includes Tuodaoling region (125°55′45″ ~125°35′59″E,
41°37′55″ ~41°37′59″N) between Laoling Mountains and
Longgang Mountains in Tonghua Section of Changbai
Mountains in Northeast China (700~750m above sea level).
Sampling time was determined according to plant growth
and development. After the above-ground parts of the pop-
ulation withered and died in late May, meristem samples in
bulbs were collected at four stages of underground flower
organ development, including flower primordium differenti-
ation (from May 28th to June 9th), perianth differentiation

(a) (b)

(c) (d)

(e)

Figure 1: A pictorial description of E. japonicum. (a) Flowering phase. (b) Microscopic view of flower primordium differentiation stage. (c)
Microscopic view of perianth differentiation stage. (d) Microscopic view of stamen differentiation stage. (e) Microscopic view of pistil
differentiation stage.
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Figure 2: (a) Sequence length distribution for transcripts and unigenes. (b) Correlation analysis of FPKM values, (c) PCA graph
representing the distribution of different samples based on their corresponding FPKM values ∗A, B, C, and D in the figure correspond
to four floral differentiation stages: viz., flower primordium differentiation, perianth differentiation, stamen differentiation, and pistil
differentiation.
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(from June 9th to June 17th), and stamen differentiation
(from June 15th to June 20th) and the pistil differentiation
period (from June 17th to June 30th), according to a previ-
ously published report [45]. The sample collection stages
have been elaborated in Figure 1. The samples of E. japoni-
cum were collected in three biological replicates from differ-
ent plants. During the differentiation period, samples were
collected from the under-forest plot every ten days. After
collecting the floral organ meristem samples, samples were
wrapped in aluminum foil and frozen in liquid nitrogen
immediately. Later, the samples were stored in a refrigerator
at -80°C until further use. During sampling, the phenological
phase of each plant was recorded. A total of 12 samples were
used for transcriptome sequencing analysis. All samples
were obtained from the wild, and no permissions are neces-
sary to collect such samples. The formal identification of the
samples was conducted by Prof Rengui Zhao, and novou-
cher specimens have been deposited.

2.2. RNA Extraction, Library Preparation, and Sequencing.
Transcriptome sequencing was performed by constructing
four libraries corresponding randomly collected flower bud
samples, each with three replicates. Total RNA was extracted
using TRIzol reagent (TaKaRa, China). To access, the quality
of extracted RNA contamination and RNA integrity number

was checked using 1% agarose gel and Agilent 2100 Bioana-
lyzer system (Agilent Technologies, CA, USA), respectively.
Pair end sequencing libraries were constructed using 3μg
RNA for each sample. Further, libraries were generated
using NEBNext® UltraTM RNA Library Prep Kit for Illu-
mina® (NEB, USA) following the manufacturer’s instruc-
tions. Illumina HiSeq platform was utilized for RNS
sequencing and was performed by company Novogene
(https://en.novogene.com/). Following, the libraries were
sequenced by paired-end sequencing on Illumina Hiseq.

Low-quality reads and short sequence reads (<50 bp)
were removed using FastQC and in-house Perl scripts.
Finally, clean reads were de novo assembled using Trinity
v.2.6.6 [46].

2.3. Gene Expression Quantification and Differential
Expression Analysis. The mapped reads numbers were calcu-
lated using featureCounts v1.5.0-p3 [47]. Then, calculating the
expected number of fragments per kilobase of exon model per
million reads mapped (FPKM) of each gene based on the
length of each gene and reads count mapped to the gene. Dif-
ferentially expressed genes (DEGs) between samples from dif-
ferent floral developmental stages were identified using the
DESeq R package (v1.18.0) [48]. The false discovery rate
(FDR) method was used to estimate the p value threshold in
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Figure 3: Venn diagram representing common differentially expressed genes between Az vs. Bz, Az vs. Cz, Az vs. Dz, Bz vs. Cz, Bz vs. Dz,
and Cz vs. Dz. Where A, B, C, and D in the figure correspond to four floral differentiation stages viz., flower primordium differentiation,
perianth differentiation, stamen differentiation, and the pistil differentiation, respectively.
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multiple tests to judge the significance of gene expression.
When FDR ≤ 0:05 and FPKM values showed at least 2-fold
difference among samples, the gene was considered DEG.
Conserved DEGs across developmental stages were identified
InteractiVenn [49]. The DEGs were classified using GO [50]
and KEGG enrichment analysis [51]. The annotated DEGs
were further screened for their functions related to floral bud
differentiation, and their corresponding expression levels at
different stages were compared.

Furthermore, transcription factors were identified using
iTAK by integrating PlnTFDB and PlantTFDB [52]. The
principle is to identify TF by hmmscan comparison by using
the TF family information.

2.4. Gene Expression Validation Using qRT-PCR. Quantita-
tive real-time PCR (qRT-PCR) was performed for selected
genes to verify the transcriptomic data and their corresponding

gene expressions and different floral differentiation stages. Tian-
gen RNAprep Pure Plant kit (Tiangen biotech., Beijing, China)
was used to isolate total RNA from samples. Eighteen genes
related to floral differentiation and flowering-related pathways
were selected, and corresponding primers were designed for
qRT-PCR using the Oligo-7 software (Table S1). The primers
were synthesized by Sangon Biotech (Shanghai, China). The
cDNA was extracted from RNA and used as a template to
make the reaction for qRT-PCR by using Takara qPCR kit
SYBR Premix Ex TaqTM II (Tli RNaseH Plus). Three
biological repeats were used for each qRT-PCR reaction and
analysis was performed using 2−ΔΔCt method [53].

3. Results

Based on morphological distinction, we divided the floral
bud differentiation of E. japonicum into four stages, viz.,
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Figure 5: Continued.
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flower primordium differentiation, perianth differentiation,
stamen differentiation, and pistil differentiation. Tissue sam-
ples from each stage, in three replicates, were subjected to
RNA-sequencing. A separate transcriptome from each stage
was subsequently analyzed to identify the molecular regula-
tion of floral differentiation in E. japonicum. Approximately
548 million raw reads were filtered for clean reads (520 mil-
lion). After filtering for unqualified reads, 78.04Gb of clean
bases were obtained where Q20% was above 97.38%, and
Q30% was above 92.72%. The GC contents ranged from
48.35% to 50.11% (Table S2). After de novo assembly,
263,291 transcripts and 174,408 unigenes were identified
with a mean length of 561 and 706, respectively. The
spliced transcripts were sorted lengthwise, and N50
distribution was estimated to be 727 (Transcripts) and 880
(Unigenes). The estimated sequence length distribution of
all unigene and transcripts has been presented in
Figure 2(a). The identified unigenes were annotated against
different databases, viz., GO (26.01%), KEGG (24.36%),
Swiss-prot (20.62), NR (34.02%), KOG (21.18%), and Pfam
(22.0%) [53–55] (Figure S1).

Before proceeding to the comparative analysis of tran-
scriptomes, the individual transcriptome data were analyzed
for quantitation. Correlation and principal component anal-
ysis (PCA) were performed. All samples showed highly sig-
nificant correlations (Figure 2(b)), while PCA based on

FPKM values depicted uniform distribution of replicates
for each sample. However, all four samples were distributed
as separate groups, suggesting different transcriptional regu-
lations at each stage (Figure 2(c)).

3.1. Differentially Expressed Genes Associated with Floral Bud
Differentiation. A total of 28508 genes were identified as dif-
ferentially expressed among all floral developmental stages
(Table S3). Further, to identify the differentially expressed
genes between different stages of floral differentiation, all
pairwise comparisons, viz., Az vs. Bz, Az vs. Cz, Az vs. Dz,
Bz vs. Cz, Bz vs. Dz, and Cz vs. Dz were explored, and we
identified 9,383, 6,979, 16,758, 9,522, 7,387, and 12,502
DEGs, respectively. A total of 44 DEGs (11 upregulated
and 33 downregulated) were identified as conserved DEGs
across all four floral development stages (Figure 3). Major
GO terms associated with DEGs have been presented as
Figure 4. Based on GO classifications, 48, 33, 59, 42, 34,
and 54 DEGs were identified related to floral
differentiation in Az vs. Bz, Az vs. Cz, Az vs. Dz, Bz vs. Cz,
Bz vs. Dz, and Cz vs. Dz, respectively (Figure 5, Table S4-
S9). Log2FC values for the identified DEGs related to floral
differentiation have been presented as a heat map in
Figure 5. Cluster-35905.71088; EARLY FLOWERING 3
(ELF 3), Cluster-35905.51067; PHD finger protein, Cluster-
35905.55785; cullin 1 (CUL1), Cluster-35905.53224; lysine-
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Figure 5: DEGs related to floral differentiation in E. japonicum identified through pairwise comparison of four developmental stages. (a)
Log2FC of 48 DEGs between Az and Bz. (b) Log2FC of 33 DEGs between Az and Cz. (c) Log2FC of 59 DEGs between Az and Dz. (d)
Log2FC of 42 DEGs between Bz and Cz. (e) Log2FC of 34 DEGs between Bz and Dz. (f) Log2FC of 42 DEGs between Cz and Dz. ∗A, B,
C, and D in figure correspond to the four floral differentiation stages: viz., flower primordium differentiation, perianth differentiation,
stamen differentiation, and pistil differentiation.
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specific demethylase (SE14), Cluster-35905.49655; L-aspartate
oxidase, Cluster-35905.46244; zinc finger SWIM domain-
containing protein 3 (ZSWIM3), Cluster-35905.53765;
callose synthase, Cluster-35905.55879; RAB6A-GEF complex
partner protein 1, ribose 5-phosphate isomerase A,
GIGANTEA, Cluster-35905.62239; SERPIN B, and Cluster-
35905.59843; flowering locus K homology domain-like
isoform X1 were upregulated at perianth differentiation
stage, suggesting an active role of these DEGs in the
development of flower buds (Table S4). In contrast,
Cluster-35905.60030; methyl-CpG-binding domain-
containing protein 9 (AtMBD9), Cluster-35905.60826;
flowering time control protein FY isoform X1; and Cluster-
38972.0; CONSTANS showed downregulation at the
perianth differentiation stage.

ELF 3 and FT (FLOWERING LOCUST T), cullin 1,
GLP1, and CONSTANS showed significantly higher upregu-
lation at the stamen differentiation stage compared to pri-
mordium differentiation and perianth differentiation
(Table S5 and Table S7). Interestingly, the number of floral
differentiation genes upregulated at pistil differentiation
increased significantly. ELF3, CONSTANS, and cullin1 were
upregulated at all floral developmental stages (Table S3-
S7). Besides, BRPF1 (bromodomain and PHD finger-
containing 1), HERC4 (Probable E3 ubiquitin-protein

ligase), Hsp 70, SPA1 (Protein SUPPRESSOR OF PHYA-105
1), ZSWIM3, and MYB-related transcription factor LHY
showed specific upregulation at the pistil differentiation
stage (Table S6, S8, and S9).

3.2. Transcription Factors Associated with Floral
Differentiation. Understanding the developmental regula-
tory networks is essential to comprehend the specific devel-
opmental process. Transcription factors (TF) play a pivotal
role in the developmental process. Therefore, we explored
the DEGs and identified 213, 181, 397, 303, 191, and 316
TFs in Az vs. Bz, Az vs. Cz, Az vs. Dz, Bz vs. Cz, Bz vs.
Dz, and Cz vs. Dz, respectively (Table S10). AP2/ERF-ERF,
bHLH, FAR1, mTERF, MYB-related, NAC, Tify, and
WRKY were the most prominent TFs differentially
expressed at the different floral differentiation stages.
Further annotation of these TFs families identified TFs
associated with floral differentiation. Based on
corresponding annotation results, 41 TFs were identified
(Table S11). The differential expression of these TFs has
been presented in Table S10. Twelve TFs, viz., FAR1, EIL,
IWS1, B3, DDT, SNF2, PHD, NAC, SWI/SNF-WI3, RWP-
RK, PHD, and mTERF exhibited concomitant upregulation
at all floral transition stages. While remaining 23 TFs were
downregulated at perianth differentiation, stamen
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Figure 6: K-means clustering of differentially expressed genes based on standardized FPKM values. The numbers of genes clustered in each
subclass are mentioned above. ∗Az, Bz, Cz, and Dz in the figure correspond to four floral differentiation stages viz., flower primordium
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differentiation, and the pistil differentiation stages compared
to primordium differentiation. The variable transcriptomic
landscape of TFs suggested their potential role in floral
differentiation in E. japonicum. However, further study is
required to confirm the regulatory role of these TFs in the
floral development stages.

FPKM values of identified 28,508 were subjected to K-
mean clustering analysis to identify coexpressed TF genes
with DEGs at the four floral development stages (Figure 6).
We identified subclasses 1, 3, 6, and 8 containing the most
number of structural DEGs related to flower development.
These subclasses contains several TFs, including AP2/ERF-
ERF, bHLH, FAR1, mTERF, MYB-related, NAC, Tify, and
WRKY. Further molecular characterization of identified
coexpressed TFs with structural genes can potentially nar-
row down the DEGs involved in floral differentiation in E.
japonicum.

3.3. qRT-PCR-Based Verification of Expression Pattern of
Identified Genes. Based on the transcriptome analysis and
further bioinformatics analyses, we identify 18 genes poten-
tially associated with floral differentiation in E. japonicum.
To validate the transcriptome data and corresponding
expression of selected genes at different floral development
stages, we performed qRT-PCR-based validation. As a result,
the expression profile of selected genes confirmed the tran-
scriptome’s reliability and demonstrated the differential
expression pattern at the four floral developmental stages
(Figure 7).

4. Discussion

Floral organ development in ornamental plants is a key process
shaping their commercial value [47, 56]. To meet the ever-
increasing demand in floriculture industry, many wild flowers
have been domesticated for their commercial use [57]. Erythro-
nium japonicum Decne (Liliaceae) is one such example that is
native to Asia [2]. E. japonicum is an early spring ephemeral,
and the initial flower development phase starts underground
without photoperiod induction and vernalization [58]. There-
fore, it is important to understand and explore the floral differ-
entiation process in E. japonicum to better utilize its commercial
value. The present study is aimed at exploring diverse transcrip-
tomic landscape pertaining to different developmental stages
involved in floral morphogenesis, viz., including primordium
differentiation, perianth differentiation, stamen differentiation,
and pistil differentiation stage.

Floral induction is a series of developmental processes,
with each stage providing substantial inputs to govern the
overall process [59]. Based on a previous report [45], we
selected four stages of underground flower development in
E. japonicum, and samples from each stage were subjected
to transcriptomic profiling. A similar approach for exploring
transcriptomic profile for floral differentiation has been
adopted in different species such as Ranunculus glacialis
[60], Chrysanthemum morifolium [61], Chrysanthemum
lavandulifolium [62], Staphisagria Ranunculaceae [63], rice
[64], and Delphinieae [63]. The obtained results in this study
suggested significant variation in the expression profiles at
the different stages.
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Figure 7: qRT-PCR gene expression profile of selected genes related to floral differentiation at different floral differentiation stages viz., Az
(primordium differentiation), Bz (perianth differentiation), Cz (stamen differentiation), and Dz (pistil differentiation). The average relative
expression was plotted.
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We identified putative genes responsible for floral differ-
entiation in E. japonicum and observed upregulated expres-
sion of ELF3, PHD, cullin1, SE14, ZSWIM3, GIDNATEA,
and SERPIN B from the initial primordium differentiation
stage to the perianth differentiation stage. ELF3 plays a cru-
cial role in regulating the circadian clock and is responsible
for many downstream regulatory pathways [65]. Further-
more, ELF3 interacts with ELF4, LUX, and other proteins
to regulate hypocotyl extension, thermo-morphogenesis,
and flowering time [66, 67]. In addition, ELF3 gene has been
reported to suppress cell elongation under increasing tem-
perature [65]. Thus, further functional analysis of ELF3
can provide valuable insights into its role in regulating floral
differentiation in E. japonicum. Similarly, other DEGs iden-
tified with differential expression at early stages of floral dif-
ferentiation, including PHD [68–70], cullin 1 [71], SE14 [72],
ZSWIM3 [73], GIGNATEA [74], and SERPIN B [75], have
been characterized for their positive role in the regulation
of flowering in different plant species with their potential
involvement in circadian pathways.

Comparative transcriptomic profile suggested that
expression of ELF3 and FT, cullin 1, GLP1, and CONSTANS
significantly increased at later stages, suggesting an
enhanced role in later flower differentiation stages, viz., sta-
men differentiation, and pistil differentiation. Similarly,
stage-specific genes were identified for each transition stage
during floral organ development. Similar results have been
reported previously, suggesting stage-specific regulatory
genes [76, 77]. MADS domain protein APETALA1 (AP1)
and LEAFY (LFY) are generally considered as master regula-
tors of flowering in plants [78]; however, activation of these
genes is dependent on MADS domain proteins, including
SUPPRESSOR OF OVEREXPRESSION OF CONSTANS 1
(SOC1), FRUITFULL (FUL), and AGAMOUS-LIKE 24
(AGL24) [79, 80].

TFs and their roles in the developmental process have
been extensively studied over the past decades [81–83]. Sev-
eral TFs such as AP2/ERF, MYB, bHLH, MADS-box, and
NAC have been previously characterized for their active role
in development and flower initiation in plants. Our study
identified TFs such as AP2/ERF [84], bHLH [85], FAR1
[86], mTERF [87], MYB-related [88], NAC [89], Tify [90],
and WRKY [91] as major regulators involved in floral differ-
entiation in E. japonicum. Ethylene-Responsive Factor (ERF)
gene family is known for its diverse role in plant develop-
mental process, including germination, flowering, matura-
tion, and senescence [92, 93]. Ethylene has been reported
with its regulatory role in the transition to flowering phase
[94, 95], and ethylene regulation in flowering plants is con-
trolled by ERF gene family [96]. The bHLH TF family regu-
lates CONSTANS in Arabidopsis, which is crucial for
photoperiodic flowering. Similarly, FAR1, an important reg-
ulator in the photo-sensitive circadian clock, regulates ELF4
by directly binding to FBS cis-elements and promotes flow-
ering [97]. However, the flowering phase in E. japonicum
starts underground in the absence of light. Therefore, further
characterization of bHLH and FAR1 and their relationship
with CONSTANS in E. japonicum may yield a potential
breakthrough in activating flower organs of underground

bulbs in ephemeral plants. Myb-related protein positively
regulates flowering by activating FLOWERING LOCUS T
and FLOWERING LOCUS T INTERACTING PROTEIN 1
[88]. Furthermore, based on GO terms associations, we
identified twelve upregulated TFs at the four stages of flower
initiation. Therefore, we speculated that these TFs play a
crucial role in underground floral differentiation in E.
japonicum.

5. Conclusions

This study investigated the transcriptional profiles of under-
ground floral differentiation in E. japonicum at four develop-
mental stages. Through a comparative transcriptome
analysis, we identified several putative candidate genes,
including ELF3, PHD, cullin 1, SE14, ZSWIM3, GIGNATEA,
SERPIN B, bHLH, FAR1, mTERF, MYB-related, NAC, Tify,
and WRKY. Further functional characterization of these
putative candidate genes can provide a better understanding
of the process of underground floral organ differentiation in
E. japonicum. Furthermore, the excavated information can
be used as a base study for further characterization of floral
differentiation in spring ephemeral plants.
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