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Background. Diabetic osteoporosis (DOP) is a progressive osteoblast dysfunction induced by high glucose, which has negative
impacts on bone homeostasis. Qizhi Kebitong formula (QKF) is a traditional Chinese medicine (TCM) formula for treating DOP.
However, its role in the protection of DOP has not been clarified yet. Here, we aimed to explore the potential mechanisms of QKF
on DOP development via in vivo experiment. Methods. Network pharmacology was used to detect the key targets and signaling
pathways of QKF on DOP. The effects of QKF on DOP were examined by the phenotypic characteristics, micro-CT, and
hematoxylin-eosin (H&E) staining. The predicted targets and pathways were validated by a streptozocin- (STZ-) induced mouse
model. Subsequently, the levels of the selected genes and proteins were analyzed using qRT-PCR and Western blot. Finally,
AutoDock and PyMOL were used for molecular docking. Results. In this study, 90 active compounds and 2970 related disease
targets have been found through network pharmacology. And QKF could improve the microstructures of femur bone mass, reduce
inflammatory cell infiltration, and downregulate the levels of TNF-α, IKBKB, IL-6, and IL-1β. Moreover, the underlying effect of
PI3K/Akt/NF-κB pathways was also recommended in the treatment. Conclusion. Altogether, our findings suggested that QKF
could markedly alleviate osteoblast dysfunction by modulating the key targets and PI3K/Akt/NF-κB signaling pathway.

1. Introduction

Diabetic osteoporosis (DOP) is a common complication of
diabetes, which primarily affects bone metabolism, joints,
and kidney [1, 2]. DOP is a skeletal disorder characterized
by a chronic high glucose, decreased bone mass, and dam-
aged bone tissue [3–5]. With the increasing incidence of dia-
betes, DOP has become a systemic bone disease to increase
bone brittleness, fracture risk, and impaired bone healing

[6]. However, the pathogenesis of DOP has not been fully
clarified. Notably, studies have shown that high glucose is a
crucial determinant of DOP [7], especially increased
diabetes-related pathological factors [8, 9]. Interestingly,
inflammation is defined as one of the major pathological fac-
tors of DOP, which leads to bone loss [10], destroys the bone
microenvironment, and inhibits bone formation [11, 12].
However, a series of DM-induced inflammation is often
overlooked or underestimated, seriously affecting the quality
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of people’s life in the later period [13]. Therefore, it is an
urgent strategy to prevent the development of inflammation
and find effective therapies for DOP.

Traditional Chinese medicine (TCM) has a long history
in treating DOP and accumulated rich experience [14].
Qizhi Kebitong formula (QKF) is a classical TCM formula
composed of seven TCMs, including Huang-qi (Astragalus
mongholicus Bunge, Fabaceae, root), Ji-xue-teng (Spatholo-
bus suberectus Dunn, Fabaceae, dry rattan stem), Huai-niu-
xi (Achyranthes bidentata Blume, Amaranthaceae, root),
Sang-zhi (Morus alba L., Moraceae, twig), Wei-ling-xian
(Clematis chinensis Osbeck, Ranunculaceae, root), Xi-xian-
cao (Sigesbeckia orientalis L., Asteraceae, aboveground part),
and Quan-xie (scorpion, Buthus martensi Karsch, whole ani-
mal) in Table 1. Accumulating evidence demonstrates that
QKF has beneficial effects on clinical observation, and the
indispensable role of QKF has been widely accepted. But
the mechanisms remain unknown.

In this study, the potential targets and protective path-
ways of QKF on DOP were screened via network pharma-
cology, and the results were verified in the mouse model.
Then, we provided some insights with the possible molecu-
lar mechanisms of QKF on the clinical application for delay-
ing DOP progression.

2. Materials and Methods

2.1. Preparation of QKF and Reagents. Herbal compounds of
QKF were provided by a pharmacy of Jilin Provincial Hospi-
tal of Traditional Chinese Medicine (Changchun, China).
All of the crude drugs (98 g, two-thirds are used clinically)
were extracted in 1000ml of distilled water three times
(100°C, 1 h each time) to obtain the aqueous extract. The
extracts were centrifuged at 3,500 rpm for 15min, and the
supernatant was freeze-dried to obtain the powdery extract
of QKF, with a yield of 20% (13 g) for further experiments.
According to dose translation of animal studies, the medium

treatment concentration of a mouse is approximately equal
to 3 g/kg/day; the low and high treatment concentrations
are approximately equal to 1.5 g/kg/day and 6 g/kg/day,
respectively. Streptozotocin (STZ) was purchased from
Sigma-Aldrich (Shanghai, China). Antibodies against p-PI3K
(AF3241, Affinity Biosciences, China), PI3K (ab227204,
Abcam, USA), p-Akt (4058, Cell Signaling Technology,
USA), Akt (ab179463, Abcam, USA), p-NF-κB (3033, Cell Sig-
naling Technology, USA), NF-κB (ab16502, Abcam, USA), IL-
6 (ab208113, Abcam, USA), IL-1β (ab254360, Abcam, USA),
TNF-α (8184, Cell Signaling Technology, USA), IKBKB
(15649-1AP, Proteintech, China), and GADPH (60004-1-1g,
Proteintech, China) were used in this study.

2.2. Network Construction and Analysis. According to the
pinyin form, “Huang-qi”, “Sang-zhi”, “Ji-xue-teng”, “Xi-
xian-cao”, “Wei-ling-xian”, “Quan-xie”, and “Huai-niu-xi”
were used as the keywords to search the active ingredients
of XBC via the TCMSP (http://tcmspw.com/tcmsp.php)
database. Meanwhile, DOP-associated targets were acquired
from GeneCards (http://www.swisstargetprediction.ch/),
OMIM, (https://OMIM.org/), PharmGKB, (https://www
.pharmkb.org/), and DrugBank (https://www.drugbank.ca/).
The protein-protein interaction (PPI) network was obtained
from STRING (http://string-db.org/, v.11) with parameter con-
ditions filtered by “Homo sapiens” (confidence score > 0:9)
and visualized using Cytoscape 3.8.0. And Gene Ontology
(GO) and Kyoto Encyclopedia of Genes and Genomes
(KEGG) enrichment analyses were performed for the above
targets.

2.3. Animals and Treatments. In this study, 48 male C57 BL/
6 mice were used for animal experiments. They were pur-
chased from Changchun Yisi Experimental Animal Co.,
Ltd. (license number SCXK (Beijing) 2016-0006) with the
weight in 18~22 g. Meanwhile, all mice were approved for
ethical use by the Experimental Animal Ethics Committee

Table 1: The compositions of QKF.

Chinese pinyin name Taxonomy name Abbr. Family Weight (g) Part used

Huang-qi Astragalus mongholicus Bunge HQ Fabaceae 30 Root

Ji-xue-teng Spatholobus suberectus Dunn JXT Fabaceae 15 Dry rattan stem

Huai-niu-xi Achyranthes bidentata Blume HNX Amaranthaceae 10 Root

Sang-zhi Morus alba L. SZ Moraceae 20 Twig

Wei-ling-xian Clematis chinensis Osbeck WLX Ranunculaceae 15 Root

Xi-xian-cao Sigesbeckia orientalis L. XXC Asteraceae 20 Aboveground part

Quan-xie Scorpion QX Buthus martensi Karsch 5 Dry body

Table 2: Primer sequences of qRT-PCR in mouse.

Target Forward (5′ to 3′) Reverse (5′ to 3′)
IKK GGCAGAAGAGCGAAGTGGACATC CCAGCCGTTCAGCCAAGACAC

IL-1β GAAATGCCACCTTTTGACAGTG TGGATGCTCTCATCAGGACAG

IL-6 CCAAGAGGTGAGTGCTTCCC CTGTTGTTCAGACTCTCTCCCT

TNF-α TGAGCACAGAAAGCATGATCC GCCATTTGGGAACTTCTCATC

GAPDH AGGTCGGTGTGAACGGATTTG TGTAGACCATGTAGTTGAGGTCA
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Table 3: The 90 active components of QKF were screened from the TCMSP database.

Drug MOL_ID Molecule name
OB
(%)

DL

Astragalus mongholicus
Bunge (Huang-qi)

MOL000211 Mairin 55.38 0.78

MOL000239 Jaranol 50.83 0.29

MOL000295 Alexandrin 20.63 0.63

MOL000296 Hederagenin 36.91 0.75

MOL000033
(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-
yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

36.23 0.78

MOL000354 Isorhamnetin 49.6 0.31

MOL000371 3,9-Di-O-methylnissolin 53.74 0.48

MOL000374 5′-Hydroxyiso-muronulatol-2′,5′-di-O-glucoside 41.72 0.69

MOL000378 7-O-Methylisomucronulatol 74.69 0.3

MOL000379 9,10-Dimethoxypterocarpan-3-O-β-D-glucoside 36.74 0.92

MOL000380 (6aR,11aR)-9,10-Dimethoxy-6a,11a-dihydro-6H-benzofurano[3,2-]chromen-3-ol 64.26 0.42

MOL000387 Bifendate 31.1 0.67

MOL000392 Formononetin 69.67 0.21

MOL000398 Isoflavanone 109.99 0.3

MOL000417 Calycosin 47.75 0.24

MOL000422 Kaempferol 41.88 0.24

MOL000433 FA 68.96 0.71

MOL000438 (3R)-3-(2-Hydroxy-3,4-dimethoxyphenyl)chroman-7-ol 67.67 0.26

MOL000439 Isomucronulatol-7,2′-di-O-glucosiole 49.28 0.62

MOL000440 Isomucronulatol-7,2′-di-O-glucosiole_qt 23.42 0.79

MOL000442 1,7-Dihydroxy-3,9-dimethoxy pterocarpene 39.05 0.48

MOL000098 Quercetin 46.43 0.28

Morus alba L. (Sang-zhi)

MOL000422 Kaempferol 41.88 0.24

MOL000729 Oxysanguinarine 46.97 0.87

MOL000737 Morin 46.23 0.27

Spatholobus suberectus
Dunn (Ji-xue-teng)

MOL000392 Formononetin 69.67 0.21

MOL000471 Aloe-emodin 83.38 0.24

MOL000492 (+)-Catechin 54.83 0.24

MOL000417 Calycosin 47.75 0.24

MOL000006 Luteolin 36.16 0.25

MOL000461 3,7-Dihydroxy-6-methoxy-dihydroflavonol 43.8 0.26

MOL000483 (Z)-3-(4-Hydroxy-3-methoxy-phenyl)-N-[2-(4-hydroxyphenyl)ethyl]acrylamide 118.35 0.26

MOL000468 8-o-Methylreyusi 70.32 0.27

MOL000501 Consume close grain 68.12 0.27

MOL000502 Cajinin 68.8 0.27

MOL000497 Licochalcone A 40.79 0.29

MOL000490 Petunidin 30.05 0.31

MOL000507 Psi-baptigenin 70.12 0.31

MOL000503 Medicagol 57.49 0.6

MOL000491 Augelicin 37.5 0.66

MOL000470 8-C-α-L-Arabinosylluteolin 35.54 0.66

MOL000493 Campesterol 37.58 0.71

MOL000296 Hederagenin 36.91 0.75

MOL000358 Beta-sitosterol 36.91 0.75

MOL000449 Stigmasterol 43.83 0.76

MOL000033
(3S,8S,9S,10R,13R,14S,17R)-10,13-Dimethyl-17-[(2R,5S)-5-propan-2-yloctan-2-
yl]-2,3,4,7,8,9,11,12,14,15,16,17-dodecahydro-1H-cyclopenta[a]phenanthren-3-ol

36.23 0.78
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Table 3: Continued.

Drug MOL_ID Molecule name
OB
(%)

DL

MOL000469 3-Hydroxystigmast-5-en-7-one 40.93 0.78

Sigesbeckia orientalis L.
(Xi-xian-cao)

MOL004180 Coronaridine 34.97 0.68

MOL000296 Hederagenin 36.91 0.75

MOL000358 Beta-sitosterol 36.91 0.75

MOL004179 Vernolic acid 37.63 0.19

MOL000449 Stigmasterol 43.83 0.76

MOL004172
(1R)-1-[(2S,4aR,4bS,7R,8aS)-7-Hydroxy-2,4b,8,8-tetramethyl-4,4a,5,6,7,8a,9,10-

octahydro-3H-phenanthren-2-yl]ethane-1,2-diol
46.7 0.31

MOL004184 Siegesesteric acid II 51.98 0.48

MOL004177 15alpha-Hydroxy-ent-kaur-16-en-19-oic acid 58.73 0.38

MOL004185 Siegesmethyletheric acid 60.72 0.43

Clematis chinensis Osbeck
(Wei-ling-xian)

MOL001663
(4aS,6aR,6aS,6bR,8aR,10R,12aR,14bS)-10-Hydroxy-2,2,6a,6b,9,9,12a-

heptamethyl-1,3,4,5,6,6a,7,8,8a,10,11,12,13,14b-tetradecahydropicene-4a-
carboxylic acid

32.03 0.76

MOL002372 (6Z,10E,14E,18E)-2,6,10,15,19,23-Hexamethyltetracosa-2,6,10,14,18,22-hexaene 33.55 0.42

MOL005598 Embinin 33.91 0.73

MOL000358 Beta-sitosterol 36.91 0.75

MOL005594 ClematosideA′_qt 37.51 0.76

MOL005603 Heptyl phthalate 42.26 0.31

MOL000449 Stigmasterol 43.83 0.76

Achyranthes bidentata
Blume (Huai-niu-xi)

MOL001006 Poriferasta-7,22E-dien-3beta-ol 42.98 0.76

MOL012461 28-Norolean-17-en-3-ol 35.93 0.78

MOL012505 Bidentatoside,ii_qt 31.76 0.59

MOL012537 Spinoside A 41.75 0.4

MOL012542 β-Ecdysterone 44.23 0.82

MOL001454 Berberine 36.86 0.78

MOL001458 Coptisine 30.67 0.86

MOL000173 Wogonin 30.68 0.23

MOL002643 Delta 7-stigmastenol 37.42 0.75

MOL002714 Baicalein 33.52 0.21

MOL002776 Baicalin 40.12 0.75

MOL002897 Epiberberine 43.09 0.78

MOL000358 Beta-sitosterol 36.91 0.75

MOL003847 Inophyllum E 38.81 0.85

MOL000422 Kaempferol 41.88 0.24

MOL004355 Spinasterol 42.98 0.76

MOL000449 Stigmasterol 43.83 0.76

MOL000785 Palmatine 64.6 0.65

MOL000085 Beta-daucosterol_qt 36.91 0.75

MOL000098 Quercetin 46.43 0.28

Scorpion (Quan-xie)

MOL011455 20-Hexadecanoylingenol 32.7 0.65

MOL000953 Cholesterol 37.87 0.68

MOL002223 Taurine 24.37 0.21

MOL002156 Trimethylamine 59.98 0.18

MOL000860 Stearic acid 17.83 0.14

MOL002223 Taurine 24.37 0.01

MOL000069 Palmitic acid 19.3 0.1
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Figure 1: Construction and analysis of the network pharmacology. (a) Disease-related targets. (b) The interactive targets of QKF and DOP.
(c) The drug-compound-target-disease network. (d) PPI network and cluster analysis of the potential targets. (e) PPI network of significant
genes was extracted.
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Figure 2: Continued.
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of Changchun University of Traditional Chinese Medicine
(batch number 20190134). They were kept in the Animal
Experimental Center of Changchun University of Tradi-
tional Chinese Medicine (Changchun, China). The ambient
temperature is 18~22°C, and the humidity is 50~60%. Then,
the mice were randomly divided into 5 groups (n = 8): con-
trol (Ctrl), STZ, QKF (1.5 g/kg), QKF (3 g/kg), and QKF (6 g/
kg) groups. Except for the Ctrl group, all other mice were
intraperitoneally injected with STZ 130mg/kg. After 7 days,
the tail of the mice was cut short to test the random blood
glucose levels ≥ 300mg/dl (16.7mmol/l) which were consid-
ered to be diabetic.

2.4. Micro-Computed Tomography (Micro-CT) Scanning.
The femurs were scanned with a high-resolution Quantum
FX Micro-CT (PerkinElmer, Inc. Waltham, MA, USA),
using the following settings: 80μA current, 90 kV voltage,
360° gantry rotation, 4min scanning time, and 36mm
reconstructed visual field. The images were recombined via
micro-CT, and the following parameters were recorded:
bone mineral density (BMD), specific bone surface (BS/
BV), trabecular separation (Tb.Sp), trabecular thickness
(Tb.Th), bone volume over total volume (BV/TV), and con-
nectivity density (Conn.D).

2.5. The Hematoxylin/Eosin (H&E) Staining. The exfoliated
femurs were fixed using 4% formaldehyde, decalcified in

EDTA glycerol solution, and embedded in paraffin. Paraffin
sections were cut into the slices at 4μm thickness and
stained with H&E. Images of the sections were captured
using light microscopy (Olympus BX51, Japan) at 200x
and 400x ratios, respectively.

2.6. Quantitative Real-Time PCR (qRT-PCR) Analysis. Total
RNA was extracted from the femur tissues with a total RNA
extraction kit (TIANGEN BIOTECH, China). Subsequently,
the reverse transcription of 1μg total RNA into cDNA was
conducted with the iScript cDNA synthesis kit (TIANGEN
BIOTECH, China). The qRT-PCR assay was performed with
a Bio-Rad CFX96 system, and the gene expressions of IKK,
IL-1β, IL-6, and TNF-α were normalized to GAPDH. Rela-
tive mRNA levels were quantified using the 2−ΔΔCt method.
The mouse primer sequences are shown in Table 2.

2.7. Western Blotting Assay. Proteins were extracted from the
femurs using RIPA lysis buffer (Beyotime, China) with phos-
phatase inhibitors and protease inhibitors. Protein quantifi-
cation was measured using a BCA protein assay kit
(Beyotime, China). The equivalent amount of protein was
separated by 8%, 10%, or 12% SDS-PAGE and transferred
to a PVDF membrane. The membrane was blocked with
5% BSA 1~2h at room temperature. The antibodies against
PI3K (1 : 1000), p-PI3K (1 : 1000), Akt (1 : 10000), p-Akt
(1 : 1000), NF-κB (1 : 2000), p-NF-κB (1 : 1000), IKBKB
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Figure 2: (a) GO enrichment analysis. The top 15 BP terms, CC terms, and MF terms are shown as a bubble chart according to the -log p
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Table 4: GO enrichment analysis of QKF.

Ontology ID Description p value p:adjust GeneID Count

Biological
process
(BP)

GO:0048545
Response to steroid

hormone
2:00E − 21 6:65E − 18

PGR/AR/ESR2/NCOA2/NR3C2/NCOA1/
ESR1/RELA/RXRB/BCL2/CASP3/ICAM1/

GSTP1/EGFR/CCND1/FOS/CASP9/IL6/TP63/
CAV1/PARP1/MDM2/FOSL1

23

GO:0062197
Cellular response to

chemical stress
4:92E − 21 8:18E − 18

PPARG/AKR1B1/RELA/BCL2/CASP3/
MAPK8/CYP1B1/ALOX5/GSTP1/SLC2A4/
EGFR/FOS/IL6/HIF1A/CAV1/NOS3/HSPB1/
NFE2L2/NQO1/PARP1/MDM2/CYCS/CD36

23

GO:1901654 Response to ketone 3:35E − 19 3:71E − 16
AR/NCOA2/NCOA1/PPARG/AKR1B1/F7/
RELA/ICAM1/AHR/EGFR/CCND1/FOS/

CASP9/ELK1/CAV1/PARP1/PRKCE/FOSL1
18

GO:0006979
Response to oxidative

stress
1:09E − 18 9:05E − 16

PTGS1/RELA/BCL2/CASP3/MAPK8/CYP1B1/
ALOX5/GSTP1/EGFR/FOS/IL6/HIF1A/NOS3/
HSPB1/NFE2L2/NQO1/PARP1/MDM2/APP/

FOSL1/CYCS/SP1/CD36

23

GO:0042493 Response to drug 1:55E − 17 1:03E − 14
NCOA1/PPARG/F7/RELA/ADRA1A/BCL2/
CASP3/CYP3A4/CYP1A1/ICAM1/EGFR/
CCND1/FOS/POR/MYC/CCNB1/NFE2L2/

CHEK2/MDM2/FOSL1/DRD2

21

GO:0034599
Cellular response to
oxidative stress

8:36E − 16 4:44E − 13
RELA/BCL2/MAPK8/CYP1B1/ALOX5/

GSTP1/EGFR/FOS/IL6/HIF1A/NOS3/HSPB1/
NFE2L2/NQO1/PARP1/MDM2/CYCS/CD36

18

GO:0010038 Response to metal ion 9:35E − 16 4:44E − 13
BCL2/CASP3/MAPK8/CYP1A1/ICAM1/

EGFR/CCND1/FOS/CASP9/CASP8/HIF1A/
CAV1/CCNB1/NFE2L2/NQO1/PARP1/

MDM2/APP/DRD2

19

GO:0009636
Response to toxic

substance
8:72E − 15 3:62E − 12

PTGS1/BCL2/CYP1A1/CYP1B1/GSTP1/AHR/
GSTM1/FOS/NOS3/CCNB1/NFE2L2/NQO1/

PON1/MDM2/CD36/DRD2
16

GO:0009314 Response to radiation 3:52E − 14 1:30E − 11
RELA/BCL2/CASP3/MAPK8/ICAM1/EGFR/
CCND1/FOS/CASP9/ELK1/HIF1A/MYC/

PARP1/COL3A1/CHEK2/MDM2/APP/TYR/
DRD2

19

GO:0000302
Response to reactive

oxygen species
6:77E − 14 2:25E − 11

RELA/BCL2/CASP3/MAPK8/CYP1B1/GSTP1/
EGFR/FOS/IL6/NOS3/NFE2L2/NQO1/

MDM2/FOSL1/CD36
15

Cell
component
(CC)

GO:0045121 Membrane raft 1:05E − 08 1:31E − 06 ADRA1A/CASP3/ICAM1/SELE/SLC2A4/
EGFR/CASP8/CAV1/NOS3/CTSD/APP/CD36

12

GO:0098857
Membrane

microdomain
1:09E − 08 1:31E − 06 ADRA1A/CASP3/ICAM1/SELE/SLC2A4/

EGFR/CASP8/CAV1/NOS3/CTSD/APP/CD36
12

GO:0098589 Membrane region 1:67E − 08 1:34E − 06 ADRA1A/CASP3/ICAM1/SELE/SLC2A4/
EGFR/CASP8/CAV1/NOS3/CTSD/APP/CD36

12

GO:0005667
Transcription regulator

complex
1:05E − 06 6:29E − 05 PPARG/RELA/RXRB/AHR/CCND1/FOS/RB1/

HIF1A/PARP1/RUNX2/SP1
11

GO:0005901 Caveola 0.000373551 0.016511501 ADRA1A/SELE/CAV1/NOS3 4

GO:0031983 Vesicle lumen 0.000420556 0.016511501
ALOX5/GSTP1/EGFR/VEGFA/CTSD/IGF2/

APP
7

GO:0090575
RNA polymerase II

transcription regulator
complex

0.000549681 0.016511501 PPARG/RXRB/FOS/RB1/HIF1A 5

GO:0031091 Platelet alpha granule 0.000554949 0.016511501 VEGFA/IGF2/APP/CD36 4

GO:0005641 Nuclear envelope lumen 0.000746032 0.016511501 ALOX5/APP 2

GO:0000307
Cyclin-dependent
protein kinase

holoenzyme complex
0.000749375 0.016511501 CCND1/RB1/CCNB1 3
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(1 : 1000), TNF-α (1 : 1000), IL-1β (1 : 1000), IL-6 (1 : 1000),
and GAPDH (1 : 5000) were added at 4°C overnight. After
washing with 1× TBST, the membranes were further probed
with the corresponding secondary antibody (1 : 5000) for 2 h
at 18-25°C; the labeled protein bands were visualized using a
BeyoECL Plus Kit (Beyotime, China). Image Lab software
was used for semiquantitative analysis.

2.8. Molecular Docking. AutoDock software, version 4.2, was
used for molecular docking. The composite targets were ver-
ified using the Lamarckian genetic algorithm; proteins and
ligands were prepared using the AutoDock tool. The three-
dimensional structure of the proteins was downloaded from
the RCSB-PDB database (http://www.pdb.org), and the
hydrogen atoms were added. We calculated the docking
binding energy using the Auto tool. The docking diagrams
of target proteins and molecules were performed by the
PyMOL visualization software.

2.9. Statistical Analysis. All data were analyzed using Graph-
Pad Prism 9.0. These data were compared with several
groups by one-way ANOVA. For all statistical analysis, p <
0:05 was considered statistically significant.

3. Results

3.1. Screening of the Intersection Targets and Constructing a
Series of Network. With OB ≥ 30% and DL ≥ 0:18 as screen-
ing parameters, 90 candidate compounds of QKF were

found for further analysis (Table 3). Besides, 2970 potential
targets of DOP were obtained from the four authoritative
databases (Figure 1(a)). Through taking the intersection of
122 QKF targets and 2,970 DOP targets, 81 potential targets
were obtained (Figure 1(b)). Subsequently, the intersection
targets were inputted to Cytoscape software to build the net-
work diagram with multicomponent and multitarget
(Figure 1(c)). In addition, 81 potential targets were uploaded
to the STRING database to construct the PPI network
(Figure 1(d)). Among these nodes, PIK3CG, Akt1, and
RELA were screened out with more relevance and biological
functions in the PPI network (Figure 1(e)), suggesting that
PIK3CG, Akt1, and RELA were the key genes, probably
exhibiting therapeutic effect in DOP.

3.2. Functional Enrichment Analysis. To investigate the
potential mechanisms, the 1660 biological processes (BP),
24 cellular components (CC), and 104 molecular functions
(MF) were performed using the DAVID database. Moreover,
the top 15 results were selected with the p value from small
to large (Figure 2(a) and Table 4). KEGG enrichment analy-
sis obtained 128 results. Subsequently, we selected the top 50
according to the p value for further analysis (Figure 2(b)).
Notably, previous studies indicated the osteogenic differenti-
ation through activating the PI3K/Akt pathway, connected
with the multitarget and multicomponent. Among these
enriched pathways, PI3K/Akt played an important role in
DOP; the predictive targets are shown in Figure 2(c).

Table 4: Continued.

Ontology ID Description p value p:adjust GeneID Count

Molecular
functions
(mf)

GO:0140297
DNA-binding

transcription factor
binding

1:46E − 13 5:42E − 11
NCOA2/NCOA1/ESR1/PPARG/GSK3B/

RELA/BCL2/FOS/RB1/NFKBIA/HIF1A/MYC/
HSPB1/NFE2L2/PARP1/RUNX2/SP1

17

GO:0004879
Nuclear receptor

activity
1:27E − 12 1:57E − 10 PGR/AR/ESR2/NR3C2/ESR1/PPARG/RXRB/

AHR/NR1I3
9

GO:0098531
Ligand-activated

transcription factor
activity

1:27E − 12 1:57E − 10 PGR/AR/ESR2/NR3C2/ESR1/PPARG/RXRB/
AHR/NR1I3

9

GO:0061629

RNA polymerase II-
specific DNA-binding
transcription factor

binding

1:04E − 11 9:58E − 10
NCOA2/NCOA1/ESR1/PPARG/GSK3B/
RELA/FOS/RB1/NFKBIA/HIF1A/HSPB1/

NFE2L2/PARP1/SP1
14

GO:0003707
Steroid hormone
receptor activity

9:04E − 08 5:81E − 06 PGR/ESR2/NR3C2/ESR1/RXRB 5

GO:0001221
Transcription cofactor

binding
9:41E − 08 5:81E − 06 PGR/AR/ESR1/RELA/AHR/NFE2L2 6

GO:0044389
Ubiquitin-like protein

ligase binding
1:38E − 07 7:27E − 06 GSK3B/RELA/BCL2/EGFR/RB1/NFKBIA/

CASP8/HIF1A/CCNB1/CHEK2/MDM2
11

GO:0001223
Transcription

coactivator binding
1:62E − 07 7:47E − 06 PGR/AR/ESR1/RELA/AHR 5

GO:0005496 Steroid binding 4:30E − 07 1:71E − 05 PGR/AR/ESR2/NR3C2/ESR1/CYP3A4/CAV1 7

GO:0097153

Cysteine-type
endopeptidase activity
involved in apoptotic

process

4:63E − 07 1:71E − 05 CASP3/CASP9/CASP8/CASP7 4
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Figure 3: Effect of QKF on the general features of STZ-induced mice. (a) Blood glucose. (b) Body weight. (c) Representative HE staining
images of the trabecular bone. (d) Three-dimensional (3D) micro-CT images of femur. Trabecular bone biological parameters: (e) BMD,
(f) BS/TV, (g) BV/TV, (h) Conn.D, (i) Tb.Sp, and (j) Tb.Th. The results are triplicates from a representative experiment. ∗p < 0:05, ∗∗p
< 0:01, and ∗∗∗p < 0:001 vs. STZ group. ##p < 0:01 and ###p < 0:001 vs. Ctrl group.
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Figure 4: QKF improves STZ-induced mouse inflammation. (a) qRT-PCR method was used to detect the mRNA levels of TNF-α, IKK, IL-6,
and IL-1β. (b, c) Western blot method was used to detect the protein levels of TNF-α, IKBKB, IL-6, and IL-1β. Data were expressed as
mean ± SD (n = 8). ∗p < 0:05, ∗∗p < 0:01, and ∗∗∗p < 0:001 vs. STZ group. #p < 0:05, ##p < 0:01, and ###p < 0:001 vs. Ctrl group.
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3.3. Effect of QKF on the General Features of STZ-Induced
Mice. In order to determine the effect of QKF on DOP, we
established a STZ-induced mouse model and compared dis-
ease evolution in groups (Figure 3). After administration of
QKF for 4 months, blood glucose levels of STZ-induced
mice were significantly higher (Figure 3(a)), while body
weight was significantly lower (Figure 3(b)). The results
demonstrated that the blood glucose of mice increased
sharply, which consumed a lot of fat in the body. And com-
pared to the Ctrl group, the weight of mice in STZ and QKF
groups was decreased significantly. Meanwhile, the trabecu-
lar bone at distal femoral metaphysis was assessed by HE
staining (Figure 3(c)); obvious bone loss was observed in
STZ-induced mice compared with the Ctrl group, which
was gradually mitigated with the increasing dose of QKF.
The femurs of normal mice scattered pink trabecular bones,
and the number of trabecular bones was reduced in STZ-
induced mice. Furthermore, the profiles of 3D images
(Figure 3(d)) clearly exhibited the breakage of cancellous
bone of diabetic mice, and the 3D bone biological parame-
ters (Figures 3(e)–3(j)) quantitatively reflected the signifi-
cant reduction in Conn.D (p < 0:001), BMD (p < 0:001),
BV/TV (p < 0:01), BS/TV (p < 0:001), and Tb.Th (p < 0:01)
in the STZ group, while Tb.Sp was significantly increased.
However, after the treatment of QKF for 4 months,

improved bone mass of trabecular bone and reversed
changes of biological parameters indicated the potential
therapeutic efficacy of QKF on DOP.

3.4. QKF Improves STZ-Induced Mouse Inflammation. DOP
is an inflammatory response caused by high blood glucose
[15]. To validate that QKF could reduce the inflammatory
expression of STZ-induced mice, we used qRT-PCR and
Western blot to determine changes in mRNA and protein
levels (Figure 4). The qRT-PCR results indicated that the
mRNA levels of TNF-α, IKK, IL-6, and IL-1β were signifi-
cantly downregulated after administration (Figure 4(a)).
Meanwhile, Western blot results demonstrated that QKF
had a similar inhibitory effect at the protein levels
(Figures 4(b) and 4(c)). Above all, these results indicate that
QKF could attenuate inflammation in STZ-induced mice.

3.5. QKF Mediated Inflammation through the PI3K/Akt/
NF-κB Pathway. Based on the network pharmacological
analysis, the PI3K/Akt signaling pathway may be predicted
as a potential mechanism of QKF for DOP protection.
Meanwhile, NF-κB was a key downstream factor of the
PI3K/Akt pathway, which was closely related to the regu-
lation of glucose and lipid metabolism [16]. Therefore,
we explored the PI3K/Akt/NF-κB signaling pathway as
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Figure 5: QKFmediated inflammation through the PI3K/Akt/NF-κB pathway.Western blot method was used to detect the protein levels of (b)
p-PI3K/PI3K, (c) p-Akt/Akt, and (d) p-NF-κB/NF-κB. ∗p < 0:05 and ∗∗∗p < 0:001 vs. STZ group. #p < 0:05 and ###p < 0:001 vs. Ctrl group.
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the potential mechanism of QKF for experimental verifica-
tion. After administration of QKF, the protein levels of p-
PI3K/PI3K and p-Akt/Akt were further upregulated com-
pared with the STZ group, while p-NF-κB/NF-κB was
downregulated (Figure 5). The results indicated that
PI3K/Akt/NF-κB signaling could regulate the protective
effects of QKF on DOP.

3.6. Molecular Docking Analysis. To further explore the
effect of the 3 major compounds of QKF on the 7 potential
targets, including PI3K, Akt1, RELA, IKBKB, IL-1β, TNF-
a, and IL-6, the binding energies were determined by molec-
ular docking (Figure 6). Firstly, kaempferol and baicalein
had a strong binding ability with PI3K, so they would be a

potential bioactive compound of QKF on DOP
(Figure 6(a)). Akt1 had a stronger binding energy with all
compounds (Figure 6(b)). The strongest binding energy
was as high as -10.2 kcal/mol. Interestingly, quercetin,
kaempferol, and baicalein had the same binding power with
RELA and IL-6 (Figures 6(c) and 6(g)). It means that RELA
and IL-6 have the best binding force with the above compo-
nents. Meanwhile, IKBKB and baicalein, IL-1β and querce-
tin, and TNF-α and quercetin have a stronger binding
force (Figures 6(d)–6(f)). Above, quercetin, kaempferol,
and baicalein played an important role in QKF. Although
they have higher binding force with inflammatory factors,
the pharmacological effects of these active compounds in
regulating key targets needed to be further verified.
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Figure 6: The protein-ligand of the docking simulation. Simulated molecular docking of (a) PI3K with quercetin, kaempferol, and baicalein.
(b) Akt1 with quercetin, kaempferol, and baicalein. (c) RELA with quercetin, kaempferol, and baicalein. (d) IKBKB with quercetin,
kaempferol, and baicalein. (e) IL-1β with quercetin, kaempferol, and baicalein. (f) TNF-α with quercetin, kaempferol, and baicalein. (g)
IL-6 with quercetin, kaempferol, and baicalein.
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4. Discussion

In this study, we performed network pharmacology, animal
experiments, and molecular docking to explore the active
compositions and molecular mechanisms of QKF in the
treatment of DOP. The potential targets and enrichment
pathways were predicted by network pharmacology. Histo-
pathological staining and micro-CT imaging confirmed the
therapeutic effect of QKF on the STZ-induced mouse model.
qRT-PCR and Western Blot confirmed that QKF could
mediate inflammation through the PI3K/Akt/NF-κB path-
way. In summary, this study demonstrated for the first time
that QKF mediated inflammation through the PI3K/Akt/
NF-κB pathway, thereby improving bone mass of trabecular
bone and reversing the changes of biological parameters in
the STZ-induced mouse model.

Based on the TCM theory, seven drugs of QKF were
formed for clinical application of DOP-related diseases
[17]. Among these drugs, HQ (qi-tonifying), JXT (blood-
activating), HNX (kidney-invigorating), and WLX, SZ, and
XXC (dredging collateral) were used for the treatment of
DOP [18–20]. A large number of reports have focused on
bones and kidneys [21]; kidney weakness and blood stasis
were the main causes of DOP [22]. Therefore, the kidney-
nourishing herbs used for the treatment of DOP have
aroused concerns [23]. HNX and WLX could tonify the kid-
ney [24], which was deemed as one of the effective methods
to alleviate DOP [25]. Furthermore, SZ and XXC had the
ability to tonify the kidney and strengthen muscle and bone
[26]. Above all, TCM has a series of effects on DOP [27], and
it could improve the clinical symptoms of patients, which
was worthy of clinical promotion [28]. At the same time, a
previous study suggested that quercetin not only promoted
the differentiation activity of osteoblasts but also inhibited
the absorption activity of osteoclasts, thereby increasing the
expression of osteogenic markers [29]. Kaempferol has a sig-
nificant anti-inflammatory benefits, including promoting
osteoblast proliferation, differentiation, and bone formation
[30]. Previous studies suggested that baicalin could promote
osteogenic differentiation by regulating protein kinases and
transcription factors [31]. In sum, the compounds of QKF
could provide an alternative strategy to prevent bone loss.

According to reports, trabecular bone loss was one of the
common pathological processes occurring in DOP mice. To
evaluate the effects of QKF for the treatment of DOP, we
assessed trabecular architectural parameters using 3D
micro-CT images. The results suggested that QKF could pre-
vent the loss of bone mass induced by DOP and restore the
trabecular connectivity by increasing BMD and Conn.D.
Moreover, compared with the STZ group, the parameters
of Tb.Th, BS/BV, and BV/TV in the QKF group increased
significantly, while that of Tb.Sp was inhibited. Treatment
of STZ-induced mice with QKF markedly increased trabecu-
lar BMD and improved trabecular bone and enhanced tra-
becular bone area.

In the present study, QKF treatment significantly
decreased the mRNA and protein levels of a series of inflam-
matory factors, including IL-6, TNF-α, IKBKB, and IL-1β in
the STZ-induced mouse model, which contributed to the

improvement of DOP. However, QKF mediated inflamma-
tion through the PI3K/Akt/NF-κB pathway; the relevant
key targets were also proven to induce antioxidation, anti-
inflammation, and immune regulation. Among them, Akt
was identified as a unique signaling intermediate in bone
homeostasis that controlled the differentiation of osteoblasts
and osteoclasts, which was a direct downstream target of
PI3K to inhibit the release of inflammatory factors [32–36].
Moreover, NF-κB was also a key downstream factor of the
PI3K/Akt pathway, which enhanced the degree of inflamma-
tory response and promoted the differentiation of osteoclast
precursors [37, 38]. Meanwhile, the PI3K/Akt signaling
pathway not only affects inflammatory factors such as NF-
κB and TNF-α but also induced the inflammatory reaction
in the internal environment of the body. Furthermore, the
differentiation of osteoblasts was regulated by TNF-α, which
was the earliest inflammatory mediator produced in
response to oxidative stress and promoted the production
of inflammatory cytokines to promote osteoblast apoptosis
[39, 40]. In addition, accumulating studies have revealed that
the expressions of core targets, including Akt1, TNF-α, IL-6,
and RELA, made the vital functions in regulating inflamma-
tory response [41, 42]. We have verified that QKF could reg-
ulate the key targets and PI3K/Akt/NF-κB signaling pathway
to explain the molecular mechanism of QKF treatment on
DOP.

5. Conclusion

In summary, QKF could recuperate the bone loss and
improve bone mass of trabecular bone in STZ-induced
mouse models by downregulating the expression of IL-6,
TNF-α, IKBKB, and IL-1β to alleviate the inflammation.
The results might be mediated by the PI3K/Akt/NF-κB path-
way based on the prediction from network pharmacology
and experiment validation. This study may provide new
insights into the molecular mechanisms of QKF in the treat-
ment of DOP.

Data Availability

The datasets used and/or analyzed during the current study
are available from the corresponding author on reasonable
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Additional Points

Strengths and Limitations. These results demonstrate that
QKF inhibits high glucose-induced osteoporosis by regulat-
ing the key targets and PI3K/Akt/NF-κB signaling pathway.
The potential mechanisms of QKF on DOP development
need to be further confirmed by multiple targets and multi-
ple pathways.
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