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The sequenced data availability opened new horizons related to buffalo genetic control of economic traits and genomic diversity.
The visceral organs (brain, liver, etc.) significantly involved in energy metabolism, docility, or social interactions. We performed
swamp buffalo transcriptomic profiling of 24 different tissues (brain and non-brain) to identify novel transcripts and analyzed the
differentially expressed genes (DEGs) of brain vs. non-brain tissues with their functional annotation. We obtained 178.57Gb clean
transcriptomic data with GC contents 52.77%, reference genome alignment 95.36%, exonic coverage 88.49%. Totally, 26363
mRNAs transcripts including 5574 novel genes were obtained. Further, 7194 transcripts were detected as DEGs by comparing
brain vs. non-brain tissues group, of which 3,999 were upregulated and 3,195 downregulated. These DEGs were functionally
associated with cellular metabolic activities, signal transduction, cytoprotection, and structural and binding activities. The
related functional pathways included cancer pathway, PI3k-Akt signaling, axon guidance, JAK-STAT signaling, basic cellular
metabolism, thermogenesis, and oxidative phosphorylation. Our study provides an in-depth understanding of swamp buffalo
transcriptomic data including DEGs potentially involved in basic cellular activities and development that helped to maintain
their working capacity and social interaction with humans, and also, helpful to disclose the genetic architecture of different
phenotypic traits and their gene expression regulation.

1. Introduction

The buffalo belongs to the family Bovidae (genus Bubalus) and
is considered a significant livestock species owing to its multi-
ple utilities as a source of meat, milk, and draught power in
agricultural fields [1–3]. Buffaloes are usually found in wet
grasslands, swamps, and marshes, subtropical and tropical
regions of the world. The Asian domesticated water buffalo

is generally categorized into two main subspecies including
the swamp (2n = 48) and river buffalo (2n = 50) usually based
on their physical appearance, body size, chromosome karyo-
type, and physiological features [2, 4, 5]. In China, swamp buf-
faloes are native animals distributed across 18 provinces in
southern and central China. Based on their local regional dis-
tribution, these buffaloes have been grouped into 18 local
breeds [6, 7]. Swamp buffaloes were mostly reared by small
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farmers as a draught power for agricultural operations, partic-
ularly ploughing in rice paddy fields. However, owing to its
economic traits like leather, horns, meat, and milk, over the
last decade, extensive efforts have been made for the genetic
improvement of dairy traits in buffalo through crossbreeding
[2, 8, 9].

The major impediment in China’s buffalo industry
included poor reproductive performance and milk production
of local buffalo as compared to dairy cattle, so major efforts
were directed towards improving the buffalo herd size to
increase reproductive efficiency through utilizing reproductive
technologies [8, 10–13], to identify the genetic markers and
genes, which were associated with phenotypic variations
[14–16] of desirable traits [17–19]. In China, the information
related to buffalo breeding is still limited regarding molecular
breeding techniques. The lacking of genomic information is
the key hindrance in buffalo genetic improvement programs,
although several studies at the genomic level have been con-
ducted so far by different research groups [20–22].

Even though the draft genome of the swamp and river buf-
falo has been released [23, 24], but genetic information on dif-
ferent physiological traits of buffalo is still scanty which in turn
hinders the buffalo’s genetic improvement [25, 26]. The tran-
scriptomic studies are important to generate larger quantities
of sequenced data for both model and non-model species
[27]. In different species like sheep [28, 29], goat [30] cattle
[31], and pig [32], high-throughput technologies such as
RNA sequencing (RNA-seq) have efficiently been used in
transcriptome analysis, molecular marker development, and
gene discovery.

The swamp buffaloes have shown closer association with
humans mainly because of their key utility as a draft power
in agroecosystems. The genetic basis of this close social inter-
action of swamp buffalo has also been revealed at the genomic
level in a recent study [23] that explained the selection signa-
tures for social behavior and energy related genes in the
swamp buffalo, which facilitated them to develop long-term
collaboration with humans in rice paddy field work. Further,
the visceral organs, like the brain, liver, heart, lungs, spleen,
and kidney, etc. are the key organs that play a significant role
in energy metabolism, docility, and/or social interactions. It is
therefore imperative to explore the differential expression of
genes associated with physiological responses and neural net-
works to better understand adaptive and cognitive behaviors.
This study was designed with the aim to perform the tran-
scriptomic profiling of 24 different tissues of swamp buffalo
(grouped into brain and non-brain tissues), to analyze the
DEGs, to evaluate the novel transcripts, and their functional
annotation.

2. Materials and Methods

2.1. Sample Collection and Preparation. An adult female
swamp buffalo, which was kept under uniform feeding con-
ditions without any biotic or abiotic stress, was purchased
from SIYE buffalo farm Guanxi, China, for slaughtering
and sample collection. A total of 24 samples from different
body parts of the swamp buffalo were collected. These sam-
ples were categorized into two groups, including the brain

and non-brain tissues. The details of the samples are given
in Table 1. All these samples were used for transcriptomic
sequencing analysis.

2.2. RNA Extraction, Quantification, and Quality Assessment.
The total RNA of each sample was extracted by using the Tri-
zol method [33]. Further, the purity and concentration of RNA
were checked by using NanoDrop 2000 (Thermo Fisher Scien-
tific,Wilmington, DE), and the integrity of RNAwas evaluated
through the RNA Nano 6000 Assay Kit of the Agilent Bioana-
lyzer 2100 system (Agilent Technologies, CA, USA).

2.3. Library Preparation for Transcriptomic Sequencing. To
prepare the RNA sample, 1μg RNA from each sample was
used. The NEBNext UltraTM RNA Library Prep Kit for Illu-
mina (NEB, USA) was used to generate the sequence libraries
by following the recommendations of the manufacturer, and
index codes were given to each sample feature. Briefly, the
magnetic beads (poly-T oligo-attached) were used to purify
the mRNA from total RNA. In NEBNext, first-strand synthe-
sis reaction buffer (5×) at high temperature divalent cations
was used for disintegration. The first cDNA strand was pro-
duced by using a random hexamer primer along with M-
MuLV Reverse Transcriptase, while RNase H and DNA poly-
merase I was subsequently used to synthesize the second
cDNA strand. The remaining overhangs via exonuclease/poly-
merase activities were changed into blunt ends. After the ade-
nylation of DNA fragments 3′ ends, the hairpin loop structure
andNEBNext adaptor were ligated for hybridization purposes.
The AMPure XP system (Beckman Coulter, Beverly, USA)
was used to purify the library fragments to select cDNA frag-
ments especially in the length of 240bp. Meanwhile, before
PCR, a 3μl of USER Enzyme (NEB, USA) was added with
selected size and ligated-adaptor to cDNA at 37°C for 15
minutes and followed by 5 minutes at 95°C. Then, universal
PCR primers, Index (X) primer, and Phusion High-Fidelity
DNA polymerase were used to perform the PCR. At last, the
AMPure XP system was used to purify the PCR products,
and Agilent Bioanalyzer 2100 system was employed to access
the quality of the library [34].

2.4. Clustering and Sequencing. The cBot Cluster Generation
System using TruSeq PE Cluster Kit v4-cBot-HS (Illumina)
was used to perform the index-coded samples clustering
analysis as per the manufacturer’s instructions. After the
generation of the cluster, the prepared library was sequenced
by using an Illumina platform (HiSeq X Ten), and reads
with paired ends were produced.

2.5. Data Analysis

2.5.1. Quality Control. Firstly, the in-house Perl scripts were
used to process the raw reads (raw data). The clean reads
(clean data) were obtained after removing the reads having
ploy-N and low-quality and adaptor sequences from the
raw data. Moreover, the GC-content, Q20, Q30, and level
of sequence duplication in clean reads were calculated. The
high-quality clean data was used for further downstream
analyses [35].
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2.5.2. Comparative Analysis. Subsequently removing the
low-quality and adaptor sequences from the data sets, the
clean reads after data processing were transformed from
raw sequences. Hisat2 tools software was used to map the
clean reads to the reference genome and the sequences with
exact match or single mismatch were further evaluated and
annotated to the reference genome.

2.5.3. Gene Functional Annotation. For gene functional anno-
tation, various databases were utilized including, Nt (NCBI
nonredundant nucleotide sequences), Nr (NCBI nonredun-
dant protein sequences), KOG/COG (Clusters of Ortholo-
gous Groups of proteins), Pfam (Protein family), GO
(Gene Ontology), Swiss-Prot (A manually annotated and
reviewed protein sequence database), and KO (KEGG
Ortholog database) [36, 37].

2.5.4. SNP Calling. For each sample sorting, removing the
duplicated reads and bam alignment merging was done by
samtools (v0.1.18) and Picard-tools (v1.41). Moreover,
SNP calling was accessed by GATK2 or samtools software.
The GATK standard filter method with other parameters
(including cluster Window Size: 10; MQ0 > = 4 and
(MQ0/ð1:0∗DPÞ > 0:1; QUAL < 10; QUAL < 30:0 or QD <

5:0 or HRun > 5), were used to filter the raw vcf files and
the SNPs with distance > 5 were retained [35, 38].

2.5.5. Quantification of Gene Expression Levels. The levels of
gene expression were predicted in fragments per kilobase of
transcript per million fragments mapped (FPKM) value by
using the following formula:

FPKM = cDNA fragmentsmapped
fragments millionsð Þ × transcript length kbð Þ:

ð1Þ

2.5.6. Differential Expression Analysis

(1) For the Samples with Biological Replicates. The DESeq2
was used to analyze the differential expression of the two tis-
sue groups. Based on the negative binomial distribution
model, DESeq2 provided practices to determine the differen-
tial expression of the digital gene expression dataset. Benja-
mini and Hochberg’s approach were used to adjust the P
value to control the false discovery rate (FDR). Statistically,
the Pvalue < 0:05 was used as the level of significance, and
the genes with Pvalue < 0:05 were perused as differentially
expressed [39, 40].

(2) For the Samples without Biological Replicates. For two
samples, the edgeR was used to analyze the differential
expression and the FDR value < 0:05 (FDR < 0:05) and fold
change ≥ 2 (FC ≥ 2) was set as a criteria to categorize the sig-
nificant differential expression [40, 41].

(3) GO and KEGG Pathway Enrichment Analysis. The Walle-
nius noncentral hypergeometric distribution based GOseq R
packages [42] were used for GO (Gene Ontology) enrichment
analysis of DEGs. The KEGG [43] is a biological system related
database resource used to understand high-level utilities and
functions associated with cells or organisms at the molecular
level especially the large scale molecular datasets developed by
high-throughput genome sequencing and experimental tech-
nologies (http://www.genome.jp/kegg/). The KOBAS [44] soft-
ware was used to test the statistical enrichment of DEGs in
KEGG pathways [43].

3. Results

3.1. Quality Assessment of the Data

3.1.1. The Sequence Quality Score with Content Distribution
and Data Statistics. The quality of the data was accessed by
using Phred quality scores Q ,which is logarithmically associ-
ated with base calling error probabilities (P). The quality of
all sample data with base error rates and ATCG content distri-
bution is presented in Figure S1. All the samples showed an
equal distribution of ATCG content revealing the accuracy
of the data (Figure S1). Furthermore, after the quality
control of sequenced data, a total of 178.57Gb clean data
were obtained with a minimum Q score as ≥Q30 (91.27%)
represented a 1/1000 probability of incorrect base call. The
higher Q value results in lowering the false positive variants

Table 1: Details of tissues of swamp buffalo used for sample
collection.

Sr. no. Sample tissue Abbreviation

1 Dorsal muscles BJ

2 Lung F

3 Liver GZ

4 Pain sense(24 + 32 area) KJ24-32Q

5 Oarium (ovarium or ovary) LC

6 Spleen P

7 Emotional area 23 + 31 QG23-31

8 Emotional area 35 QG35Q

9 Anterior tongue muscle QS

10 Kidney S

11 Conarium SGT

12 Visual sense (7-20 area) SJ-7-20Q

13 Sense of hearing (21-22 area) TJ21-22Q

14 Taste, language 43 area WJYY43Q

15 Heart X

16 Sense of smell (25 + 11 area) XJ25-11Q

17 Opisthencephalon XN

18 Hypothalamus XQN

19 Sport (44-45 area, 4 + 6 area) YD44-45Q

20 Right hind leg muscle YHT

21 Right fore-muscle YQZ

22 Bulbus rhachidicus YS

23 Fattiness ZF

24 Uterus ZG
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Figure 1: The annotation classification of (a) SNPs and (b) InDel. [Note: The abscissa represents SNPs and InDel areas or types while
ordinate is the classification numbers].
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with the more consistent and reliable data set. The clean reads,
clean bases, and GC contents were ranged between 21868067-
28337044, 6560420100-8501113200, and 49.47-52.77%,
respectively (Table S1).

3.1.2. The Transcriptomic Data Alignment with Reference
Genome Sequence. Clean data read without paired ends were
mapped to the reference genome exhibiting an alignment per-
centage (%) between 89.53% and 95.36% (Table S2).While the
unique mapped read coverage was 84.88% to 92.48%, and the
clean read percentage which multiply mapped to the reference
genome was 2.13% to 4.83% (Table S2). Whereas, the
percentage of clean reads marked on the sense vs. antisense
chain of the reference genome was 44.58% vs. 43.79% to
47.50% vs. 47.47% (Table S2).

3.1.3. The Mapped Data Distribution on the Reference Genome
with Exon, Intron, and Intergenic Regions. Additionally, the
genome wide distribution of the reader’s coverage was retrieved
to find the location and distribution of themapped reads on dif-
ferent chromosomes in terms of coverage depth, plotted on the
reference genome with log2 value ranged between −10 and 10
(Figure S2). The blue and green color represents the reads
coverage on the positive and negative chain of the reference
genome, respectively (Figure S2). Moreover, for each sample
type the percentage of different regions including intronic,
exonic, and intergenic regions based on number of mapped
reads in reference to the specified reference genome were
counted (Table S3). The highest exon count percentage was
observed as 88.49% in the LC sample and the overall range
was between 75.81% and 88.49% (Table S3). The percentage
of intronic and intergenic regions for all samples was 5.05% to
16.74% and 6.04% to 7.89%, respectively (Table S3).

3.1.4. The RNA-Seq Library-Quality Evaluation. The RNA-seq
library quality was accessed employing transcripts depth cover-
age to evaluate the randomness of the mRNA degradation and
mRNA fragmentation, the distance from paired-end of read1
and read2 to judge the inserted lengths distribution extent,
and the data saturation to assess the library capacity and
mapped data adequacy (Figure S3(a) and (b)). All the sample
RNA fragments’ randomness was observed uniformly, which
was simulated based on the density of mapped reads on

transcripts as shown in Figure S3(a). Further, for each sample
data, the gene saturation with an interval of 15% FPKM was
observed, and a gradual increase was seen, with gene
saturation detected as 1 (Figure S3(b)).

3.2. Single Nucleotide Polymorphisms/InDel Analysis. Single
nucleotide polymorphism (SNP) is referred to a single nucleo-
tide variation in transcript sequence.We used GATK to identify
the single base mismatch between the sample transcripts and
the reference genome as a potential SNP site. The higher num-
ber of SNPs was perceived in P (495,289) and the lower number
was detected in YD44-45Q4 (183,666) (Table S4). The spotted
genic and intergenic SNPs were ranged between 153151 to
456941 and 29406 to 68294, respectively (Table S4). A higher
ratio of transitions SNPs (A >G, G > A, C > T, and T > C)
with a percentage between 71% and 73.22% as compared to
the transversions (A > C, C > A, A > T, T > A, C >G, G > C,
G > T, and T >G) was detected in all transcriptomic data
(Table S4, Figure S4). Moreover, the SNP sites heterozygosity
(more alleles) proportion was also determined which ranged
from 20.31% in QS to 25.04% in KJ24-32Q (Table S4). The
SNPs density for all the samples is presented in Figure S5,
which showed a gradual increase of SNPs per kb of the gene
length. But, the number of genes was inversely proportional to
the number of SNPs per Kb (Figure S5).

Furthermore, the SnpEff tool was used to predict the SNP
and InDel variability impact. In reference to the position and
information on the reference genome, the location of variable
sites in reference genome regions (CDS, intergenic, or genic
regions, etc.) and their potential effects (nonsynonymous or
synonymous mutations) were obtained (Figures 1(a) and
1(b)). A total of 936514, 176881, 94824, 67604, 52783, 12657,
and 5142 SNPs were found in intronic, intergenic, down-
stream, 3′UTR, upstream, 5′UTR, and intragenic regions,
respectively (Figure 1(a)). The synonymous coding/nonsynon-
ymous coding SNPs ratio was 50519/27314 (Figure 1(a)).
Besides, the annotated InDel retrieved on the reference genome
were 96200, 13348, 12312, 11375, and 5823 in the intron, 3′
UTR, intergenic, downstream, and upstream regions, respec-
tively (Figure 1(b)).

The alternative splicing events for all samples were scanned
by the ASProfile tool, which divided all these events into 12 dif-
ferent types. The TSS, TTS, AE, and SKIP were the most abun-
dant mapped alternative splicing events of which the first
alternative 5′ exon splicing (TSS) and alternative 3′ last exon
splicing (TTS) were highly screened in all samples with value
> 15000 (Figure S6), while XMIR was not detected in LC, P,
QG23-31, QG35Q, SGT, WJYY43Q, and XN samples
(Figure S6). Except for sample F, P, QS, S, YQZ, ZF, and ZG,
the lower alternative splicing events XAE and XIR were also
identified in all samples (Figure S6). While an equal ratio of
XSKIP event was detected in all samples (Figure S6).

3.3. Novel Genes Detection and Functional Annotation. We
used string tie to assemble the mapped reads based on the ref-
erenced genome and the original genome annotation was
compared to discover the unique unannotated transcriptional
regions, revealing novel transcripts and genes in the buffalo,
and improved the existing genome annotation information.

Table 2: The summary of novel gene number annotated in
different databases.

Annotated databases Novel gene number

GO 2,629

KEGG 1,713

KOG 541

Pfam 719

Swiss-Prot 753

Eggnog 2,218

NR 3,619

COG 82

All 3,647
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A total of 5,574 novel genes were discovered after filtering the
short peptides (<50 amino acid) and the sequence with a single
exon. All the novel genes were blasted in different databases
including GO, KEGG, KOG, Pfam, Swiss-Prot, eggNOG, NR,
and COG to obtain the annotation information. The novel
gene number annotated by different databases is summarized
in Table 2.

3.4. Analysis of Genes Expression

3.4.1. Quantitation of Gene’s Expression Levels. Using RNA-
seq, a sum of 26363 mRNAs transcripts were detected,
including 5574 novel mRNAs transcripts. The expression
of transcripts was presented by FPKM value. The discrete
angle of expression levels for each sample is shown in the
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Figure 2: Expression levels for each sample are shown in box chart (a) and mRNAs FPKM density distribution in each sample (b).
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box chart of Figure 2(a) and the mRNAs FPKM density dis-
tribution in all samples is shown in Figure 2(b).

3.4.2. Correlation Assessment of Biological Replicates. For
transcriptomic data of biological samples, the correlation
assessment is important which could provide reliable differ-
entially expressed genes. To evaluate the index of correlation
among all the samples, we used Pearson’s correlation coeffi-
cient R for multiple biological samples prepared under the
same conditions. The two samples are more related to each
other with R2 value close to 1 (Figure 3). So, we developed
a relationship cluster diagram that reflected the relationship
of the samples instinctively (Figure 3). The transcriptomic
data reflected a consistent clustering effect where the sam-
ples XQN, QG35Q, YS, XN, SJ-7-20Q, QG23-31, KJ24-
32Q, TJ21-22Q, WJYY43Q, XJ25-11Q, and YD44-45Q were
found close to 1 and highly correlated to each other ensuring
the reliability of the analysis (Figure 3).

3.4.3. Identification and Statistics of Differentially Expressed
Genes. We used False Discovery Rate ðFDRÞ < 0:05 and Fold
Change ðFCÞ ≥ 2 value as the screening criteria to identify
DEGs. The FC values specified the proportion of gene expres-
sion in two groups (brain vs. non-brain tissues). The differen-
tially expressed genes analysis was based on independent

statistical hypothesis testing, follow-on some false positives.
Thus, we employed the Benjamini-Hochberg technique to
correct the P value and made FDR a screening criterion. A
total of 7,194 differentially expressed genes (DEGs) were iden-
tified, among which 3,999 were upregulated while 3,195
downregulated. The Volcano and MA plot was used for the
presentation of gene expression level differences and the statis-
tical significance in two groups (Figures 4(a) and 4(b)).

3.4.4. Clustering Analysis of DEGs. For hierarchical cluster-
ing analysis, the genes with differential expression were fil-
tered and the genes with similar or same expression
patterns were clustered together. The results of clustering
analysis for DEGs in all the samples of both groups are
shown in Figure 5.

3.4.5. Functional Annotation and Enrichment Analysis of
DEGs. A total of 7,121 DEGs (brain vs. non-brain) were
annotated in different functional annotation databases
including GO, COG, KOG, KEGG, Pfam, Swiss-Prot, egg-
nog, and NR with DEGs numbers 6267, 2152, 4781, 4744,
6431, 5493, 6929, and 7091, respectively.

3.4.6. Gene Ontology Classification of DEGs. For DEGs, the
GO database was used to determine their role in biological
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processes, cellular components, and their molecular functions
(Figure 6). The cellular component related DEGs were mainly
involved in the extracellular region, membrane enclosed lumen,
cell junction, synapses, supramolecular complex, virion part,
nucleoid, and macromolecular complexes (Figure 6). Further,
the DEGs involved in the biological process were associated
with gene regulation, metabolism, development, immune sys-
tem, behavior, growth, locomotion, apoptosis, rhythmic pro-
cess, detoxification, reproduction, response to stimulus, signal
transduction processes, and cellular response to abiotic stresses
(Figure 6). The molecular functions related to DEGs included
metabolic, signal transduction, transportation of molecules,
antioxidant activity, transcription binding factors, protein tag,
morphogen activity, electron transporter, and structural and
binding activity (Figure 6).

3.4.7. Cluster of Orthologous Groups Analysis of DEGs. The
COG database was also used for the annotation of DEGs
(Figure 7). The products of DEGs were involved in general
gene function, signal transduction mechanisms, posttransla-
tional modification, protein turnover, chaperon activity, cell
motility, metabolism, transportation, cellular and nuclear
structural maintenance, transportation, defense mechanisms,
etc. (Figure 7).

3.4.8. KEGG Annotation and Pathway Enrichment Analysis of
DEGs. The KEGG database was used to annotate the DEGs
and explore their association with different pathways. All the
DEGs were classified according to their involvement in differ-
ent functional pathways. About 591 DEGs were identified to
be associated with pathways of cellular processes including
endocytosis, regulation of actin cytoskeleton, cell cycle, apopto-

sis, phagosome, and tight junction, while 1291 DEGs were
linked with different pathways of environmental information
processing including various signaling pathways andmolecular
interactions (Figure 8(a)). Furthermore, for metabolism and
genetic information processing related pathways, only 66
DEGs for each functional group were identified (Figure 8(a)).
Moreover, the top 20 KEGG pathways with minimum Q
values, which were analyzed by enrichment analysis for DEGs,
are presented in Figure 8(b).

4. Discussion

The availability of massive DNA, RNA, and proteomic
sequencing technologies has revolutionized the biological
approaches which ultimately provides huge sequenced data
output. For species with significant economic worth and
poor genomic data resources like buffalo, it is imperative to
develop improved and annotated sequenced genomic or
transcriptome data, which would be helpful for understand-
ing the genetic control of economic traits, genomic diversity,
and evolutionary dynamics of available buffalo genetics
resources. Transcriptomic sequencing is a cost-effective
and powerful tool for producing good quality transcriptome
data that might be used to explicate molecular markers and
categorizing the novel genes in non-model and model
organisms [45–48].

The advancement in this reverence requires both the data
accuracy and reliability to decrease the error rate making the
data more efficient [49]. Thus, using Phred quality scores Q
with base calling error probabilities P is a crucial step to access
the data quality [49]. A recent study by Singh et al. [50] iso-
lated the RNA transcripts from buffalo liver tissues with an
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Figure 4: (a) Volcano plot presentation of DEGs (b) MA plot of DEGs. [Red, green, and black colors indicating the upregulated,
downregulated, and normal genes, respectively].
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excellent quality of NGS data having score of FastQC quality
up to 30. Further, they reported 54 million reads having an
alignment percentage of > 84% with reference genome [50].

The 178.57Gb clean transcriptomic data of our study with
a minimum Q score of ≥Q30 revealed a 1/1000 probability of
incorrect base calling and the clean reads with GC contents
were 28337044 and 52.77%, respectively. Further, the clean
data reads without paired ends were mapped to the reference
genome with an alignment percentage of 95.36%. Earlier stud-
ies have reported that the genome wide percentage of the GC-
contents in river buffalo was 42.20% and in other animals, it
was 41.80%–42.30% [51–54], while our study presented a
higher ratio of 52.77% GC contents. Our study is also in line
with a previous study conducted on swamp buffalo having
GC contents of 49.92% [55]. Moreover, a recent study on the
whole genome sequence of buffalo figured out the 12.5% struc-
tural differences and 9170 structural differences were likely
because of the assembly errors [56].

In comparison to the reference genome, the predicted per-
centage of the exonic region was 88.49% and the SNPs ratio
was 456941 with a higher proportion of transition as com-

pared to the transversion with heterozygosity of 25.04%.
Mostly, the detected SNPs and InDels were present in the
intronic regions. This indicated the high quality transcriptome
data produced from the swamp buffalo and these tissue spe-
cific unique transcripts could be utilized for designing further
experiments related to transgenesis, gene cloning, and molec-
ular genetics of the swamp buffalo [57, 58].

The alternative splicing event could produce different
transcripts encoded by a single gene and can translate into
protein, which varies in their sequence and function. It is an
important mechanism involved in tissue specific gene expres-
sion regulation and can enhance protein diversity [59]. In this
study, a total of 12 alternative splicing events were identified of
which TSS, TTS, AE, and SKIP were the most abundant
mapped alternative splicing events where the first alternative
5′ exon splicing and alternative 3′ last exon the last exon splic-
ing were highly screened in all tissue samples.

We identified a total of 26363 mRNAs transcripts
including 5574 novel mRNAs transcripts. Our study pre-
sented 34.57% novel genes whose function has not been
yet identified after blasting all these novel genes in different
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A: RNA processing and modification
B: Chromatin struchture and dynamics
C: Energy production and conversion
D: Cell cycle control, cell division, chromosome partitioning
E: Amino acid transport and metabolism
F: Nucleotide transport and metabolism
G: Carbohydrate transport and metabolism
H: Coenzyme transport and metabolism
I: Lipid transport and metabolism
J: Translation, ribosomal structure and biogenesis
K: Transcription
L: Replication, recombination and repair
M: Cell wall/membrane/envelope biogenesis
N: Cell motility
O: Posttranslational modification, protein turnover, chaperones
P: Inorganic ion transport and metabolism
Q: Secondary metabolites biosynthesis, transport and catabolism
R: General function predicition only
S: Function unknown
T: Signal transduction mechanisms
U: Intracellular trafficking, section, and vesicular transport
V: Defense mechanisms
W: Extracellular structures
X: Mobilome: prophages, transposons
Y: Nuclear Structure
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Figure 6: GO classification results of DEGs.
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databases including GO, KEGG, KOG, Pfam, Swiss-Prot, egg
NOG, NR, and COG for annotated information, while the
previous study indicated only 27.53% novel gene in swamp
buffalo with unknown function [55]. For any transcriptomic
analysis, the identification of DEGs is very critical [60]. Our
study found variations in the expression of genes such as
about 55.58% (3,999) genes were upregulated and 44.41%
(3,195) were downregulated genes. In the NR database, most
of the genes were annotated to Bubalus bubalis, Bos taurus,
and Bos mutus, perhaps due to the swamp buffalo is evolu-
tionary more close to Bos taurus and Bos mutus than other
available genetic resources [61, 62].

The GO and COG predicted molecular functioning of
DEGs as metabolic, signal transduction, electron transporter,
and structural and binding activity. Moreover, among the top
20 pathways, cancer pathway, PI3k-Akt signaling, axon guid-
ance, focal adhesion, and regulation of actin cytoskeleton were
abundant while the other related pathways were involved in
thyroid and oxytocin hormone signaling, synaptic vesicle cycle,
adhere junction, circadian entertainment, etc. These findings
are in agreement with the previous study of Deng et al. [55].

5. Conclusion

The current study is one of the most comprehensive studies
conducted on the swamp buffalo using 24 tissue samples,
which were grouped into two main categories (brain vs.
non-brain). We obtained 178.57Gb clean transcriptome data
withQscore ≥Q30 and the clean reads with GC contents were
28337044 and 52.77%, respectively. The alignment percentage
of clean data reads to the reference genome was 95.36% with
88.49% exon region coverage, and the SNPs ratio was
456941 with higher transition SNPs proportion with 25.04%
heterozygosity. We incur 26363 mRNAs transcripts including
5574 (34.57%) novel genes of which 55.58% (3,999) were
upregulated and 44.41% (3,195) downregulated. The DEGs
were mainly involved in the metabolism, signal transduction,
electron transporter, structural and binding activities, among
the top hit pathways, cancer pathway, PI3k-Akt signaling,
axon guidance, focal adhesion, and regulation of actin cyto-
skeleton were abundant.
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