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Perilipin 2 Protects against Lipotoxicity-Induced Islet Fibrosis by
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Aims.We explored whether and how perilipin 2 (Plin2) protected islets against lipotoxicity-induced islet dysfunction by regulating
islet stellate cells (ISCs) activation. Methods. Six-week-old male rats were given a high-fat diet or a control diet for 28 weeks.
Glucose metabolic phenotypes were assessed using glucose/insulin tolerance tests, masson, and immunohistochemical staining.
ISCs activation levels were assessed from rats and palmitic acid- (PA-) treated cultured ISCs by immunofluorescence, Oil red
O staining, electron microscopy, quantitative PCR, and western blotting. Changes in ISCs phenotype of activation degree and
its underlying mechanisms were assessed by target gene lentiviral infection, high-performance liquid chromatography (HPLC),
and western blotting. Results. Obese rats showed glucose intolerance, decreased endocrine hormone profiles, and elevated
expression of α-smooth muscle actin (α-SMA), a polygonal appearance without cytoplasmic lipid droplets of ISCs in rats and
isolated islets. PA-treated cultured ISCs exhibited faster proliferation and migration abilities with the induction of mRNA
levels of lipid metabolism proteins, especially Plin2. The overexpression of Plin2 resulted in ISCs “re-quiescent” phenotypes
associated with inhibition of the Smad3-TGF-β signaling pathways. Conclusions. Our observations suggest a protective role of
Plin2 in weakening ISCs activation. It may serve as a novel therapeutic target for preventing islet fibrosis for T2DM.

1. Introduction

Type 2 diabetes mellitus (T2DM) is a prevalent chronic
metabolic disease associated with progressive islet dysfunc-
tion [1]. Ectopic fat deposition and excessive lipid droplets
(LDs) in the cytoplasm of cells promote impaired glucose-
stimulated insulin secretion, reduce insulin storage, inhibit
pro-insulin synthesis, increase pancreatic fibrosis, and
accelerate islet cell apoptosis [2–4]. Our previous studies

showed that stellate cells in islets, named islet stellate cells
(ISCs), which are rich in LDs and positive for desmin and
GFAP expression under physiological conditions, prolifer-
ate fast and generate the fibrotic extracellular matrix
(ECM) when activated by various pathological stimuli.
Furthermore, ISCs show specific expression of α-smooth
muscle actin (α-SMA), and secretion of collagen I (Col I),
fibronectin (FN), and other ECM components that induce
the formation of islet fibrosis with a parallel disappearance
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of LDs, consequently leading to T2DM [5, 6]. However, the
underlying pathogenesis and mechanism of ISCs activation
have not yet been investigated.

In cells from mammalian, LDs were regarded as a fuel
supplier for energy support and as a lipolytic barrier for
avoiding cellular lipotoxicity via the regulation of LD lipol-
ysis [7]. Therefore, LDs, along with LD-associated proteins,
are responsible for maintaining lipid metabolism homeo-
stasis [8]. The perilipin family is a group of key LD-
associated proteins, including enzymes for fat synthesis
and decomposition, LD transporters, and fusion-related
molecules involved in signal transduction. Among them,
five members have been identified, namely, perilipin 1
(Plin1) to perilipin 5 (Plin5) [9]. This family of proteins
is a marker molecule on the surface of LDs in eukaryotic
cells and plays a critical role in regulating LD metabolism
and maintaining intracellular lipid balance [10, 11]. The
liver mainly expresses perilipin 2 (Plin2), perilipin 3
(Plin3), and Plin5, among which Plin2 is highly expressed
[12]. Some studies found mice on a high-fat diet (HFD)
showed decreased liver TG and increased hepatic insulin
sensitivity after Plin2 antisense oligonucleotide treatment
or after liver-specific Plin2 knockout [13, 14]. In the
pancreas, the majority of islet neutral lipid staining was
shown to co-localize with PLIN2 and PLIN3 in human
adult normal and T2DM patients [15]. Recently, Roland
Stein et al. found [16] glucose-stimulated insulin secretion
was blunted in Plin2 knockdown EndoC-βH1 cells and
improved in Plin2 overexpression cells, suggesting LD
accumulation regulated by perilipin levels is a critical sig-
naling molecule to impact islet cell activity. However, the
role of perilipin family in regulation of the ISC phenotype
is unclear.

Our present study aimed to define the specific mecha-
nism underlying the association between the perilipin family
and ISCs phenotype, especially concerning the suppression
of ISCs activation. Our findings will provide new insights
into the underlying molecular mechanism of ISCs activation
pathological process and novel target therapy for preventing
its adverse effects on islets.

2. Materials and Methods

2.1. Animals. Sprague-Dawley rats (male, 6-week-old) were
purchased and housed under standard conditions at
constant temperature with a half-half light/dark cycle. All
animals were randomly assigned to an obese group fed a
HFD (n=12, 60% fat/total kcal) and a control group fed a
commercial rodent chow diet (n=12, 10% fat/total kcal)
for 28 weeks. Random blood glucose levels and body weight
were detected weekly. All animal studies were established by
the Research Animal Care Committee of Nanjing Medical
University. All procedures of animal experiment were
performed according to the Guide for the Care and Use of
Laboratory Animals (NIH No. 8023, revised 1978).

2.2. ISC Isolation and Expansion. Islets from obese and con-
trol rats were obtained by digestion using collagen P solution
(1mg/mL; Sigma, USA) with following on purification on

LSM density gradients (MP, CA, USA), and subsequently
handpicked with 20μL pipettes [17]. ISCs were grown after
islet attachment and cultured in Dulbecco’s modified Eagle’s
medium/F12 supplemented with fetal bovine serum and
penicillin-streptomycin (Gibco, Grand Island, NY, USA)
using the standard protocol described in our previous article
[18]. Cells prepared at 3-6 passages were used for further
experiments.

2.3. Intraperitoneal Glucose Tolerance Test (IPGTT) and IP-
Insulin Tolerance Test (IPITT). For the IPGTT experiment,
after fasting for 12 h before the experiment, blood samples
from the tail vein of mice were harvested and measured at
0, 15, 30, 60, and 120min followed by administering D-
glucose (2 g.kg-1) using a glucose monitor (Bayer, Geneva,
Switzerland). For the IPITT experiment, the rats fasted for
4 h before the experiment, and blood samples were obtained
at the same points after insulin administration (1 IU.kg-1).
Areas under the curve (AUC) of the blood glucose-time
point function were obtained and calculated by Sigma Plot
software (Systat Software, CA, USA). The value of homeo-
stasis model assessment insulin resistance (HOMA-IR) was
assessed through previously published procedures [17].

2.4. Western Blotting. ISCs were divided into treated and con-
trol groups, with PA-mixed medium (300μM) or with 0.05%
BSA for 48, 72, and 96h, respectively. At different in vitro cul-
turing times, experiments were performed using the standard
protocol [19] with the primary antibodies specific for the fol-
lowing proteins: rabbit anti-PLIN2 (Cat#ab108323, Abcam,
UK), rabbit anti-PLIN3 (Cat#ab47638, Abcam, UK), Col I
(Cat#ab34710, Abcam, UK), rabbit anti-FN (Cat#ab2413,
Abcam, UK), rabbit anti-perilipin 4 (PLIN4) (Cat#10694-1-
AP, Proteintech, USA), mouse anti-PLIN5 (Cat#sc-514296,
Santa Cruz, USA), mouse anti-β-actin (Cat#TA811000, Ori-
gene, China), mouse anti-α-SMA (Cat#A2547, 1 : 3000, Sigma,
USA), rabbit anti-P-Smad3 (Cat#9520, CST, USA), rabbit
anti-Smad3 (Cat# 8685S, CST, USA), and rabbit anti-TGF-β
(Cat#3711, CST, USA). Horseradish peroxidase- (HRP-) con-
jugated goat anti-rabbit (Cat#SE134, Solarbio, China) or anti-
mouse (Cat#SE131, Solarbio, China) antibody was used as the
secondary antibody. Quantitative analysis of proteins was per-
formed using enhanced chemiluminescence (Millipore, USA)
and Image J software (National Institutes of Health, MD,
USA), respectively.

2.5. Immunohistochemistry and Immunofluorescence. Con-
secutive tissue sections were fixed in 4% paraformaldehyde
with paraffin embedded. After blocked with 5% bovine serum
albumin, the sections were incubated with a rabbit anti-insulin
(Cat#ab181547, Abcam, UK)/glucagon (Cat#ab92517,
Abcam, UK)/α-SMA antibody (1 : 200) at 4°C overnight.
Following the washing step, sections were incubated with
HRP-conjugated anti-rabbit antibody at room temperature
for 1h; immunohistochemistry was performed with DAB
and counterstained with hematoxylin. Goat anti-mouse IgG
H&L (Alexa Fluor® 594) (Cat#ab150116, Abcam, UK) anti-
bodies (1 : 3000) were used as the secondary antibody. Immu-
nofluorescence was performed as described previously [17] to
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evaluate α-SMA expression in islets. Masson trichrome stain-
ing was performed according to standard protocols [20].

2.6. Cell Viability, Migration, and Proliferation Assays. For
the wound healing experiment, 3× 105 ISCs in each 6-well
plate were grown to 70%-80% confluence, then the mono-
layers of cells were scraped off using 20μL pipette tip. After
24 h incubation, the cells that migrate into boundaries of the
wound were manually counted. The area of ISCs migration
was visualized and calculated under light microscopy using
Image J software. For the CCK-8 experiment, cells were sus-
pended at a final concentration of 2× 103/well and incubated
for 24, 48, and 72 h, respectively. Thereafter, 10μL CCK-8
reagent (Keygen, Biotech) was added to 100μL standard
serum-free medium. After incubating for 1 h at 37°C tem-
perature, the absorbance of each well was measured using
auto microplate reader (BioTek, Inc., USA).

2.7. Electron Microscopy (EM). Freshly differentiated ISCs
were fixed with control medium or induced medium in
2.5% glutaraldehyde containing 2.0% paraformaldehyde in
phosphate buffer (adjusted pH to 7.4) for 1 h at 4°C. After
rinsing in phosphate buffer, the cells were postfixed in 1%
cacodylate-buffered osmium tetroxide at room temperature
for 2 h and then dehydrated in a graded ethanol series
(30%, 50%, 70%, 95%, and 100%). Following transferred to
propylene oxide, the cells were embedded in epon. Ultrathin
sections at 60-80 nm thick were placed on 200 mesh copper
grids coated with formvar-carbon and stained with uranyl
acetate and lead citrate. Microphotographs were obtained
and analyzed using H-600-4 system (Hitachi, Japan).

2.8. qPCR Quantification. Total RNA from cells was
obtained and isolated using TRIzol reagent (Life Technolo-
gies, USA), and each tube of RNA (1μg) was reverse tran-
scribed with HiScript RT SuperMix kits (Vazyme, China).
Then, the DNA was used to perform qPCR assay using
SYBR Green PCR master mix kits (Vazyme, China). Specific
mRNA primers of rat (Table 1) were designed at the Gen-
Bank database. PCR was performed with the following con-
ditions: 95°C for 30 s, then 40 cycles of 95°C for 10 s and
60°C for 30 s using the Step One Real-Time PCR System
(Applied Biosystems, Foster City, CA, USA). Relative
mRNA expression was quantified using the ΔΔCt method.

2.9. Gene Transfection. Lentiviral vectors of target gene-Plin2
overexpression were constructed by GenePharma company
(Shanghai, China). ISCs from passage 6 were infected with
Plin2 overexpression vector at the best multiplicity of infec-
tion as the experiment group, and these transfected with
empty vector were treated as control groups. Means of an
inverted fluorescence were observed under the fluorescent
microscope. Stable cell clones were selected by mixed
medium supplemented with 2μg/mL puromycin for 6 days.
The transfection efficiency of cells was estimated with qPCR
and western blot analyses.

2.10. Lipid Accumulation Observation. Cell retinol levels
were measured using a previously described method [17].
Triglyceride (TG) content was measured using commercial
TG kits (Jiancheng Technology Co., China) following the
manufacturer’s instructions. All levels of retinol and TG
were normalized to the protein concentration in the cells.
Oil red O staining was conducted by incubating 4%
paraformaldehyde-fixed material for 30min at room tem-
perature with Oil red O solution in isopropanol (Sigma,
USA). The Oil red O positive staining area in images of cells
in each well culture plate was converted Image J in our pre-
viously described method [19].

2.11. Statistical Analysis. Data are expressed as the mean
± S.E at least three independent experiments. Differences
were evaluated and reported using Student’s t-test and
one-way ANOVA test post hoc analysis, respectively. Statis-
tical significance was calculated at P < 0:05. All statistical
analyses were determined using GraphPad Prism 6.0 statisti-
cal software (GraphPad Software, San Diego, CA).

3. Results

3.1. Effect of HFD on Islet Morphology and Function.
Twenty-eight weeks of HFD feeding significantly aggravated
body weight and serum insulin concentration (Figure 1(a)).
We also detected glucose intolerance in obese rats, showing
that blood glucose levels 15-120min after glucose challenge
were elevated. Although the random blood glucose levels in
rats with or without HFD feeding were not influenced, mod-
est but significant glucose intolerance with elevated HOMA-
IR was shown in HFD-fed rats (Figures 1(b) and (d)). As

Table 1: Sequences of rat specific primers used for qPCR.

Gene Primer sequence (5′-3′)
Plin2 F: ATTCTGGACCGTGCCGATTT R: ATCCTTTGCCCCAGTTACGG

Plin3 F: TCATCAACAGTGTCTGGGGC R: CTGAACACACTGAGTGCCTG

Plin4 F: CCCTTGTCCATCAGCTCCAC R: CAAGTGGAGGGTTTTGCTGC

Plin5 F: GCTCTGCACTCAGGGATCTG R: CACGCCTGTGACACTTTTGG

Pparγ F: AGCATGGTGCCTTCGCTGATGC R: AAGTTGGTGGGCCAGAATGGCA

Acda8 F: TGTGGATGTGATGCGGAAGG R: TCAGTCCCAATCCTGTTGGC

Cpt1α F:GGTCAACAGCAACTACTACG R:TGAACATCCTCTCCATCTGG

Acot1 F: GACCACAACTGGAAGAGCGA R: ACTTTTCCTGCCAAAACCATCA

β-actin F: CCCTGAAGTACCCCATTG R: TACGACCAGAGGCATACAG
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Figure 1: Lipotoxicity induces glucose metabolic phenotypes damage and ISCs activation in vivo. (a) Body weight and circulating insulin
content were detected from HFD and control rats. (b) Islet function of HFD and control rats was analyzed via IPGTT/IPITT experiment
and HOME-IR value calculation. (c) Representative images of insulin/glucagon and masson’s trichrome stained in pancreatic islets from
HFD and control rats. (e–f) Representative images of insulin and α-SMA double-stained and electron microscopy in pancreatic islet
sections from HFD and control rats. Quantification of α-SMA fluorescent signals was measured using Image Pro Plus software.
Magnification: 40x, 10000x, 20000x; scale bars: 50μm, 1μm, 0.5 μm. ∗P < 0:05, ∗∗∗ P < 0:001. Error bars shown as ± SE of n=12 mice
per group.
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shown in Figure 1(c), pancreatic islets in control diet-fed rats
were mostly round with smooth contours. In contrast, islets
in HFD-free rats showed abnormal disorder of cells with
noncircular borders, and the number of glucagon- and
insulin-positive cells was markedly decreased than those in
the control rats. Masson’s stained tissue histological analysis
revealed an abnormal collagen arrangement in obese rats
compared to the uniform deposition observed in control
rats. Insulin immunoreactivity of the islets from obese rats
also decreased while it was accompanied by upregulation
of α-SMA in double immunofluorescence labeling, indicat-

ing ISCs activation (Figure 1(e)). Ultrastructural studies
have shown that ISCs in control rats exhibit characteristics
compatible with quiescent ISCs, namely, few LDs and abun-
dant fibers in the extracellular compartment. The ISCs in
obese rats displayed characteristics compatible with acti-
vated ISCs, namely, concomitant disappearance of the LDs
and extensive collagen fibers in the extracellular compart-
ment (Figure 1(f)).

3.2. Effect of High-Fat Diet on ISCs Bio-Phenotype In Vivo.
As shown in Figure 2(a), the rate of ISCs outgrowth was
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Figure 2: The phenotype changes of ISCs from HFD rats at different in vitro culturing time. (a) Relative light microscopy micrographs of
ISCs outgrowth rates from HFD and control rats at different culture time point (0 h, 48 h, 96 h, and 120 h). (b) Relative Oil red O staining of
lipid droplets images of ISCs from HFD and control rats at different in vitro culturing time (48 h and 96 h). (c) Immunofluorescent staining
of α-SMA protein expression in ISCs from HFD and control rats. Magnification: 40x; scale bars: 50μm. ∗∗∗ P < 0:001, ∗∗∗ ∗P < 0:0001.
Error bars shown as ± SE of n=12 mice per group.
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markedly faster in HFD-fed rat islets cultured in medium
than in those from control rats. One of the major changes
of phenotypic characteristics of ISCs activation is the loss

of LDs in cytoplasm. Following their activation status, ISCs
isolated from HFD-fed rats also showed lower LDs content
per cell than those isolated from controls at different time
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points (Figure 2(b)). Immunofluorescence showed more
abundant α-SMA protein expression in ISCs from HFD rats
than in ISCs from controls (Figure 2(c)).

3.3. Effect of PA on ISCs Bio-Phenotype In Vitro. After 48 h
of incubating ISCs with PA (300μM), the upregulation pro-
tein expression of α-SMA, FN, and Col I was detected by
western blotting, and this phenomenon continued until
96 h (Figure 3(a)). Furthermore, we also performed the
wound healing migration assay to compare the migration
rates of PA-treated ISCs and control ISCs. The results
showed that PA-treated ISCs cultured in medium had a sig-
nificantly faster migration rate than that of the control ISCs
(Figure 3(b)). Similarly, PA-treated ISCs had significantly
higher viability rates than control ISCs (Figure 3(c)).

3.4. Effect of PA on LDs-Associated Protein Expression in
ISCs. After ISCs were treated with 300μM PA, the mRNA
levels of lipid metabolism markers, such as peroxisome
proliferator-activated receptor γ (Pparγ) and its target
regulators-acyl-coenzyme A dehydrogenase 8 (Acad8), car-

nitine acyltransferase 1α (Cpt1α), acyl-coA thioesterase 1
(Acot1), and perilipin family members (Plin2, Plin3, Plin4,
Plin5), decreased in a time-dependent manner relative to
the control group, with Plin2 being the least expressed
(Figure 4(a)). The western bolt results showed that PA
treatment in cultured ISCs induced protein levels of
PLIN2 and Plin4 increased rather than PLIN3 and PLIN5
(Figure 4(b)).

3.5. Effect of Plin2 Overexpression Weakening ISCs
Activation via Smad3-TGF-β Signaling Pathway. We over-
expressed Plin2 in ISCs via lentiviral transduction to
explore the effect of Plin2 on ISCs phenotype. The results
of changes of morphology and LDs content in these cells
showed that ISCs overexpressed Plin2 gene had a classical
polygonal appearance similar to that of quiescent ISCs and
expressed increase of protein of PLIN2 and reduction of
protein of FN, Col I, and α-SMA compared with negative
control (NC) ISCs (Figures 5(a) and (b)). We further
investigated that lipid accumulation of triglyceride (TG)
rather than retinyl ester was significantly increased in ISCs
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overexpressing Plin2 than those in NC ISCs both in
Figure 5(c). The abundance of fibrogenesis in ISCs overex-
pressing Plin2 prompted us to assess the activation state of
the classic fibrogenesis signaling pathways-Smad3-TGF-β.
We found a 1.8-fold reduction in the Smad3 signaling
pathway in ISCs overexpressing Plin2 compared with NC
ISCs. Similarly, TGF-β levels were decreased by 43% in
overexpressed ISCs (Figure 5(d)). Thus, the results showed

that Plin2 inhibits ISCs activation through the Smad3-
TGF-β pathways.

4. Discussion

The aim of this present study is to investigate the effects of
perilipin family on lipotoxicity-induced islet dysfunction by
mediating ISCs activation and its intracellular signaling
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Figure 5: Plin2 overexpression reverses ISCs phenotype via proliferation and fibrogenesis signaling pathways. (a) Representative
photomicrographs of phenotype change in activated ISCs transduced with Plin2 gene overexpressed or NC. (b) The protein expression of
α-SMA, Col I, and FN in ISCs overexpressed Plin2 was detected by western blotting. (c) The lipid accumulation observation was
measured in ISCs overexpressed Plin2. (d) The protein expression of Smad3-TGF-β in ISCs overexpressed Plin2 was detected by western
blotting. Magnification: 40x; scale bars: 50 μm. ∗∗P < 0:01, ∗∗∗ P < 0:001, ∗∗∗ ∗P < 0:0001. Error bars shown as ± SE of three
independent repeated experiments.
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mechanism. Our data showed that high fat and PA treat-
ment increased the outgrowth rate of ISCs both in vivo,
and induced accelerated cell migration and cell viability, ele-
vated expression of α-SMA, and increased secretion of extra-
cellular components in vitro. Furthermore, the above effects
were associated with elevated levels of functional perilipin
family active metabolites, especially Plin2, with the inactiva-
tion of Smad3 signaling pathway. To our knowledge, this is
the first report to reveal the effects of the perilipin family
on ISCs activation induced by lipotoxicity.

Increasing evidence points toward a strong association
between the distribution of excess fat in obese patients
with T2DM [21–23]. In the present study, we found that
rats fed the HFD exhibited decreased insulin sensitivity,
increased HOMA-IR values, and larger AUC of IPGTT
and IPITT relative to those in controls rats. Furthermore,
we used double immunofluorescence and electron micros-
copy to determine whether HFD induces phenotypic
changes in ISCs in islets. The biological appearance from
classical polygonal to fibroblast-like and upregulation of
α-SMA immunoreactivity of the islets indicate ISCs activa-
tion. Emerging evidence showed that ISCs activation is the
key issues for islet fibrosis under pathological conditions
[6, 18, 24]. Our study also showed that ISCs grown from
obese rat islets lost their cytoplasmic LDs more rapidly
than those grown from normal rat islets. The elevated rate
of ISCs outgrowth from the islets, viability of ISCs, migra-
tion rate of ISCs, and α-SMA expression of ISCs suggested
the activation of obese rat ISCs, all of which are contrib-
uted to the fibrotic transformation process [25]. These
results indicate that dietary high-fat supplementation for
28 weeks induced a positive relationship between α-SMA
expression and ISCs in obese rats. These observations are
consistent with previous studies that showed in diabetic
environment, the activation of ISCs leads to increase in
ISC-derived secretory products and influences islet func-
tion [5, 6, 19, 26]. Our group previously found that ISCs
were similar but not identical to pancreatic stellate cells
(PSCs) [27]. Given the developmental biological and ana-
tomical location of ISCs, we believe that ISCs may contrib-
ute significantly to islet fibrosis. Thus, understanding the
underlying molecular mechanism resulting in the quies-
cent state of ISCs may prevent its adverse effects on islet
function.

To extend these observations, we explored the important
role of LD-associated protein molecules in maintaining the
quiescent phenotype of ISCs. Adipogenesis is known as an
organized multistep process that requires the sequential
activation of many transcription factors, including Pparγ,
which are essential for maintaining stellate cells in their qui-
escent state [28–30]. Pparγ is considered a central regulator
of lipid metabolism to maintain the adipocyte phenotype by
directly binding to and transactivating response elements in
several adipocyte-specific genes [31]. Recently, novel modes
of LDs growth (including rapid/homotypic as well as slow/
atypical LD fusion) have been revealed and essential proteins
(e.g., the perilipin family) have been identified [32, 33].
Meanwhile, LDs mature by inhibiting neutral lipid core
formation and decreasing Plin2 and Plin5 expressions via

downregulation of Pparγ [34]. Under palmitate overload,
upregulation of Plin5 promotes LDs storage and alleviates
lipotoxicity in INS-1 β-cells with improved cell apoptosis
and β-cells function [35]. While exploring the role of the
perilipin family in regulating the ISCs phenotype, we first
found Pparγ and perilipin proteins, especially PLIN2, to be
associated with decreased functional LDs active metabolites
levels, which serve as key molecular events for lipotoxicity-
driven ISCs activation. Recently, the protective effect of
Plin2 in human β cells against lipotoxic-induced cellular
autophagic flux and reduces endoplasmic reticulum stress
has been reported [15, 16, 36]. Plin2 overexpression restored
the polygonal appearance of quiescent ISCs with LDs re-
formation and reduced the activation degree and ECM syn-
thesis, producing a resting-state phenotype. This result is
consistent with previously published reports showing that
ligand-activated Pparγ upregulates Plin2 gene expression
and activity of the Plin2 promoter to regulate the function
of Pparγ on lipid storage at the cellular level [37]. Hence,
our observations firstly showed that LD-associated protein
molecules are essential for maintaining a quiescent ISCs
population, suggesting that cell-based strategies that block
ISCs activation potential could effectively remodel the ISCs
bio-phenotype.

Additionally, our study provides insights into the intra-
cellular signaling mechanisms underlying Plin2-mediated
inhibition of ISCs activation. The results demonstrated that
phosphorylation and activation of Smad3 reduced with Plin2
overexpression in ISCs. Identifying these signaling pathways
as targets for Plin2 in ISCs is in agreement with our previous
study and other reports, showing that the Smad-TGF-β
pathway could be activated in ISCs from patients with diabe-
tes [5]. Therefore, Smad3 signaling, one of the key pancreatic
fibrosis parameters, is also a switch molecule of ISCs activa-
tion, as well as PSCs [5, 38]. Although these findings support
that Plin2 is crucial for inhibiting ISCs activation in the
HFD-lipotoxic environment, the specific mechanism under-
lying needs further exploration. It is also required to investi-
gate the effect of Plin2 in association with ISCs activation
using transgenic models to elucidate this process in diabetes
pathogenesis; future studies should also determine whether
accumulation in ISCs affects lipid homeostasis in islets and
the insulin-resistant state in other tissues; what’s more
important is when and how the link and signals crosstalk
are changed between ISCs and islet cells may answer how
changes of LDs levels in ISCs regulate islet cell frangibility
to lipotoxicity.

In summary, this study identified that this population
of ISCs is activated toward to fibrotic phenotype by expo-
sure to a lipotoxic environment. ISCs activation could be
inhibited by Plin2, which participate in the regulation of
the specific mechanisms with Smad3 signaling pathways
to prevent ISCs activation fibrotic phenotype. These find-
ings help us to clarify new targets for preventing or treat-
ing diabetes.
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