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Objective. This study aims to explore the pharmacodynamic mechanism of Yiguanjian (YGJ) decoction against Parkinson’s
disease (PD) through integrating the central nervous (inner brain) and peripheral system (outer brain) relationship spectrum.
Methods. The active components of YGJ were achieved from the TCMSP, TCMID, and TCM@Taiwan databases. The blood-
brain barrier (BBB) permeability of the active components along with their corresponding targets was evaluated utilizing the
existing website, namely, SwissADME and SwissTargetPrediction. The targets of PD were determined through database
retrieval. The interaction network was constructed upon the STRING database, followed by the visualization using Cytoscape
software. Then, we performed Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment
analyses on potential targets. Finally, the molecular docking approach was employed to assess the binding affinity between key
components and key targets. Results. Overall, we identified 79 active components, 128 potential targets of YGJ, and 97
potential targets of YGJ-BBB potentially suitable for the treatment of PD. GO and KEGG analyses showed that the YGJ
treatment of PD mainly relied on PI3K-Akt pathway while the YGJ-BBB was mostly involved in endocrine resistance. The
molecular docking results displayed high affinity between multiple compounds and targets in accordance with previous
observations. Conclusions. Our study unveiled the potential mechanisms of YGJ against PD from a systemic perspective: (1) for
the YGJ, they have potential exerting effects on the peripheral system and inhibiting neuronal apoptosis through regulating the
PI3K-Akt pathway; (2) for the YGJ-BBB, they can directly modulate endocrine resistance of the central nervous and holistically
enhance body resistance to PD along with YGJ on PI3K-Akt pathway.

1. Introduction

Parkinson’s disease (PD) is the second most common neuro-
degenerative disease in the world [1]. Its pathology is charac-
terized by the loss of neurons in the substantia nigra leading
to a decrease in dopamine (DA) transmitters in the striatum
and the formation of Lewy bodies containing α-synuclein
(α-syn) [2]. Clinically, symptoms of PD include typical
motor symptoms (bradykinesia, rigidity, resting tremor,
and gait disturbances) and non-motor symptoms (sleep dis-
turbances, olfactory disturbances, autonomic dysfunction,

and cognitive and psychiatric disturbances) [3]. Currently,
levodopa is the standard of care for PD treatment. However,
levodopa does not completely cure PD, and long-term treat-
ment is often accompanied by side effects [4]. Therefore, the
research of alternative drugs is of great importance for PD
treatment.

In Traditional Chinese Medicine (TCM) theory, patients
with PD often have the symptom of yin deficiency of the
liver and kidney [5, 6]. Classically, the Yiguanjian (YGJ)
decoction is the standard prescription to treat disease of this
syndrome type [7, 8], including Beishashen (Glehniae Radix,
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root), Chuanlianzi (Toosendan Fructus, fruit), Danggui
(Angelicae Sinensis Radix, root), Dihuang (Rehmanniae
Radix Praeparata, root), Gouqizi (Lycii Fructus, fruit), and
Maidong (Ophiopogon japonicus, root) [9, 10].

Although the YGJ has obvious therapeutic effect against
PD, there is still no systematic study about this. Network
pharmacology, as part of bioinformatics technology, inte-

grates systems biology and computational biology [11]. With
the rise of technologies such as molecular docking, molecu-
lar dynamics simulations, and bioinformatics, in silico strat-
egy has emerged. It can reveal the relationship between
molecular monomers with biological pathways or specific
diseases by comprehensively studying and expanding the
intersection between molecular monomers [12–14].
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Figure 1: Diagrammatic illustration of the workflow of the study.
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Table 1: Exclusive active components of all 6 herbs of YGJ.

Herb No. Active component

BSS

BSS1 Alloisoimperatorin

BSS2 Ammidin

BSS3 Bergaptin

BSS4 Cnidilin

BSS5 Isoimperatorin

CLZ

CLZ1 (E)-3-[(2S,3R)-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-methylol-2,3-dihydrobenzofuran-5-yl]acrolein

CLZ2 Medioresinol

CLZ3 Melianone

CLZ4 Nimbolidin D

CLZ5 Nimbolin A

DH DH1 Sitosterol

GQZ

GQZ1 (+)-Hyoscyamine

GQZ2 (24R)-4alpha-Methyl-24-ethylcholesta-7,25-dien-3beta-ylacetate

GQZ3 (E,E)-1-ethyl octadeca-3,13-dienoate

GQZ4 14b-pregnane

GQZ5 24-ethylcholest-22-enol

GQZ6 24-ethylcholesta-5,22-dienol

GQZ7 24-methyl-31-norlanost-9(11)-enol

GQZ8 24-Methylenecycloartan-3beta,21-diol

GQZ9 24-methylenelanost-8-enol

GQZ10 24-methylidenelophenol

GQZ11 31-Norcyclolaudenol

GQZ12 31-norlanost-9(11)-enol

GQZ13 31-norlanosterol

GQZ14 4,24-methyllophenol

GQZ15 4alpha,14alpha,24-trimethylcholesta-8,24-dienol

GQZ16 4alpha,24-dimethylcholesta-7,24-dienol

GQZ17 4alpha-methyl-24-ethylcholesta-7,24-dienol

GQZ18 6-Fluoroindole-7-Dehydrocholesterol

GQZ19 7-O-Methylluteolin-6-C-beta-glucoside_qt

GQZ20 Campesterol

GQZ21 CLR

GQZ22 Cryptoxanthin monoepoxide

GQZ23 Cyanin

GQZ24 Cycloartenol

GQZ25 Cycloeucalenol

GQZ26 Daucosterol_qt

GQZ27 δ-Carotene

GQZ28 Fucosterol

GQZ29 Glycitein

GQZ30 Hyoscyamine

GQZ31 LAN

GQZ32 Lanost-8-en-3beta-ol

GQZ33 Lanost-8-enol

GQZ34 Lantadene A

GQZ35 Lophenol

GQZ36 Obtusifoliol

GQZ37 Sitosterol alpha1
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Network pharmacology allows the relationships between
TCM and disease to be explored as a whole, and the mech-
anisms between TCM and disease can be systematically
revealed and thus provide a systematic approach for the
study of TCM treatment of diseases [15]. According to this,
we conducted this study to explore the therapeutic mecha-
nisms of YGJ against PD for the first time through the
approach of network pharmacology and molecular docking.

In our approach, we assigned all active components to
the YGJ group and placed the active components crossing
the BBB to the YGJ-BBB group. Through this operation,
we can not only explore the effects of all active components
of YGJ on peripheral system (outer brain) but also screened
out the components that can cross the BBB to specifically

explore the therapeutic effects of YGJ on central nervous
(inner brain), in order to comprehensively analyze the phar-
macodynamic mechanisms of YGJ against PD. Furthermore,
a visible graphical abstract for the current flowchart is pro-
vided to demonstrate the mechanisms of YGJ against PD
concerning central nervous and peripheral systems
(Figure 1).

2. Methods

2.1. Screening of Active Components. The components of
YGJ were collected from multiple databases, including the
Traditional Chinese Medicine System Pharmacology Data-
base and Analysis Platform (TCMSP, https://old.tcmsp-e
.com/tcmsp.php), Traditional Chinese Medicine Integrated
Database (TCMID, http://www.megabionet.org/tcmid/),
and Traditional Chinese Medicine Database @ Taiwan
(TCM@Taiwan, http://tcm.cmu.edu.tw/index.php). Oral
bioavailability (OB) is one of the most important parameters
of pharmacokinetics, and the higher the OB value, the better
the drug-likeness (DL) of the active component [16]. The
Caco-2 screening assay is a valuable tool for testing com-
pounds for intestinal permeability [17]. In this study, the cri-
teria of OB ≥30%, DL ≥0.18, and Caco-2 ≥ -0.4 were used to

Table 1: Continued.

Herb No. Active component

MD

MD1 (1S,2R,4S)-Borneol beta-D-glucopyranoside

MD2 (3R)-5,7-dihydroxy-3-[(2-hydroxy-4-methoxyphenyl)methyl]-8-methoxy-6-methyl-2,3-dihydrochromen-4-one

MD3 (3R)-5,7-dihydroxy-3-[(4-hydroxy-3-methoxyphenyl)methyl]-6,8-dimethyl-2,3-dihydrochromen-4-one

MD4 (S)-p-Coumaroyloctopamine

MD5 (Z,S)-Jasmololone

MD6 2-Ethylhexyl 3-aminopropyl ether

MD7 2′-Hydroxymethylophiopogonone A

MD8 5,7,2′-Trihydroxy-6-Methyl-3-(3′,4′-Methylenedioxybenzyl) Chromone

MD9 5,7-Dihydroxy-3-[(4-methoxyphenyl)methyl]-8-methyl-4-oxochromene-6-carbaldehyde

MD10 6-Aldehydo-isoophiopogonone A

MD11 Cyperene

MD12 DL-threo-beta-Hydroxyaspartic acid

MD13 Jasmolone

MD14 Methylophiopogonanone A

MD15 Methylophiopogonanone B

MD16 Moupinamide

MD17 N-coumaroyltyramine

MD18 Ophiopogonanone A

MD19 Ophiopogonanone B

MD20 Ophiopogonanone C

MD21 Ophiopogonone A

MD22 Ophiopogonone C

MD23 Orchinol

MD24 Poriferasterol

MD25 Ruscogenin

MD26 Ruscogenin 1-O-Sulfate

Table 2: Common active components of YGJ.

Active component Herbs

β-Sitosterol BSS, DG, GQZ

Ethyl linolenate CLZ, GQZ

Mandenol CLZ, GQZ

Quercetin BSS, CLZ, GQZ

Stigmasterol BSS, DG, DH, GQZ
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screen the active components from TCMSP [18]. The
canonical SMILES of components from TCMID and
TCM@Taiwan databases were imported into SwissADME
website (http://www.swissadme.ch/) to analyze the bioavail-
ability score. The component with a bioavailability score
greater than 0.5 was considered the active component [19,
20]. All active components obtained from the above 3 data-
bases were assigned to the YGJ group.

2.2. Screening of Active Components Crossing the BBB. The
canonical SMILES of all active components obtained from
the above 3 databases were imported into Swiss ADME web-
site to analyze whether they can cross the BBB. The active
components crossing the BBB were placed to the YGJ-BBB
group.

2.3. Acquisition of Targets of PD. Targets of PD were col-
lected from seven databases, including CTD (http://ctdbase
.org/), Genecards (https://www.genecards.org/), HuGE
(https://phgkb.cdc.gov/PHGKB/hNHome.action), KEGG
(https://www.kegg.jp/), NCBI (https://www.ncbi.nlm.nih
.gov/), OMIM (https://www.omim.org/), and UniProt
(https://www.uniprot.org/), using “Parkinson’s Disease” as
the keyword, while targets of PD were obtained after dedu-
plication of the results.

2.4. Acquisition of Potential Targets against PD. The canon-
ical SMILES of active components were imported into Swiss
Target Prediction website (http://www.swisstargetprediction
.ch/) to predict targets. The identified PD targets were inter-
sected with the targets of YGJ and YGJ-BBB using the
EVenn website tool (http://www.ehbio.com/test/venn/#/)
[21]. The intersection targets were considered the potential
targets of YGJ and YGJ-BBB against PD.

2.5. Construction of Herb-Active Component-Potential
Target Network. The active components and potential tar-
gets were imported into Cytoscape 3.9.1 software to con-
struct the “Herb-Active component-Potential target”
interactive networks, which can show the interconnection
between herbs, their corresponding active components, and
potential targets [15]. The Analyze Network tool was used
for correlation analyses, which can perform topology analy-
ses on each node in the network, store the calculated values
as attributes of the corresponding nodes and edges, and can
filter network nodes based on the calculated topology met-
rics. The key components could be selected after sorting
the degree value.

2.6. Establishment of PPI Network and Enrichment Analyses.
The potential targets were input into the STRING website
(https://cn.string-db.org/) to construct the protein-protein
interaction (PPI) networks. The organism criterion was set
as Homo sapiens and the minimum required interaction
score was fixed at 0.4. The Molecular Complex Detection
(MCODE) algorithm, which can detect densely connected
regions that are likely to represent molecular complexes in
large PPI networks, was based solely on connectivity data
[22]. For the MCODE analyses, the resulting TSV files were
downloaded from the STRING database and imported into
Cytoscape software, and the MCODE plug-in was used to
identify the top 3 clusters of each group.

Afterwards, the Metascape online analysis website
(https://metascape.org/gp/ index.html#/main/step1) was
used for Gene Ontology (GO) functional and Kyoto Ency-
clopedia of Genes and Genomes (KEGG) pathway enrich-
ment analyses. Subsequent figure presentation was
processed by the OmicStudio tools (https://www
.omicstudio.cn/tool/).

2.7. Molecular Docking Validation. The potential targets
from the KEGG pathway with the highest degree of each
group were considered to be the key targets [23]. The proce-
dure of molecular docking was as follows:

(1) Target file preparation: The three-dimensional (3D)
structures of key targets were retrieved from PDB
database (https://www.rcsb.org/) and UniProt web-
site (https://www.uniprot.org/) [24]. Water and
ligands of the structure were removed using the
PyMOL viewer software, hydrogen bonds were
added on the structure by AutoDockTools software,
and the structure was saved as a PDBQT file [25]

(2) Component file preparation: The 3D structures of
key components were downloaded from TCMSP
and Pubchem database (https://pubchem.ncbi.nlm
.nih.gov/). In AutoDockTools, we input the structure
of the component as a ligand and set the structure as
follows: delete root, show root expansion, and
choose torsions. Then, exported the structure to a
ligand file in PDBQT format [26]

(3) Constructing grid box: Imported the PDBQT struc-
tures of target and ligand into AutoDock4 and

Table 3: Active components crossing the BBB.

Herb No. Active component

BSS

1 Alloisoimperatorin

2 Ammidin

3 Bergaptin

4 Cnidilin

5 Isoimperatorin

GQZ

1 (+)-Hyoscyamine

2 Cyanin

3 Hyoscyamine

MD

1 (Z,S)-Jasmololone

2 2-Ethylhexyl 3-aminopropyl ether

3 Jasmolone

4 Methylophiopogonanone B

5 N-coumaroyltyramine

6 Ophiopogonanone B

7 Orchinol

8 Ruscogenin
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Figure 2: Interactive Venn diagrams. (a) Potential targets of YGJ against PD. (b) Potential targets of YGJ-BBB against PD. (c) Intersections
of potential targets of YGJ. (d) Visualization interactive network of potential targets of YGJ. (e) Intersections of potential targets of YGJ-BBB.
(f) Visualization interactive network of potential targets of YGJ-BBB.
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Figure 3: Continued.
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defined the grid box of molecular docking. The tar-
get structure was used as the grid’s center, and the
center coordinates (center x/y/z) and box size (size
x/y/z) parameters were adjusted to ensure that the
grid box completely covers the target structure [27,
28]

(4) Molecular docking and visualization: Autogrid pro-
gram was run for the first docking operation. After
Genetic Algorithm was used for the calculating, the
Autodock program was run for the second docking
operation [29]. The binding energy was calculated
and successful docking was defined by a binding
energy of ≤ -5 kJ/mol [30]. Figures of the selected
binding sites were generated using PyMOL software

3. Results

3.1. Acquisition of Active Components. 79 active components
of YGJ were screened out, of which 8 were from Beishashen
(BSS), 8 were from Chuanlianzi (CLZ), 2 were from Danggui
(DG), 2 were from Dihuang (DH), 42 were from Gouqizi
(GQZ), and 26 were from Maidong (MD). The exclusive
active components of all 6 herbs are listed in Table 1, and
common active components are listed in Table 2. A total
of 16 active components that can cross the BBB were identi-
fied. To be specific, the number of candidate compounds in
BSS, GQZ, and MD was 5, 3, and 8, respectively (Table 3).

3.2. Prediction of Potential Targets. A total of 728 targets of
YGJ, 480 targets of YGJ-BBB, and 836 targets of PD were
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Figure 3: Herb-active component-potential target networks. (a) The network of YGJ. (b) The network of YGJ-BBB.
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obtained. After the targets of each group were intersected
with the targets of PD, respectively, 128 targets of YGJ
(Figure 2(a)) and 97 targets of YGJ-BBB (Figure 2(b)) were
considered to be the potential targets against PD. After inter-
secting the potential targets of each group, the results are
shown in Figures 2(c) and 2(d). The results showed that
YGJ may synergistically exert the therapeutic effects against
PD through multiple potential targets.

3.3. Construction and Analyses of Interactive Network. After
the potential targets were obtained, the specific circum-
stances of the association of each active component with
potential targets remain unknown. The “Herb-Active
component-Potential target” interactive networks are shown
in Figure 3, and 14 active components with degree ≥20 and
12 active components of YGJ-BBB with degree ≥15 were
identified to be the key active components [31]; the results
are listed in Table 4.

3.4. PPI Network Analyses. There were interactions between
potential targets, and each target involved numerous func-
tional pathways; these were all included in the effective
mechanisms. We first established the PPI networks to
explore the interactions between potential targets. The PPI

network of YGJ consists of 128 nodes and 1398 edges, with
an average node degree of 21.8 (Figure 4(a)). The PPI net-
work of YGJ-BBB consists of 97 nodes and 861 edges, with
an average node degree of 17.8 (Figure 4(b)). The potential
targets with high degree in each group are shown in
Figures 4(c) and 4(d), and the degree was listed in Supple-
mentary Materials table S1.

The top 3 MCODE clusters in each group were screened
out (Figures 4(e) and 4(f)), and the details of each cluster are
listed in Table 5. According to the results, the clusters of YGJ
were related to DA synapse, EGFR tyrosine kinase inhibitor
resistance, and calcium signaling pathway; the clusters of
YGJ-BBB were related to Rap1 signaling pathway, MAPK
signaling pathway, and HIF-1 signaling pathway.

3.5. Enrichment Analyses. GO items with counts greater than
20 of YGJ are shown in Figure 5(a), with a maximum of 20
items included in each analysis. The biological process (BP)
results showed that cellular response to nitrogen compound
had the highest count; the molecular function (MF) results
were mainly focused on phosphotransferase activity, alcohol
group as acceptor; the cellular components (CC) results
mainly related to dendrite. Top 20 KEGG pathways of YGJ
were sorted by P value and shown in Figure 5(b), and the

Table 4: The degree of key components of YGJ and YGJ-BBB.

Group No. Key component Degree

YGJ

1 Orchinol 32

2 N-coumaroyltyramine 28

3 (E)-3-[(2S,3R)-2-(4-hydroxy-3-methoxy-phenyl)-7-methoxy-3-methylol-2,3-dihydrobenzofuran-5-yl]acrolein 28

4 Moupinamide 27

5 Hyoscyamine 27

6 (+)-Hyoscyamine 27

7 Quercetin 27

8 (Z,S)-Jasmololone 24

9 Jasmolone 24

10 2′-Hydroxymethylophiopogonone A 23

11 Cnidilin 23

12 Ophiopogonanone B 22

13 (S)-p-Coumaroyloctopamine 21

14 Melianone 21

YGJ-BBB

1 Orchinol 32

2 N-coumaroyltyramine 28

3 Hyoscyamine 27

4 (+)-Hyoscyamine 27

5 (Z,S)-Jasmololone 24

6 Jasmolone 24

7 Cnidilin 23

8 Ophiopogonanone B 22

9 Bergaptin 20

10 Ammidin 19

11 Ruscogenin 17

12 Methylophiopogonanone B 17
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results were mainly concerned in PI3K-Akt signaling path-
way. Given the highly distracting capacity of pathways of
cancer, relevant cancer pathways were excluded accordingly.

GO items with counts greater than 20 of YGJ-BBB are
shown in Figure 5(c), with a maximum of 20 items included
in each analysis. The BP results showed that behavior had

the highest count; the MF results were mainly focused on
protein kinase activity; the CC results mainly related to den-
drite. Top 20 KEGG pathways of YGJ-BBB were sorted by P
value and shown in Figure 5(d), and the results were mainly
concerned in endocrine resistance. Relevant cancer path-
ways were also excluded accordingly.
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Figure 4: PPI networks and subnetworks analyses. (a) PPI network of potential targets of YGJ. (b) PPI network of potential targets of YGJ-
BBB. (c) Bar plot of potential targets of YGJ. The y-axis represents the degree of the target. The x-axis represents the target. (d) Bar plot of
potential targets of YGJ-BBB. The y-axis represents the degree of the target. The x-axis represents the target. (e) The top 3 clusters of YGJ,
identified by MCODE algorithm. (f) The top 3 clusters of YGJ-BBB, identified by MCODE algorithm.

Table 5: Top 3 clusters identified, respectively, from MCODE results of YGJ and YGJ-BBB.

Group Cluster Pathway description Targets Count Score

YGJ

1 Dopaminergic synapse
APP, DRD4, HCAR2, CCR2, MTNR1B, DRD3, OPRM1, MTNR1A, DRD2,

CNR1
10 4.50

2
EGFR tyrosine kinase
inhibitor resistance

PDGFRB, KIT, MAPT, LRRK2, MAP2K1, PRKCD, NTRK1, PIK3CA, ERBB2,
RET, JAK2, VEGFA, ESR1, MTOR, IGF1R, STAT3, BRAF, IL2, GSK3B, FGFR1,

HDAC6
21 4.48

3
Calcium signaling

pathway
ESR2, HTR2A, INSR, NOS2, HTR2C, MCL1, VCP, ERBB4, SNCA, AGTR1, F2,

HRH1, TERT, ROCK2, EGFR, HSP90AA1, MAPK1, CCKBR
18 2.61

YGJ-
BBB

1 Rap1 signaling pathway
DRD3, PDGFRB, MTNR1B, CCR2, DRD4, HCAR2, DRD2, MTNR1A, OPRM1,

KIT, CNR1, IL2, MAP2K1, JAK2
14 3.14

2
MAPK signaling

pathway
NTRK1, ESR1, EGFR, STAT3, ERBB2, IGF1R 6 2.33

3
HIF-1 signaling

pathway
MTOR, BRAF, MAPK1, ROCK2, INSR, PIK3CA, NOS2, HSP90AA1, TERT,

FGFR1
10 2.10
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3.6. Molecular Docking Validation. The key targets are listed
in Table 6, and the PDB IDs were listed in Supplementary
Materials table S2. The key targets were docked crossly

with the key components of each group to predict the
effective mechanisms. The successful docking results are
listed in Table 7, and 3 representative successful results of
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Figure 5: GO functional and KEGG pathway enrichment analyses. (a) GO functional enrichment analyses of YGJ against PD, count over 20.
(b) KEGG pathway enrichment analyses of YGJ against PD, sort by P value. (c) GO functional enrichment analyses of YGJ-BBB against PD,
count over 20. (d) KEGG pathway enrichment analyses of YGJ-BBB against PD, sort by P value.
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each group were selected out to form schematic diagrams
(Figures 6 and 7). Full results were listed in Supplementary
Materials table S3. According to the representative
successful results, orchinol can be docked with ERBB2
target, N-coumaroyltyramine can be docked with EGFR
target, melianone can be docked with MTOR target, and
ruscogenin can be docked with ESR1, ESR2, and IGF1R
targets.

4. Discussion

Neuroinflammation plays a significant role in PD etiology
along with mitochondrial dysfunction and impaired pro-
teostasis. Proinflammatory factors secreted by senescent cells
in the brain trigger neuroinflammation, leading to immune
cell-mediated apoptosis of DA neurons. Neurodegeneration
and neuroinflammation would feed each other and promote

Table 6: Key targets of YGJ and YGJ-BBB.

Group KEGG pathway Key targets

YGJ
PI3K-Akt signaling

pathway

AKT1, CCND1, BCL2, EGFR, ERBB2, ERBB4, FGFR1, MTOR, GSK3B, GYS1, HSP90AA1, IGF1R, IL2,
INSR, JAK2, KIT, MCL1, NOS3, NTRK1, PDGFRB, PIK3CA, PRKAA1, MAPK1, MAP2K1, RXRA,

VEGFA

YGJ-
BBB

Endocrine resistance
AKT1, CCND1, BCL2, BRAF, EGFR, ERBB2, ESR1, ESR2, MTOR, IGF1R, MMP2, MMP9, PIK3CA,

MAPK1, MAP2K1

Table 7: Basic information of representative molecular docking results.

Group Active component Target Residue Energy (kJ/mol) Docking distance (Å)

YGJ

Orchinol ERBB2 ARG-182 -5.16 1.80

N-coumaroyltyramine EGFR

ARG-681

-5.25

2.20

LEU-754 2.40

ALA-743 2.60

PRO-675 2.20

N-coumaroyltyramine MAP2K1

ASN-319

-5.14

2.10

PRO-323 2.20

LYS-344 2.20

N-coumaroyltyramine MAPK1

ASP-100

-5.09

2.00

LYS-99 2.20

ALA-9 2.20

(S)-p-Coumaroyloctopamine ERBB2

GLN-463

-5.53

1.70

PRO-504 2.10

ASN-509 2.20

ARG-435 2.20

TRP-500 2.40

(S)-p-Coumaroyloctopamine MAP2K1 ASP-190 -5.93 2.30

Melianone CCND1
THR-80

-5.11
2.10

ARG-5 2.30

Melianone MTOR THR-2143 -5.19 2.00

Melianone VEGFA CYS-61 -5.29 2.10

YGJ-BBB

Bergaptin ERBB2 GLN-308 -5.78 2.00

Bergaptin MAP2K1 LEU-63 -5.55 2.10

Bergaptin MAPK1 LYS-138 -5.33 1.80

Ammidin ERBB2
GLN-299

-5.93
2.00

TYR-322 2.20

Ammidin MAP2K1 LYS-97 -5.06 2.20

Ruscogenin ESR1
TRP-393

-5.49
1.90

PRO-324 2.00

Ruscogenin ESR2
LYS-368

-5.28
2.00

GLU-291 2.60

Ruscogenin IGF1R GLU-1053 -5.32 2.20
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disease progression [32–34]. Oxidative stress can not only
participate in the formation of amyloid by affecting the
structure and self-assembly of α-syn but also be interrelated
and interdependent with the inflammatory process [35].
Multiple causes of mitochondrial damage-mediated apopto-
sis of DA neurons are also associated with the development
of PD [36]. Therefore, inhibition of the inflammatory
response, oxidative stress, and apoptosis of neuronal cells
through systemic effects of the body or interventions target-
ing the brain has significant therapeutic effects on PD.

Multiple active components screened in this study have
been confirmed to be able to exert therapeutic effects on
PD through the above-mentioned approaches. Among the
active components crossing the BBB, isoimperatorin can
inhibit the nuclear factor (NF)-κB pathway, reduce the levels
of interleukin (IL)-4, IL-5, IL-6, IL-13, and tumor necrosis
factor (TNF)-α, and possess the anti-inflammation effect
[37]. Methylophiopogonanone B has antioxidant property,
can inhibit the production of malondialdehyde (MDA) and
reactive oxygen species (ROS), enhance the activity of super-
oxide dismutase (SOD), and down-regulate the expressions
of Bax/Bcl-2 and caspase-3 to inhibit apoptosis, while can
also significantly down-regulate the expression of IL-6 and
IL-8 [38]. Ruscogenin can inhibit the activity of the NF-κB

pathway to reduce the expression of inflammatory cytokines,
including IL-1β and caspase-1, and also reduce the produc-
tion of ROS, making it both anti-inflammatory and antioxi-
dant properties [39]. Thus, active components crossing the
BBB can inhibit inflammatory responses, oxidative stress,
and neuronal apoptosis to treat PD.

The MCODE algorithm can detect densely connected
regions likely to represent molecular complexes in large PPI
networks, based solely on connectivity data [40]. The top 3
clusters of YGJ were related to DA synapse, EGFR tyrosine
kinase inhibitor resistance, and calcium signaling pathway.
Many disorders with control deficits are associated with
abnormal dopamine transmission [24]. Improvement of DA
transmission abnormality and elevation of DA level may con-
tribute to rapid reversal of motor complications of PD [41, 42].
Epidermal growth factor receptor (EGFR) is a tyrosine kinase
receptor involved in cell differentiation and proliferation, and
its mutation and amplification are associated with the pathol-
ogy of neurodegenerative diseases [43, 44]. Amyloid can be
transported between neuronal cells through EGFR-mediated
endocytosis, thereby enabling amyloid transfer throughout
the brain [45, 46]. Calcium can bind to the C-terminus of α-
syn and promote the secretion and aggregation of α-syn [47,
48]. Activation of the calcium signaling pathway can promote
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Figure 6: Heatmap and representative molecular docking results of YGJ. (a) Heatmap of molecular docking results of YGJ. (b) Schematic
diagram of N-coumaroyltyramine-EGFR. (c) Schematic diagram of (S)-p-coumaroyloctopamine-ERBB2. (d) Schematic diagram of
melianone-MTOR.
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the generation of mitochondrial oxidative stress and the apo-
ptosis of substantia nigra DA neurons [49, 50]. Therefore,
YGJ can improve the transmission abnormality of DA and
amyloid and inhibit the secretion and aggregation of α-syn
through systemic effects. The top 3 clusters of YGJ-BBB were
related to Rap1 signaling pathway, MAPK signaling pathway,
and HIF-1 signaling pathway. Activation of the Ras-
association proximate 1 (Rap1) and mitogen-activated protein
kinase (MAPK) signaling pathways has been shown to be able
to promote inflammatory responses and ROS production
[51–54], while activation of the hypoxia-inducible factor-1
(HIF-1) signaling pathway could inhibit the mitochondria-
mediated apoptotic process [55]. The MAPK pathway can be
activated by its upstream Rap1 pathway, which in turn acti-
vates the downstream HIF-1 pathway [56]. Therefore, down-
regulation of Rap1, MAPK, and HIF-1 pathways can reduce
neuronal cell apoptosis by inhibiting inflammatory responses,
oxidative stress, and mitochondrial damage in the brain.

The efficacy of TCM is represented by the synergy effects
of potential targets, but experimental validation would yield
massive work and thus hinder our progression when we
scrutinized the TCM-targets effects relationship spectrum.
KEGG enrichment analysis can find significant signal path-
ways for the synergy effects of potential targets. Therefore,
we need to step-wisely narrow our study objects through
KEGG enrichment analysis. According to the results of the
KEGG pathway enrichment analyses, YGJ group was mainly
focused on PI3K-Akt signaling pathway, while YGJ-BBB
group was mainly concerned in endocrine resistance. Acti-
vating the PI3K-Akt cell survival pathway can inhibit mito-
chondrial damage-mediated apoptosis, promote autophagy
of amyloid, and play a neuroprotective role [57–59]. In the
meantime, the activation of the PI3K-Akt pathway can also
inhibit inflammation response and oxidative stress [60, 61].
EGFR and ERBB2 are upstream ligands [62, 63], while
CCND1, MTOR, and VEGFA are downstream receptors of
PI3K-Akt signaling pathway [64–66], and interventions on
targets above-mentioned can all have effects on this path-
way. The MAPK pathway and the PI3K-Akt pathway have
extensive interactions, and the PI3K-Akt pathway can be
regulated by acting on the important targets of the MAPK

pathway, MAP2K1 and MAPK1 [67, 68]. According to the
docking results, it is speculated that YGJ may act on
CCND1, EGFR, ERBB2, MAP2K1, MAPK1, MTOR, and
VEGFA targets to modulate PI3K-Akt signaling pathway,
thereby treating PD by affecting the peripheral system.

Studies have shown that the regulation of the endocrine
system also plays an important role in the treatment of PD,
including sex hormones, insulin, and melatonin [69–72].
According to the docking results, it is speculated that YGJ-
BBB may act on ERBB2, ESR1, ESR2, IGF1R, MAP2K1,
and MAPK1 targets to intervene endocrine resistance. Estro-
gen has been shown to increase the synthesis, release, re-
uptake, and turnover of DA [73], prevent memory impair-
ment by inhibiting NF-κB activity to modulate neurogenic
inflammation [74], and improve mitochondrial damage
and restore the activity of antioxidant enzymes [75], thereby
reducing the risk of PD and improving symptoms of disor-
ders with control deficits [76, 77]. The docking results
showed that YGJ-BBB can act on estrogen receptor 1
(ESR1) and estrogen receptor 2 (ESR2), improve the utiliza-
tion rate of estrogen, and promote the therapeutic effect on
PD. There is accumulating evidence that insulin can cross
the BBB and influence a multitude of processes in the brain,
including modulation of neuronal survival and growth [78],
DA transmission [79], maintenance of synapses [80],
autophagy of amyloid [81], oxidative stress [82], and neuro-
inflammation [83]. Meanwhile, a process analogous to insu-
lin resistance exists in the brains of PD patients. Therefore,
improving the utilization and restoring the normal function
of insulin in the brain could be used as a strategy to slow the
progression of PD. The docking results showed that YGJ-
BBB can act on insulin-like growth factor 1 receptor
(IGF1R) to achieve this. In addition, MAPK signaling path-
way is the classical pathway that can be activated by estrogen
and insulin. Intervention of the important targets MAP2K1
and MAPK1 in this pathway and the upstream pathway tar-
get ERBB2 can affect the function of estrogen and insulin.
That is to say, the active components of YGJ that cross the
BBB can restore the normal function of estrogen and insulin
in the brain by acting on ERBB2, ESR1, ESR2, IGF1R,
MAP2K1, and MAPK1, thereby reducing the incidence,

GLU-1053

2.2

(d)

Figure 7: Heatmap and representative molecular docking results of YGJ-BBB. (a) Heatmap of molecular docking results of YGJ-BBB. (b)
Schematic diagram of ruscogenin-ESR1. (c) Schematic diagram of ruscogenin-ESR2. (d) Schematic diagram of ruscogenin-IGF1R.
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slowing down the progression, and improving related symp-
toms of PD by affecting the central nervous. It is worth not-
ing that the expression of PI3K-Akt signaling pathway is also
closely related to the effects of estrogen and insulin [84–86],
which indicates that the active components of YGJ can also
enhance the therapeutic effects of the active components
that cross the BBB on central nervous through peripheral
system effects triggered by PI3K-Akt pathway.

Despite the encouraging discoveries, there still exist cer-
tain limitations. To begin with, our study is largely constructed
upon current databases. However, scientific studies regarding
TCM against PD remain insufficient compared to other dis-
eases and thus require further attention. This can be reflected
by the KEGG enrichment analyses in which the overlay
between disease pathways could induce inadequate inference.
Moreover, the comprehensive compounds of herbs in the
YGJ are still missing. Those unidentified and unrecorded com-
ponents were not included and might affect the present result.
Although we take a step forward in systemic explanation
regarding TCM mechanism from central nervous (inner
brain) and peripheral system (outer brain), the determined
bioactive component and their corresponding targets cannot
fully represent the holistic concept of YGJ. Since the efficacy
of YGJ has been clinically testified, we believe that the further
advance in computational techniques combined with experi-
mental validation can benefit the exploration of underlying
mechanism on YGJ against PD.

5. Conclusion

In conclusion, 79 active components were screened in this
study, of which 16 active components can permeate the
BBB. Overall, we identified 128 potential targets of YGJ, 97
potential targets of YGJ-BBB potentially suitable for the
treatment of PD. The herb-active component-potential tar-
get network, PPI networks, and MCODE networks were
constructed through the approach of network pharmacol-
ogy. It is speculated that orchinol, N-coumaroyltyramine,
(S)-p-coumaroyloctopamine, and melianone can bind with
the targets related to PI3K-Akt and its upstream and down-
stream pathways to treat PD by affecting the peripheral sys-
tem. And bergaptin, ammidin, and ruscogenin, the active
components of YGJ that cross the BBB, can bind with targets
related to the regulation of multiple hormones to modulate
endocrine resistance, such as restoring the normal function
of estrogen and insulin to exert therapeutic effects on the
central nervous, which can also be enhanced through
peripheral system effects of PI3K-Akt pathway. Therefore,
not only YGJ can have different therapeutic effects on PD
through the effects of peripheral system and central nervous
but also the two approaches can work in coordination, thus
reflecting the systematic collaboration and single-
targetedness of YGJ against PD.
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