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Objective. DNA damage response (DDR) is a complex system that maintains genetic integrity and the stable replication and
transmission of genetic material. m6A modifies DDR-related gene expression and affects the balance of DNA damage response
in tumor cells. In this study, a risk model based on m6A-modified DDR-related gene was established to evaluate its role in
patients with gastric cancer. Methods. We downloaded 639 DNA damage response genes from the Gene Set Enrichment
Analysis (GSEA) database and constructed risk score models using typed differential genes. We used Kaplan-Meier curves and
risk curves to verify the clinical relevance of the model, which was then validated with the univariate and multifactorial Cox
analysis, ROC, C-index, and nomogram, and finally this model was used to evaluate the correlation of the risk score model
with immune microenvironment, microsatellite instability (MSI), tumor mutational burden (TMB), and immune checkpoints.
Results. In this study, 337 samples in The Cancer Genome Atlas (TCGA) database were used as training set to construct a
DDR-related gene model, and GSE84437 was used as external data set for verification. We found that the prognosis and
immunotherapy effect of gastric cancer patients in the low-risk group were significantly better than those in the high-risk
group. Conclusion. We screened eight DDR-related genes (ZBTB7A, POLQ, CHEK1, NPDC1, RAMP1, AXIN2, SFRP2, and
APOD) to establish a risk model, which can predict the prognosis of gastric cancer patients and guide the clinical
implementation of immunotherapy.

1. Introduction

Gastric cancer ranks fifth in the world’s incidence of cancer,
and it ranks second in the number of tumor-induced deaths
[1]. In fact, 80% of patients with early gastric cancer can
achieve a five-year survival rate after treatment [2]; unfortu-
nately, many patients with gastric cancer have no obvious
early phenotype and are not found to have metastasized
until they are admitted for examination [3]. Even when they
undergo surgery, patients with advanced gastric cancer have
a low five-year survival rate after surgery [4]. In addition, the
insensitivity of gastric cancer to postoperative chemotherapy

is even more disabling [5], which may be associated with
mismatch repair defects (MMRD) and microsatellite insta-
bility (MSI) [6, 7]. Therefore, we need to further explore
the underlying mechanisms of gastric carcinogenesis and
explore new tumor markers to make better therapeutic
decisions.

DNA damage is a key step in carcinogenesis, which is
associated with a variety of factors that exist in nature, such
as UV light [8] and X-rays. Long-term exposure to carcino-
genic environments can damage DNA, cause mutations in
oncogenes and cancer suppressor genes, and induce cells to
acquire proliferative potential [9]. The DNA damage response
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is a complex system that includes DNA damage sensors, medi-
ator, and effector proteins [10]. When DNA is damaged, the
DNA damage response system blocks the cell cycle by activat-
ing cycle check protein sites, inhibiting cell proliferation and
recruiting damage repair factors [11]. However, DNA damage
response can both repair early tumor mutations and resist
tumor killing by chemotherapy and radiotherapy [12]. DNA
damage repair defects can also increase the frequency of muta-
tions in the tumor genome [13]. In addition, tumors can over-
use DNA damage repair to stall apoptosis [14]. Thus, clinical
trials have been conducted using DDR-targeted drugs to treat
DDR genetic aberrations in prostate cancer [15] and pancre-
atic ductal adenocarcinoma [16] or to overcome drug insensi-
tivity of small cell lung cancer to immune checkpoint blockers
(ICBs) [17], all of which have shown potential therapeutic
value, but the use of DDR inhibitors in gastric cancer remains
relatively rare.

DNA methylation is considered to be an important bio-
marker for cancer diagnosis and prognosis [18]. N6-
methyladenosine (m6A) is a highly conserved form of
DNA modification in eukaryotic cells [19], which mainly
affects the function of genome through epigenetic modifica-
tion and changing the chromatin structure [20]. A large
number of studies have shown that m6A modifications at
the DNA level, mRNA level, and protein level are involved
in cancer pathogenesis and progression [21] and promote
drug resistance in tumor cells [22]. However, the effect of
m6A affecting DDR gene expression on the prognosis of gas-
tric cancer patients has not been studied.

Therefore, this study analyzed the transcriptome, muta-
tion, and clinical data of patients. Then, we constructed the
risk model of m6A-modified DDR-related genes. After vali-
dation of the model validity by GEO dataset, we explored the
prognostic ability of the risk model for patients with gastric
cancer. We explored the immune cell conditions, MSI, and
TMB of patients in the risk model to identify evidence for
immunotherapy with the aim of providing new ideas for
clinical practice.

2. Material and Methods

2.1. Data Sources. We downloaded the mutation, tran-
scriptome, and clinical data of gastric cancer patients from
TCGA database (https://portal.gdc.cancer.gov/) and Gene
Expression Omnibus (GEO) database (https://www.ncbi
.nlm.nih.gov/geo/), removed the samples with survival time
less than 30 days or unknown, and obtained TCGA set
(n = 337) and a GEO set (GSE84437, n = 433). Finally, 771
samples were enrolled in this study (Table 1).

2.2. Screening m6A Gene-Modified Prognosis-Related DNA
Damage Response Genes. m6A genes were gained from
document [23] and the GSEA database (http://www.gsea-
msigdb.org/gsea/index.jsp) GOMF_N6_METHYLADENO-
SINE_CONTAINING_RNA_BRNA_BINDING, and DNA
damage response genes were obtained from the GSEA
database REACTOME_DNA_REPAIR and GOBP_DNA_
REPAIR. We used “limma” R package to extract the expres-
sion matrix of DDR gene and m6A gene. Subsequently, we

first matched the expression of DDR genes with their sur-
vival status for each patient and then screened the DDR
genes with coexpression relationship with m6A genes based
on jcorj > 0:1 and FDR < 0:05, and “Psych,” “pheatmap,”
and “reshape2” R packages were used to map the Sankey
map. The Sankey map showed the DDR genes that have
coexpression relationship with m6A genes. We performed
the Cox analysis to find prognosis-related DDR genes by
referring to the “survival” R package and visualized them
by drawing forest plots.

2.3. NMF Consensus Clustering. We used the “NMF” and
“ConsensusClusterPlus” R packages for unsupervised con-
sensus cluster analysis and divided the patients into two sub-
types according to the expression of m6A-modified
prognosis-related DDR genes. A good clustering effect
should be demonstrated by: (1) a smoothly rising cumulative
distribution function curve; (2) the number of samples

Table 1: Patients in public database.

TCGA (n = 337) GEO (GSE84437, n = 433)
Gender

Female 119 137

Male 218 296

OS

Alive 197 224

Dead 140 209

T stage

T1 15 11

T2 74 38

T3 156 92

T4 88 292

Unknown 4

N stage

N0 99 80

N1 91 188

N2 68 132

N3 68 33

Unknown 11

M stage

M0 303

M1 22

Unknown 12

Stage

I 45

II 107

III 137

IV 34

Unknown 14

Age

<65 145 267

≥65 189 166

Unknown 3
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within a single group should not be too small, and (3) the
intragroup correlation should be high and intergroup corre-
lation should be low after clustering. We used the “VennDia-
gram” R package to screen the differential genes between
types based on the filtering range of jlog 2FCj > 0:1 and
FDR < 0:05. The “enrichplot” R package was used to analyze
the functions and pathway enrichment areas of the differen-
tial genes, and the “GSEABase” R package was used to inves-
tigate the differences in immune cell infiltration between the
typologies.

2.4. Construction of the DDR-Related Gene Risk Model. The
337 gastric cancer patients from TCGA database were used
as the original sample. 433 gastric cancer patients from the
GEO database were used as the validation sample. The for-
mer was used to construct the risk model, and the latter
was used as an external dataset to validate the significance
of the model in a larger number of patients. We used Lasso
regression algorithm to reduce the risk of overfitting based
on prognosis-related staging difference genes. The best gene
was selected as the construct model using the Cox analysis.
The model formula was constructed based on gene expres-
sion and coefficients: RiskScore = GENEexp ∗ Coef , with
Coef being the Cox regression coefficient. The risk score
for each original and validation sample was calculated based
on the model formula. Patients with scores above the
median value were defined as high-risk patients. The rest
were defined as low-risk patients. The “scatterplot3d” R
package was used to locate the patients on a 3D cubic map
based on their information. Survival analysis was applied
on both groups of patients using the “survminer” R package
to determine the value of the risk model.

2.5. The Clinical Value of Risk Models. We used the univar-
iate Cox analysis to determine the clinical significance of the
model for patients, and then, the multifactorial Cox analysis
was used to remove the interference of other clinical traits to
determine the ability of the risk model to predict patients’
survival over the last 5 years without relying on their clinical
traits. Then, we combined some clinical manifestations (gen-
der, stage, T stage, N stage, grade, and age) and risk scores of
gastric cancer patients to draw a nomogram and visualize it
with the “regplot” and “rms” R packages. And calibration
curves were used to illustrate the agreement between the
actual results and the model-predicted results. We used
“survminer” R package-plotted K-M curves to find whether
the constructed risk model was applicable to patients of dif-
ferent clinical subgroups.

2.6. Correlation of Risk Model and TME. The tumor micro-
environment (TME) is essential for tumor cells to survive
and exert their malignant phenotype. It controls cancer cell
invasion, migration, and drug sensitivity [24]. Study shows
that altering TME helps improve treatment effectiveness in
cancer cells [25]. In this study, we used the ESTIMATE algo-
rithm to calculate the stromal cell score and immune cell
score for each sample and scored them together. The
CIBERSORT algorithm was used to calculate the immune
cell subpopulation content in gastric cancer samples. Corre-

lation scatter plots were drawn using the “ggplot2” and
“tidyverse” R packages to show the immune cell subpopula-
tion content of each risk group. We used ssGSEA to com-
pare the differences in the content of each type of immune
cells in the two risk groups.

2.7. Correlations of Risk Models with TMB, MSI, and Drug
Sensitivity. Tumor mutational burden affects the immune
response of tumor cells [26]. In order to assess the frequency
of mutations in gastric cancer samples between the two risk
groups, the number of mutated genes in gastric cancer
patients was counted together and the tumor mutation load
(TMB) score was calculated for each patient using the “maf-
tools” R package. We selected the top 20 genes with muta-
tion frequency and plotted the waterfall map of their
mutation numbers to analyze the correlation between the
risk model scores and the tumor mutation burden scores.
We counted the number of mutations in patients and used
this as a basis to classify patients into high- and low-TMB
groups and compared these two groups as survival status.
R packages such as “ggpubr” and “plyr” were used to draw
the status of microsatellite instability and immune escape
under different risk scores. The “pRRophetic” R package
was used to calculate the concentration of multiple antitu-
mor drugs that inhibited half of the tumor growth (IC50)
to investigate the difference in drug sensitivity between the
two groups of patients.

2.8. Procedures and Statistical Analysis. All script runners
were performed using R version 4.1.2. Statistical significance
was set at p < 0:05.

3. Results

3.1. Screening m6A-Modified Prognosis-Related DDR Genes.
The m6A genes have been reported to direct DNA repair
factors to DNA double-strand break sites, while the DNA
damage response maintains stability of genome, which con-
tributes to cancer progression [27]. To explore the potential
biomarkers, we intend to construct a risk model using m6A-
modified DDR genes. We first determined the technical
route for building the risk model (Figure 1). We searched
TCGA database for gastric cancer patients’ transcriptome
data, collected 639 DDR genes and 21 m6A genes from the
GSEA database, and found the m6A-modified DDR genes
with p value < 0.05 and jcorj > 0:1 (Figure 2(a)). Subse-
quently, we used the univariate Cox analysis to evaluate
the correlations of DDR gene expression with prognosis in
gastric cancer samples and screened 40 DDR genes with
prognostic characteristics (Figure 2(b)). A summary of the
mutation rates of these 40 prognosis-related DDR genes
revealed that most DDR genes were mutated, with POLQ
having the highest mutation frequency (6%), while 8 DDR
genes did not have any mutations (Figure 2(c)). The results
of somatic copy number showed that there was a general
copy number variation (CNV), and 18 prognosis-related
DDR genes increase (Figure 2(d)). Figure 2(e) shows the
location of copy number variation of DDR gene on their
respective chromosomes. In conclusion, we screened 40
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m6A-modified prognosis-related DDR genes for subsequent
analysis.

3.2. Identification of m6A-Modified DDR Gene Subtypes in
Gastric Cancer. To expand the clarification of the correlated
expression of cognitive m6A-modified prognosis-related
DDR genes in gastric cancer patients, we attempted to clas-
sify patients according to the expression of these 40 DDR
genes with prognostic features in patients using the NMF
classification. Comparing the results of the full typing, we
determined that k = 2 most clearly differentiated the
patients, and the number of patients in each group met the
requirements for subsequent analysis; there were 216
patients in the C1 subtype and 121 patients in the C2 sub-
type. We found that genes in group C1 were enriched in
pathways such as drug metabolism, and genes in group C2
were enriched in pathways such as cell cycle and DNA repair
by GSEA of typed differential genes (Figure 3(a), Supplemen-
tary Figure 1). Gene Set Variation Analysis (GSVA) of
different subtypes showed that subtype C1 was mainly
enriched in nutrient metabolic pathways, such as arachidonic

acid metabolic pathway and glycosphingolipid biosynthesis
lacto; subtype C2 was mainly enriched in DNA damage
response pathways, such as mismatch repair and
homologous recombination and nucleotide excision repair
(Figure 3(b)). We used the ssGSEA algorithm to enrich for
immune-related genes and used this to calculate the
different abundance of immune cells in the two groups of
patients (Figure 3(c)). We compared the gene expression
between C1 and C2 subtypes, censored the genes with j
logFCj ≤ 1 and p value ≥ 0.05, and finally screened 178
differentially expressed genes. We then performed Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) enrichment analyses on these genes, and
the results showed that the differential genes were mainly
involved in nuclear division and chromosome segregation
(Figure 3(d)). These differential genes were combined with
patient survival information to screen for 20 prognosis-
related differential genes (Figure 3(e)). In conclusion, not
only m6A-modified DDR genes but also differential genes
(DEGs) after typing are related to cell cycle and participate
in cell replication and proliferation.

337 samples were downloaded from TCGA database 639 DDR genes and 21 m6A genes were
downloaded from GSEA database

40 prognostic DDR genes co expressed by m6A
were screened

Copy number variation of 40
DDR genes was detected

Consensus cluster analysis GSVA analysisssGSEA analysis

20 differential genes between
prognosis related genotypes

433 samples were downloaded
from GEO database

Train set

Test set

Lasso and Cox regression analysis

A risk prediction model based on 8
DDR-related genes was established

Analysis: Kaplan-Meier curves/ROC curves/Expression heatmap

Analysis: Univariate Cox and Multifactor Cox/Concordance-
index curves/Nomogram building and Calibration curves

TME, MSI, TIDE, TMB and Drug sensitivity between
the high-risk group and low-risk group with TCGA 

GSEA analysis

Figure 1: The flowchart describing the experimental design.
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Figure 2: Continued.
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3.3. The DDR-Related Gene Risk Model. To construct a
model for DDR-related genes and to investigate its efficiency
in assessing the prognosis of gastric cancer patients, we used
samples from TCGA database. Based on transcriptomic data
and clinical data in TCGA database samples, these datasets
were eliminated by applying the “Combat” algorithm. Lasso
regression analysis and the multivariate Cox analysis were
performed on the above 20 prognosis-related typing differ-
ence genes, and 8 best candidate genes, including 3 potential
risk genes and 5 potential protective genes, were screened for
risk model construction.

RiskScore=ð−0:5057∗expression of ZBTB7AÞ+ð−0:0482
∗ expression of POLQÞ + ð−0:1283 ∗ expression of CHEK1Þ
+ ð−0:1406 ∗ expression of NPDC1Þ + ð0:0825 ∗ expression
of RAMP1Þ + ð−0:1175 ∗ expression of AXIN2Þ + ð0:0205 ∗
expression of SFRP2Þ + ð0:0357 ∗ expression of APODÞ.

We categorized patients with risk scores above the
median value into the high-risk group (n = 168) and the rest
into the low-risk group (n = 169). The risk curve results
showed that the higher the risk score of the patients, the
higher the risk of death (Figures 4(a) and 4(b)). Figure 4(c)
shows the difference in the expression of genes constructing
the risk model in the high- and low-risk groups in which
ZBTB7A, POLQ, CHEK1, NPDC1, and AXIN2 had lower
expression in the high-risk group, suggesting that they are
potential protective genes in gastric cancer; RAMP1, SFRP2,
and APOD had lower expression in the low-risk group, sug-
gesting that they are potential risk genes in gastric cancer.
We plotted K-M curves based on the survival time and sur-
vival status of patients, and the statistical results showed that
patients in the low-risk group had a significantly better prog-
nosis and longer survival time (Figure 4(d)). We used prin-

cipal component analysis (PCA) to replace the original
variables and display them on a three-dimensional cube
plot; we found that the risk model gene transcriptome data
were more discriminatory when used to distinguish the
space in which the two groups of patients were located
(Figure 4(e)). Subsequently, we analyzed the prognosis of
gastric cancer patients using other investigators’ models
genetically and compared them with the model of the pres-
ent study [28–32], and the results showed that our model
distinguished patients in the high- and low-risk groups
more significantly and was more sensitive (Supplementary
Figure 2). In summary, this study constructed a risk
model based on eight DDR-related genes and validated
their clinical significance.

3.4. Validation of DDR-Related Gene Prognostic Model in
GEO Database. To further access the predictive role of the
risk model constructed in this study in patients with gastric
cancer, we selected GSE84437 as the validation sample and
used the same formula as the original sample to calculate
risk scores for all samples. We also classified patients with
risk scores above the median value into the high-risk
group (n = 236) and the remaining patients into the low-
risk group (n = 197). The risk curve results showed that
the higher the patient’s risk score, the greater the risk of
death (Figures 5(a) and 5(b)). We transformed the expres-
sion of the eight risk model genes in the validation sample
into chroma bonds and plotted heat maps to visualize
them, and the heat map results were consistent with the
original samples (Figure 5(c)). We then plotted K-M
curves based on the survival data of patients in the valida-
tion sample, and the risk of death was similarly higher in
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Figure 2: Mutation frequency and copy number variation of m6A-modified prognosis-related DDR genes in patients with gastric cancer. (a)
Sankey diagram of m6A genes and DDR genes. (b) Univariate Cox regression prognostic model of DDR genes in patients with gastric
cancer. (c) Mutation frequency of 40 prognosis-related DDR genes. (d) Frequency of increase, loss, and noncopy number variation of
DDR genes. (e) Location of copy number variation of DDR genes on 23 chromosomes.
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Figure 3: Consensus cluster analysis of m6A-modified prognosis-related DDR genes. (a) Define the consensus matrix of two subtypes (k = 2).
(b) GSVA enrichment analysis of two subtypes. (c) Immune cell abundance difference between two subtypes. (d) GO and KEGG enrichment
analyses of DDR-related differential genes. (e) Univariate Cox regression prognosis model of DDR-related differential genes.
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the high-risk group (Figure 5(d)). We used principal
component analysis to downscale the patient information
and display it in a three-dimensional cube plot, and
Figure 5(e) shows that the difference between the two
groups of patient information is more clearly distinguished
using the risk model gene transcriptome data. In sum-
mary, we validated the validity of the risk model in an
external dataset.

3.5. Assessment of Risk Genes. We plotted the correlation
between the risk model genes and the risk scores
(Figure 6(a)); APOD, SFRP2, and RAMP1 were significantly
positively correlated with risk scores, with APOD having the
strongest correlation with risk scores and significantly affect-
ing the prognosis of gastric cancer patients (Figure 6(b)),
with patient information from the GEPIA website (http://
gepia.cancer-pku.cn/index.html). We searched the cBioPor-
tal database for mutation data of three potential risk genes
(Figure 6(c)), in which APOD had the highest mutation rate
(6%), followed by SFRP2 (2.4%) and RAMP1 (0.7%), and
Figure 6(d) shows the mutation loci of APOD. In addition,
we analyzed APOD protein expression by the Human Pro-
tein Atlas (https://www.proteinatlas.org/) to find differences
in APOD protein expression, and immunohistochemical

maps showed that APOD was highly expressed in gastric
cancer tissues (Figure 6(d)). In conclusion, APOD is the
potentially high-risk gene with the highest mutation rate,
and its high expression may promote the progression of gas-
tric cancer.

3.6. Clinical Correlation and Prognostic Values of the
Prognostic Model. To assess the ability of this risk model
and to predict survival independent of the patient’s clinical
traits, this study applied the univariate and multifactorial
Cox analyses of age, gender, grade, stage, and risk scores in
the TCGA cohort. Stage and DDR-related genetic risk scores
have independent prognostic power (p < 0:001, HR = 1:585
(95% CI, 1.272–1.976) and p < 0:001, HR = 4:665 (95% CI,
2.786–7.811); Figure 7(a)). Univariate and multifactorial
Cox analyses of age, gender, T stage, N stage, and risk scores
in the GEO cohort showed that DDR-related genetic risk
scores also had independent prognostic value (p = 0:012, HR
= 1:656 (95% CI, 1.115–2.459); Figure 7(b)). Figures 7(c)
and 7(d) showed that the C-index curve of the risk scores
has a high predictive sensitivity over time. We then scored
TCGA cohort of gastric cancer patients on the basis of regres-
sion coefficients and obtained individual scores for each vari-
able, summing the total scores to calculate the probability of
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Figure 4: Construction of prognostic models in the TCGA original sample. (a, b) Risk score curves and scatter plots of mortality risk for
DDR-related genes. (c) Heat map for visualization of gene expression data for the eight risk model genes. (d) K-M curves of the overall
survival of the two groups of patients. (e) Three-dimensional cube plot after principal component analysis based on the transcriptome
information of patient risk model genes (top) and all genes (bottom).
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5-year survival (Figure 7(e)). The nomogram calibration curve
shows the deviation from the ideal model (Figure 7(f)). This
was also verified in the nomogram and calibration plots of
the GEO cohort patients (Figures 7(g) and 7(h)). In addition,
we analyzed the applicability of the prognostic model to
patients in any of the clinical states by grouping them accord-
ing to their clinical status, and the K-M curves showed that the
prognostic model responded to the survival status of patients
with different clinical traits (Supplementary Figure 3A). We
also identified prognosis-related DDR difference genes
between the two groups (Supplementary Figure 3B). In
conclusion, our prognostic model constructed has strong
clinical relevance and prognostic values, and its predictive
value in immunotherapy can be further explored.

3.7. Analysis of the Immune Microenvironment. Prolifera-
tion, differentiation, and immune efficacy of innate and
adaptive immune cells are affected by the DNA damage
response [33]. For this purpose, we used the CIBERSORT
algorithm to calculate the abundance of immune cell infiltra-
tion in each sample and made a scatter plot of its risk score
with DDR-related genes. After correlation by Spearman’s
test, we found that the risk score was positively correlated
with monocytes, macrophages M2, mast cell resting, nega-
tively correlated with mast cell activated, T-cell follicular
helper, and T-cell CD4 memory activated (Figure 8(a)). In
addition, the eight model genes of this study had interaction
with the majority of immune cells (Figure 8(b)). We used the
ESTIMATE algorithm to estimate stromal cell proportions
and immune cell proportions based on transcriptome

expression data, which were summarized as a TME scoring
file, and then compared the differences in scores between
the two groups of patients (Figure 8(c)). In addition, we also
used ssGSEA to estimate the abundance of immune cell
infiltration and found that there were significant differences
between the two groups for 15 immune cells (Figure 8(d)).
In conclusion, our model can estimate the content of
immune cells and we found that in DDR-related gene
models, tumors from different groups of gastric cancer
patients had different TME.

3.8. Analysis of the MSI, TMB, and Drug Susceptibility. It was
reported that modulating DNA damage response will affect
the drug resistance of tumor patients to immunotherapy
[34]. First, we counted the number of patients in each type
of microsatellite instability status in both groups and plotted
the percentage histogram. We then analyzed the correlation
between the risk score and the number of people in each cat-
egory; the higher the risk score, the higher the number of
people in MSI-L and MSS status (Figures 9(a) and 9(b)).
TIDE score is a novel prognostic assessment scheme for
immune checkpoint suppression therapy, and our findings
showed that patients with high-risk scores have higher TIDE
scores (Figure 9(c)), suggesting that they have poorer out-
comes with immunotherapy. Immunotherapy is more effec-
tive in patients with high TMB because of its ability to
provide more neoantigens [26]. We counted each gene
mutation in each gastric cancer patient, which was summa-
rized in a table of gene mutation counts, as a way to analyze
the TMB differences between the two groups, and we found
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Figure 5: Construction of prognostic models in the GEO validation sample. (a, b) Risk score curves and scatter plots of mortality risk for
DDR-related genes. (c) Heat map for visualization of gene expression data for the eight risk model genes. (d) K-M curves of the overall
survival of the two groups of patients. (e) Three-dimensional cube plot after principal component analysis based on the transcriptome
information of patient risk model genes (top) and all genes (bottom).
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Figure 6: Evaluation of risk model genes. (a) Correlation of risk model genes with risk scores. (b) Overall survival curves of high APOD
expression group and low APOD expression group. (c) Mutation rates of three potentially high-risk genes. (d) Mutation loci of APOD.
(e) Immunohistochemical results of APOD antigen in normal and tumor tissues.

12 BioMed Research International



Age

Gender

Grade

Stage

riskScore

0.022

0.214

0.099

<0.001

<0.001

pvalue

1.021 (1.003–1.039)

1.268 (0.872–1.845)

1.336 (0.947–1.885)

1.479 (1.193–1.833)

3.732 (2.324–5.992)

Hazard ratio

Hazard ratio
0 1 2 3 4 5

Age

Gender

Grade

Stage

riskScore

<0.001

0.245

0.385

<0.001

<0.001

pvalue

1.036 (1.017–1.055)

1.250 (0.858–1.823)

1.167 (0.824–1.652)

1.585 (1.272–1.976)

4.665 (2.786–7.811)

Hazard ratio

Hazard ratio
0 2 4 6

TC
G

A

(a)

Age

Gender

T

N

riskScore

0.003

0.166

<0.001

<0.001

0.003

pvalue

1.019 (1.006–1.032)

0.807 (0.596–1.093)

1.729 (1.369–2.184)

1.669 (1.421–1.959)

1.799 (1.225–2.643)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5 2.0 2.5

Age

Gender

T

N

riskScore

<0.001

0.313

<0.001

<0.001

0.012

pvalue

1.024 (1.011–1.036)

0.855 (0.630–1.160)

1.586 (1.243–2.023)

1.506 (1.279–1.774)

1.656 (1.115–2.459)

Hazard ratio

Hazard ratio
0.0 0.5 1.0 1.5 2.0

G
SE

84
43

7

(b)

Time

Co
nc

or
da

nc
e i

nd
ex

Risk score
Gender
Age

Grade
Stage

0 2 4 6 8 10

0.4

0.5

0.6

0.7

0.8

(c)

Time

Co
nc

or
da

nc
e i

nd
ex

Risk score
Gender
Age

T
N

0

0.4

0.5

0.6

0.7

0.8

2 4 6 8 10

(d)

Low

High

Risk⁎⁎⁎

Stage I

Stage II

Stage III

Stage IV
Stage⁎⁎⁎

35 40 45 50 55 60 65 70 75 80 85 90
Age⁎⁎⁎

Grade I

Grade II

Grade III
Grade

FEMALE

MALE

Gender

0 20 40 60 80 100
Points

Total points

200 220 240 260 280 300 320 340 360

0.350.450.550.650.750.850.94 0.920.96
Pr (futime > 1)

0.020.16 0.080.40.60.8
Pr (futime > 3)

0.0050.06 0.020.150.30.50.7
Pr (futime > 5)

257

0.878

0.653

0.557

(e)

Figure 7: Continued.

13BioMed Research International



that the TMB was lower in the high-risk group (Figures 9(d)
and 9(e)), which suggests that the high-risk group is not
effective in immunotherapy again. We then further counted
the mutation frequencies of patients in both groups on each
gene. The top 5 genes in mutation frequency were all TTN,
TP53, MUC16, ARID1A, and LRP1B, but the mutation fre-
quencies of TTN, MUC16, and ARID1A were significantly
lower in the high-risk group patients (Figures 9(f) and
9(g)). In addition, assessing the effect of TMB on the prog-
nosis of gastric cancer patients alone, the K-M curve showed
that patients with low TMB had a poorer prognosis
(Figure 9(h)), and prognostic analysis combined with risk
score showed that patients with low risk score combined
with high TMB had the best prognosis (Figure 9(i)). We also
focused on the oncogenic effect of using immune checkpoint

inhibitors in this model. Figure 9(j) shows that a total of 17
immune checkpoint genes were significantly different
between the two risk groups. Next, we also tried to suggest
chemotherapeutic agents for the treatment of gastric cancer
based on the expression of genes affecting drug sensitivity in
both groups, and we found that patients with low risk scores
had lower semi-inhibitory concentration values (IC50) for
paclitaxel (Figure 9(k)). In summary, patients in the high-
risk group had poorer immunotherapy outcomes and poorer
prognosis than patients in the low-risk group.

4. Discussion

Stomach cancer is a highly prevalent tumor, with more than
1 million new cases diagnosed each year, and the second
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Figure 7: clinical relevance of risk models. (a) Univariate (left) and multivariate (right) Cox regression analysis of the original TCGA
samples. (b) Univariate (left) and multivariate (right) Cox regression analysis of the Validation GEO Samples. (c, d) C-index charts of
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highest number of deaths from all tumors worldwide [35],
and it causes great damage to human health. The develop-
ment of gastric cancer is related to some uncontrollable fac-
tors, such as gender, age, ethnic, and genetics and also
controllable factors, such as HP, alcohol consumption, and
nitrates. Early signs of gastric cancer patients were without
obvious discomfort, and patients often complain of epigas-
tric discomfort, abdominal pain, difficulty in swallowing,
vomiting blood, and black stool when they are admitted to
the hospital, and at this time, they are mostly in advanced
stage, which brings great challenges to the treatment of gas-
tric cancer. Multidisciplinary combination therapies such as
surgery, radiotherapy, systemic chemotherapy, immuno-
therapy, and targeted therapy have opened up more direc-
tions for cancer treatment, especially in recent years,
immunotherapies targeting immune checkpoints, such as
those targeting the PD-1/PD-L1 axis, offer new hope for
cancer treatment [36]. Unfortunately, the benefits for gastric
cancer patients are very limited [37]. Therefore, there is an
urgent need to understand the pathogenesis of gastric cancer
and to find effective treatment directions.

In recent years, the role of DNA damage response in
cancer has been included in the topic by medical researchers.
Such response includes recognition of DNA damage sites,
stalling or collapsing replication forks, blocking the cell
cycle, and inducing apoptosis [38]. Early in tumorigenesis,
the DNA damage response pathway recognizes DNA dam-
age sites, arrests the cell cycle and attempts repair, and
induces apoptosis if DNA damage exceeds the repair thresh-
old, but when DDR-related genes are mutated, it can become
an accomplice to cancer, saving cancer cells from damage
caused by radiation and chemotherapy, allowing cancer cells

that should be apoptotic to gain the ability to proliferate
again and prolonging the survival of cancer cells [39]. The
above analysis suggests that we can identify new biomarkers
from DDR-related genes.

There are many researchers looking for potential thera-
peutic targets by constructing prognostic models, for exam-
ple, Song et al. studied pyroptosis-related genes and applied
them to prognosis of colorectal cancer patients [40]. Xu et al.
explored the m6A-related lncRNA and applied them to pre-
dict prognosis of lung cancer patients [23]. However, no
investigator has predicted the survival prognosis of gastric
cancer patients according to the DDR genes. We analyzed
the transcription data of DDR genes and survival data of
gastric cancer samples together and used Lasso and the
Cox regression analysis to mine eight core genes for con-
structing the model. These DDR-related genes have been
studied and found to affect tumor biological behavior in a
variety of cancer types, of which we are particularly inter-
ested in the risk gene with the highest mutation rate, APOD,
whose expression product is tumor apolipoprotein D.
Upregulation of APOD expression has been reported to pro-
mote the progression of breast cancer [41] and prostate can-
cer [42], and it may be an important risk gene for gastric
cancer. After constructing the model, we divided the patients
1 : 1 into two groups of high and low risk. Analyzing the sur-
vival information from both the original and validation sam-
ples, we plotted survival curves showing poor prognosis for
patients in the high-risk group, and the ROC curves vali-
dated the sensitivity of the K-M analysis. Multifactor Cox
analysis of risk scores with p values < 0.01 indicated that
our risk scoring approach could infer the risk of death with-
out relying on patients’ clinical performance. The C-index
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Figure 8: Immune cell infiltration in gastric cancer samples. (a) Spearman’s test for correlation of DDR-related gene risk scores with
immune cell abundance. (b) Correlation of immune cell abundance and DDR-related model genes. (c) Relationships between eight
DDR-related risk scores and both immune and stromal scores. (d) Relationships between eight DDR-related risk scores and immune cell
infiltration.
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curves illustrated that the model outperformed the com-
monly used clinical grading criteria in predicting the sensi-
tivity of survival of gastric cancer patients. We also
converted each clinical index of patients to a single variable
and aggregated and plotted nomograms and their calibration
curves to provide a new method for assessing 5-year survival
of gastric cancer patients.

DNA double-strand breaks (DSBs) activating kinases
such as ATM, ATR, and DNA-PKcs-induced DNA damage
responses are an important component of immune cell
development during antigen signaling assembly [28]. There-
fore, this study further investigated the role of this risk
model in guiding immunotherapy in gastric cancer patients.
Many studies have shown that the tumor microenvironment
is a key factor affecting tumor immune escape [43] and alters
tumor migration, angiogenesis, stromal remodeling, and
drug resistance. Monocytes mediate cell death and phagocy-
tosis and direct lymphocyte recruitment, but their effects on
stromal remodeling and angiogenesis are influenced by
tumor type and tumor localization, and no definitive conclu-
sions can be made [44]. In tumor tissues of patients with
breast and gastric cancer, M2-type macrophages are
enriched in the tumor microenvironment and their secre-
tions stimulate the migration of tumor cells [45, 46]. The
pro- or antitumor effects of mast cells depend on tumor
type, stage, and localization. It has been reported that mast
cells can cause angiogenesis and lymphangiogenesis in gas-
tric cancer cells and promote epithelial mesenchymal transi-
tion [47]. The risk score constructed in this study was
positively correlated with the abovementioned immune cells
in the tumor microenvironment, suggesting that risk model
genes may promote the recruitment of monocytes, M2-type
macrophages, and mast cells in the gastric cancer cell micro-
environment. T-cell follicular helper plays a key role in
tumor adaptive immunity, and its enrichment in tumor
microenvironment is related to the prolongation of

disease-free survival of patients with liver cancer [48].
CD4+ memory T cells were significantly increased in
patients treated with antiprogrammed death-1 (PD-1) anti-
body blockade [49] and their increased abundance in the
tumor microenvironment predicted a benign prognosis for
patients with gastric cancer [50]. Patients in the high-risk
group had lower levels of T-cell follicular helper and mem-
ory CD4+ memory T cells, suggesting that they may be
insensitive to immunotherapy.

The above findings suggest that the present study model
can predict the immune status and tumor immune response
in gastric cancer patients. Immunotherapy is widely used in
inhibiting tumor progression, yet it is not as effective as it
could be in stomach cancer patients. MSI is a state in
patients with gastric cancer that drives intratumor heteroge-
neity (ITH) and affects the immune response of the tumor
[51]. Among them, where gastric cancer patients with
MSI-H are more likely to change to checkpoint inhibitors
than MSI-L, we found that patients with high risk scores
had a microsatellite status more inclined to MSI-L. Some
of the mutated genes in tumors can form neoantigens on
tumor cells, and TMB can represent these antigen loads
[26]. Studies have shown that high TMB is an effective factor
for the application of immune checkpoint inhibitors [52].
We calculated the TMB of each sample based on the muta-
tion data provided by TCGA database; patients in the
high-risk group can provide significantly fewer antigen rec-
ognition sites than those in the low-risk group. Combined
with the MSI results, it is reasonable to conclude that
patients in the high-risk group were less effective in receiving
immunotherapy.

Although the data of our study came from TCGA and
GEO database, the sample size and data of clinical surgical
treatment, chemotherapy, and radiotherapy are relatively
insufficient and lack of experimental validation in vivo and
in vitro. However, in this study, we created a DDR-related
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Figure 9: A comprehensive analysis of the response of two groups of gastric cancer patients receiving immunotherapy. (a, b) Association of
DDR-related genetic risk scores with MSI. (c) Differences in TIDE scores between the two groups. (d, e) Association of DDR-related genetic
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gene model and validated its practical value in predicting the
prognosis and immunotherapy efficacy of gastric cancer
patients, and we also identified the practical value of DDR
genes as a novel therapeutic direction and provided new
ideas for clinical practice.
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group C2 were enriched in pathways such as cell cycle and
DNA repair. Supplementary Figure 2: based on the tran-
scriptome data and clinical data of colon cancer patients in

the TCGA database, we constructed a model using DNA
damage response genes. We used K-M curves (DDR signa-
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