
Research Article
TAK-242 Ameliorates Hepatic Fibrosis by Regulating the Liver-
Gut Axis

Sujie Liu,1 Juan Wu,2 Pingping Chen,2 Shadi A. D. Mohammed ,2 Jingbo Zhang,1

and Shumin Liu 2

1Graduate School of Heilongjiang University of Chinese Medicine, Harbin, /150040 Heilongjiang, China
2Institute of Traditional Chinese Medicine, Heilongjiang University of Chinese Medicine, Harbin, /150040 Heilongjiang, China

Correspondence should be addressed to Shumin Liu; keji-liu@163.com

Received 6 June 2022; Revised 15 July 2022; Accepted 25 July 2022; Published 16 August 2022

Academic Editor: Syed Sameer Aga

Copyright © 2022 Sujie Liu et al. This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Objective. The aims of this study were to investigate the impact of TAK-242 on the Toll-like receptor 4 (TLR4)/myeloid
differentiation factor 88 (MyD88)/nuclear transcription factor-κB (NF-κB) signal transduction pathway in rats with hepatic
fibrosis (HF) using the liver gut axis and to investigate the molecular mechanism of its intervention on HF. Methods. SPF
grade SD male rats were randomly allocated to the control, model, and TAK-242 groups. For 8 weeks, the model and TAK-
242 groups received 3mL·kg-1 (the initial dose 5mL·kg-1) intraperitoneal injections of 40% CCL4 olive oil solution. TAK-242
(5mg·kg-1) was administered once a day for 5 days after modeling. The pathological alterations of liver and small intestine
tissues in each group were observed using H&E and Masson staining. ELISA was used to measure serum levels of alanine
aminotransferase (ALT), aspartate aminotransferase (AST), direct bilirubin (DBIL), total bilirubin (TBIL), interleukin-1β (IL-
1β), interleukin-6 (IL-6), and tumor necrosis factor alpha (TNF-α). RT-qPCR was utilized to identify the mRNA expression
level of IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB in rat liver and small intestine tissues. The protein level of IL-1β, IL-6,
TNF-α, TLR4, MyD88, and NF-κB protein in rat liver and small intestine tissues was determined utilizing Western blot and
IHC. Results. TAK-242 significantly reduced AST, ALT, TBIL, and DBIL expression in HF rats’ serum (P < 0:01) and alleviated
liver tissue injury. Hematoxylin-eosin (H&E) and Masson staining revealed inflammatory cell infiltration and fibrous
proliferation in the liver and small intestine tissue in the model group and partial cell swelling in the TAK-242 group, which
indicated a considerable improvement compared to the model group. RT-qPCR, Western blot, and IHC data indicated that
TAK-242 reduced the IL-1β, IL-6, TNF-α, TLR4, MyD88, and NF-κB expression in the liver and small intestine tissues of HF
rats. Conclusion. TAK-242 might downregulate the TLR4/MyD88/NF-κB signal pathway through the liver-gut axis, suppress
the inflammatory response, and eventually alleviate HF in rats.

1. Introduction

Hepatic fibrosis (HF) is a wound healing process induced by
chemical toxic damage, chronic hepatitis virus infection,
autoimmune liver disease, alcoholism, and other variables
that result in aberrant production and deposition of liver
extracellular matrix. [1] Clinically, even once the cause is
eliminated, HF persists and may progress to cirrhosis, hepa-
tocellular cancer, and, eventually, liver failure leading to
death [2]. In contrast to irreversible cirrhosis, a growing
number of investigations have shown that HF is a dynamical
and probably bilateral process with an intrinsic possibility

for recovery and remodeling [3, 4], providing many new
ideas for anti-HF mechanism research and clinical treat-
ment. Multiple studies have revealed that the liver-gut axis
is usually linked to the advancement of liver disease [5, 6].
The intestinal mucosal barrier function is weakened when
intestinal homeostasis is disrupted, resulting in a large influx
of intestinal endotoxins into the liver via the portal system
[7]. These bacterial products aggravate the development of
fibrotic lesions in liver tissue by stimulating natural immune
receptors, such as Toll-like receptors (TLRs).

It activates myeloid differentiation factor 88 (MyD88) to
release serine-threonine protein 1 kinase (IRAK 1 kinase)
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[8], which ultimately leads to the entry of nuclear transcrip-
tion factor-κB (NF-κB) into the nucleus and ultimately acti-
vates downstream pathways involved in liver inflammation
and fibrogenesis [5, 9]. It induces apoptosis in hepatic mac-
rophages and the production of inflammatory molecules
such as interleukin-1β (IL-1β), interleukin-6 (IL-6), and
tumor necrosis factor alpha (TNF-α) [10–12], which exacer-
bate and destroy the intestinal barrier.

TAK-242 (Figure 1) is a small molecule of a toll-like
receptor 4 (TLR4) that suppresses TLR4 activation by inter-
acting directly with the intracellular domain of TIR [13].
Furthermore, TAK-242 shows hepatoprotective effects on
Lipopolysaccharide/D-galactose (LPS/D-GalN)-induced ful-
minant hepatitis in mice [14], as well as suppression of
TLR4 signaling to alleviate acute and chronic acute liver fail-
ure in animals. The TAK-242 has been demonstrated to
minimize target organ damage and systemic inflammation
in animal models [11], as well as ischemia/reperfusion injury
in transplanted livers [15]; however, it is unclear if TAK-242
can specifically protect rats from HF through the liver-gut
axis effects. This study evaluated the effect of TAK-242, a
potential anti-inflammatory drug, in a CCl4-induced HF
rat model, revealed its mechanism of action, and identified
a potential therapeutic target for clinical HF therapy.

2. Materials and Methods

2.1. Animals and Experimental Protocol. SD male rats (SPF
grade), weighing 230 ± 10 g (10 weeks old), were supplied
by Heilongjiang University of Traditional Chinese Medi-
cine’s Experimental Animal Center (animal certificate num-
ber: SYXK (black) 2018-007). The rats were kept in the
following conditions: room temperature of 22 ± 2°C, relative
humidity of 40%-60%, good ventilation, alternating light and
dark light for 12 hours, standard feed, and free drinking
water, which were provided to the experimental animals,
and the Heilongjiang University of Traditional Chinese
Medicine Ethics Committee approved the experiment
(approval number DXLL2020081601). The rats were ran-
domly divided into three groups of eight rats each after
one week of adaptive feeding: control, model, and TAK-
242 (MedChemExpress, HYB0000050025). The model and
TAK-242 groups received intraperitoneal injections of 40%
CCL4 olive oil at 3mL·kg-1 (5mL·kg-1 for the first dose)
[16, 17], while the control group received the same amount
of olive oil twice a week for 8 weeks. After modeling,
TAK-242 was administered once a day for 5 days with 10
%DMSO + 90% (20% SBE-β-CD in saline) at a dosage of
5mg·kg-1 [14, 18–20]. The control and model groups
received an equal amount of normal saline by gavage.

2.2. Sample Preparation. The rats were anesthetized with a
3% pentobarbital sodium solution. Blood was taken from
the abdominal aorta and centrifuged for 15 minutes at
3500 r/min. The serum was isolated and refrigerated at
-80°C for analysis. The liver and small intestine tissues were
separated, the left two lobes of the liver and a part of the
small intestine tissue were preserved with 4% paraformalde-

hyde solution, and the remainder were placed in a cryopres-
ervation tube for later use.

2.3. ELISA Detection Kits. Serum alanine aminotransferase
(ALT), aspartate aminotransferase (AST), direct bilirubin
(DBIL), total bilirubin (TBIL), interleukin-1β (IL-1β),
interleukin-6 (IL-6), and tumor necrosis factor alpha
(TNF-α) were measured using an ELISA kit according to
Nanjing Jiancheng Institute of Biological Engineering kit
instructions and then analyzed with a microplate reader
(Thermo Company).

2.4. Histopathological Staining

2.4.1. Hematoxylin-Eosin (H&E) Staining. Liver and small
intestine tissues were fixed in 4% paraformaldehyde for
more than 24 hours before being embedded using an alcohol
gradient dehydration method. The embedded wax blocks
were quickly sliced into sections 4μm thick. Finally, the
slices were stained with hematoxylin and eosin (H&E), and
the pathological changes were examined using an optical
microscope (Nikon Eclipse E100).

2.4.2. Masson Staining. For more than 24 hours, the liver tis-
sue was immersed in 4% paraformaldehyde. The implanted
wax blocks were quickly sliced into 4μm thick slices and
dewaxed. The slices were then immersed in Masson solution
and sealed with neutral gum. A microscope (Nikon Eclipse
E100, Japan) was used to examine the tissue collagen fiber
area.

2.5. Real-Time qPCR. Total RNA was extracted from liver
and small intestine tissues utilizing the trizol technique and
dissolved in enzyme-free water, according to the experimen-
tal protocol. The total RNA was then reverse transcribed
into cDNA using a reverse transcription kit, the PCR reac-
tion system was prepared using ROX Reference Dye II,
and quantitative real-time PCR was performed using the
MyiQ™ Optics Module monochrome real-time PCR detec-
tion system (BioRad, USA). Glyceraldehyde-3-phosphate
dehydrogenase (GAPDH) was selected as the endogenous
control. The relative quantification method was used to ana-
lyze the data, and the 2−△△Ct method was used to analyze
the data and determine the relative expression of mRNA.
Table 1 displays a list of sequencing primers.

2.6. Immunohistochemical (IHC) Staining. The immunohis-
tochemistry detection was carried out in exact compliance
with the immunohistochemical kit’s instructions. Tissues
from the liver and small intestine were embedded and sec-
tioned, then dewaxed, hydrated, and cleaned. The sections
were then blocked with 3 percent H2O2 and goat serum
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Figure 1: Chemical structure of TAK-242.
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after being treated with a pH6.0 sodium citrate buffer solu-
tion. Then, add TLR4 (ab22048, Abcam), MyD88
(ab133739, Abcam), NF-κB (ab32536, Abcam), IL-6
(ab208113, Abcam), IL-1β (66737-1-Ig, Proteintech), TNF-
α (ab1793, Abcam), ZO-1 (66452-1-Ig, Proteintech), and
Claudin-1 (ab211737, Abcam) were stained for target pro-
teins. DAB was observed and photographed under a micro-
scope (motic, DMB5-2231P1 type) after dark color
development. The brown color was positive. Image-Pro Plus
6.0 software was utilized for processing, and the integrated
absorbance IA/area was used as the semiquantitative result
of the detection index.

2.7. Western Blot Analysis. Liver or small intestine samples
were ground and mixed with 1mL of total protein extract
to homogenize before centrifugation at 9000 rpm for 10
minutes to assess protein concentration. After boiling the
protein for 3 minutes to denature it, the samples were put
in a specified sequence for electrophoresis. When the bro-
mophenol blue migrated to the bottom 0.5 cm of the separa-
tion gel, the gel glass plate was removed, and the
polyvinylidene fluoride (PVDF) membrane was transferred.
The electrophoresis was completed. After that, the electro-
transfer membrane was blocked with 5% nonfat dry milk
(PBS). At 4°C overnight, primary antibodies TLR4 (Ptgcn,
19811-1-AP), NF-κB p65 (Ptgcn, 10745-1-AP), MyD88
(Ptgcn, 23230-1-AP), IL-1β (CST, #12242), IL-6 (CST,
#12912), TNF-α (Ptgcn, 60291-1-Ig), and β-actin (Ptgcn,
66009-1-Ig) were mixed with 1mL of enzyme-labeled sec-
ondary antibody. After washing the membrane with 2-
3mL of PBST, develop it with ECL reagent and assess the
gray value of each band using Image-Pro Plus 6.0 software.
The relative protein expression is determined by the ratio
of the target protein band to β-actin.

2.8. Statistical Analysis. GraphPad Prism 8.0 was utilized for
the analysis. The experimental data were presented as the
mean ± standard deviation (x ± s), and they were tested for
normality and variance homogeneity. When comparing
two samples, the t-test was used, and when comparing mul-
tiple groups, one-way ANOVA was used. P < 0:05 indicating
a statistically significant difference.

3. Results

3.1. TAK-242 Effect of Reducing HF in HF Rats. The hepato-
cytes of the rats in the control group were neatly arranged,

with a clear structure, no degeneration or necrosis, no con-
gestion in the hepatic sinus, and also no inflammatory cell
infiltrate or fibrotic tissue proliferation, while in the model
group, a considerable number of foam cells were found in
the tissue of the rats and infiltration with a small number
of lymphocytes and hyperplasia of connective tissue around
a large number of venous vessels, accompanied by punctate
necrosis of hepatocytes, nuclear fragmentation or lysis,
enhanced eosinophilic cytoplasm, and rare bile duct hyper-
plasia. The TAK-242 group’s liver tissue structure improved
to varying degrees, connective tissue hyperplasia was greatly
decreased, and the fibrous septum was significantly reduced,
as shown in Figure 2. Furthermore, serum levels of AST,
ALT, DBIL, and TBIL in the model group were significantly
higher than in the control group (P < 0:01). The levels of
AST, ALT, DBIL, and TBIL in serum of the TAK-242 group
were significantly lower (P < 0:01) than those of the model
group. The findings demonstrated that the CCL4-induced
rat hepatic fibrosis model was effectively created.

3.2. TAK-242 Effect on Liver Inflammation in HF Rats. HF
upregulates inflammatory factors such as IL-1β, IL-6, and
TNF-α in the liver. Compared to the control group, the
model group had significantly higher levels of IL-1β, IL-6,
and TNF-α secretion and expression. In comparison to the
model group, the TAK-242 group significantly reduced
serum levels of IL-1β, IL-6, and TNF-α. Meanwhile, the pro-
tein and mRNA expressions of IL-1β, IL-6, and TNF-α were
significantly lower in the TAK-242 group’s liver tissue,
Figures 3(a)–3(h). These findings suggested that TAK-242
might reduce the inflammatory response in HF rats.

3.3. TAK-242 Effect in Intestinal Barrier Function of HF Rats.
Claudin-1 and ZO-1 are two typical tight junction proteins
that play important roles in the intestinal epithelium’s tight
junctions and permeability. The small intestine tissue cells
in the control group’s rats were well arranged, and there
were no aberrant intestinal villi or cell infiltration. The
mucosal layer of the small intestine tissue of the model
group rats revealed a lot of epithelial edema, loose cyto-
plasm, and light staining, with dispersed lymphocyte infiltra-
tion, and a minor quantity of the epithelium was necrotic
and shed, with condensed and stained nuclei. There were
multiple mucosal layers and moderate edema of intestinal
villi in the TAK-242 group’s intestinal tissue, and the epithe-
lium was separated from the lamina propria. The small
intestine tissue of the TAK-242 group was improved to

Table 1: Real-time qPCR sequencing primers.

Gene Forward Reverse Reference

GAPDH TTTGAGGGTGCAGCGAACTT ACAGCAACAGGGTGGTGGAC [21]

NF-κB TGACGGGAGGGGAAGAAATC TGAACAAACACGGAAGCTGG [22]

TLR4 CCGCTCTGGCATCATCTTCA CCCACTCGAGGTAGGTGTTTCTG [23]

MyD88 TATACCAACCCTTGCACCAAGTC TCAGGCTCCAAGTCAGCTCATC [24]

TNF-α CGTCGTAGCAAACCACCAAG TTGAAGAGAACCTGGGAGTAGACA [25]

IL-6 TAGTCCTTCCTACCCCAATTTCC TTGGTCCTTAGCCACTCCTTC [26]

IL-1β TCGTGCTGTCGGACCCATAT GGTTCTCCTTGTACAAAGCTCATG [27]
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varying degrees as compared to the model group, and intes-
tinal villus edema and lymphatic infiltration were dramati-
cally reduced, Figure 4(a). In terms of mRNA and protein
levels, claudin-1 and ZO-1 in the model group were signifi-
cantly lower than those in the control group. In contrast,
claudin-1 and ZO-1 in the TAK-242 group were signifi-
cantly lower than in the model group (Figures 4(d) and
4(e)).

3.4. TAK-242 Can Reduce Intestinal Inflammation in HF
Rats. When the intestinal epithelium’s tight junctions and
permeability are destroyed, the mucosal barrier function of
the intestinal barrier is weakened, resulting in an inflamma-

tory reaction in the intestinal tract that acts on the liver via
the portal venous system and aggravates the pathological
changes in the liver tissue. The expressions of IL-1β, IL-6,
and TNF-α in the intestinal wall were measured to assess
the influence of HF on the intestine. The mRNA and protein
levels of IL-1β, IL-6, and TNF-α secretion and expression
levels were increased significantly in the model group com-
pared to the control group, while the secretion and expres-
sion levels of IL-1β, IL-6, and TNF-α in the TAK-242
group were significantly decreased compared with those in
the model group (Figures 5(a)–5(e)). These results indicate
that TAK-242 may reduce intestinal inflammation caused
by hepatic fibrosis.

Control Model TAK-242

H
&

E
M

as
so

n

100 𝜇m 100 𝜇m 100 𝜇m

(a)

100

80

60

40

20

0

TB
IL

 (u
m

ol
/l)

Control Model TAK-242

⁎⁎##

(b)

80

60

40

20

0

D
BI

L(
um

ol
/l)

Control Model TAK-242

⁎⁎##

(c)

0
Control Model TAK-242

50

100

150

A
LT

 (U
/L

)

⁎⁎
##

(d)

Control Model TAK-242
0

50

100

150

A
ST

 (U
/L

)

⁎⁎

##

(e)

Figure 2: TAK-242 can alleviate HF-induced hepatic fibrosis in rat liver tissue. (a) Hematoxylin-eosin (H&E) staining and Masson staining
of liver tissue (magnification, ×200). (b) Serum TBIL (μmol/L). (c) Serum DBIL (μmol/L). (d) Serum ALT (U/L). (e) Serum AST (U/L). n = 8
. Compared with the control group, ##P < 0:01; compared with the model group, ∗P < 0:05 and∗∗P < 0:01. (b–e) Green, control; red, model;
blue, TAK-242.
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3.5. Effects of TAK-242 on TLR4 Signaling Pathway
Expression in HF Rats. TLR4 is the initial barrier to bacte-
rial detection in the gut and is a key component of gut
innate immunity. It functions as an immunological recog-
nition receptor on the cell surface as well as an intracellu-
lar transmembrane signaling protein. The MyD88-
dependent signaling pathway dominates the signal trans-
duction process following TLR4 activation. By simulta-
neously activating different intracellular signal adaptor
molecules, NF-κB downstream of the pathway is eventu-

ally activated to control the production of numerous
inflammatory mediators. As a result, we identified key
proteins associated with the TLR4 signaling pathway in
the liver and small intestine tissue, respectively. The find-
ings demonstrated that the model group had significantly
greater TLR4, NF-κB, and MyD88 secretion and expres-
sion levels than the control group. TLR4, NF-κB, and
MyD88 secretion and expression levels in the TAK-242
group were significantly lower than those in the model
group, Figures 6(a)–6(j).
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Figure 3: TAK-242 alleviated liver inflammation in HF rats. (a) IHC-stained liver sections (magnification ×200). (b) chromogenic intensity
of proinflammatory cytokines. (c) RT-qPCR detection of hepatic proinflammatory cytokine expression level. (d, e) Western blot detection of
hepatic proinflammatory cytokine protein expression. (f) Serum IL-1β (ng/mL). (g) Serum IL-6 (ng/mL). (h) Serum TNF-α (ng/mL). n = 8.
Compared with the control group, ##P < 0:01; compared with model group, ∗P < 0:05 and∗∗P < 0:01. (f–h) Green, control; red, model; blue,
TAK-242.
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4. Discussion

The principal manifestation of liver fibrosis is an abnormal
accumulation of extracellular matrix (ECM), which is typi-
cally regarded as an intermediate stage that may be cured
or progress to cirrhosis and end-stage liver disease [28].
According to epidemiological data, more than one million
individuals worldwide die from cirrhosis each year [29]. Cir-
rhosis is responsible for 9.2 fatalities per 100,000 people in
the United States, according to epidemiological statistics
from 2017 [30]. The burden of liver fibrosis raises not only
the morbidity and mortality of end-stage liver disease but

also the risk of extrahepatic disease. Modern research has
established that the liver and the gut are not only physiolog-
ically connected not only in terms of structure (enterohepa-
tic circulation) but also in terms of physiological functioning
[31]. The findings of this investigation revealed that TAK-
242 might inhibit the TLR4/MyD88/NF-κB signaling path-
way through the liver-gut axis, hence curing HF.

Researchers have found that [32–34] ALT and AST are
essential enzymes in the liver, and their levels are directly
associated to the progression of liver fibrosis and inflamma-
tion, and when liver cells are injured, enzymes enter the
bloodstream via the cells, and the function of the liver cells
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Figure 4: TAK-242 can regulate intestinal barrier function in HF rats. (a) Hematoxylin-eosin (H&E) staining of liver tissue, Masson staining
(magnification, ×200). (b) IHC stained liver sections (magnification ×200). (c) Color intensity of intestinal wall permeability. (d, e) Western
blot detection of intestinal wall tight junction protein expression. n = 8. Compared with the control group, ##P < 0:01; compared with the
model group, ∗P < 0:05 and∗∗P < 0:01.
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to convert bilirubin is compromised. Inflammation in liver
tissue destroys the capillary bile duct and impairs direct bil-
irubin excretion, resulting in elevated AST, ALT, TBIL, and
DBIL levels. Our findings also revealed that serum AST,
ALT, TBIL, and DBIL levels were greater in the model group
than in the control group and that serum AST, ALT, TBIL,

and DBIL levels could be significantly lowered following
TAK-242 intervention. According to the pathological alter-
ations in liver tissue, the model group had a high number
of connective tissue and fibrous tissue hyperplasia and
inflammatory cell infiltration, while the TAK-242 group’s
liver tissue improved to varied degrees. This result suggests
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Figure 5: TAK-242 alleviates intestinal inflammation in HF rats. (a) Liver sections stained by IHC (magnification ×200). (b, c) Protein
expression of intestinal proinflammatory cytokines detected by Western blot. (d) Color intensity of proinflammatory factors. (e)
Expression of intestinal proinflammatory cytokines detected by RT-qPCR. n = 8. Compared with the control group, ##P < 0:01; compared
with the model group, ∗P < 0:05 and∗∗P < 0:01.
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that TAK-242 may alleviate the HF damage induced by
CCL4.

Liu et al. [35] observed that bacterial translocation and
elevated lipopolysaccharide levels in the gut stimulate
TLR4 signaling and HSC activation in the liver. Meanwhile,
claudins and occludins tight junctions play a vital role in the
creation and maintenance of the intestinal epithelial barrier’s
integrity [36–38]. In our study, the intestinal mucosa tissues
of HF rats in the model group were damaged, intestinal villi
were diminished, and a considerable number of inflamma-
tory cells were identified in the intestinal mucosa. Protein
levels in the intestinal mucosa and villus were dramatically

reduced after TAK-242 therapy. TAK-242 dramatically
enhanced the protein levels of claudin-1 and ZO-1 in the
small intestine of rats. TAK-242’s antifibrosis activity in
HF rats was suggested to be directly related to intestinal
function.

In recent years, researchers have shown that inflamma-
tion is a major factor in the progression of liver fibrosis
[39]. Liver injury may retain the active surface of HSCs
and accelerate the migration of inflammatory cells to the
injured liver, secreting a significant number of inflammatory
mediators such as TNF-α, IL-6, and IL-1β to enhance the
development of liver fibrosis [10–12, 40, 41]. TAK-242 was
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Figure 6: TAK-242’s effect on TLR4 signaling pathway expression in HF rats. (a) IHC-stained liver section of liver tissue (magnification
×200). (b) IHC-stained intestinal section of intestinal tissue (magnification ×200). (c, d) Western blot detection of TLR4 signaling
pathway protein expression in liver tissue. (e, f) Western blot detection of TLR4 signaling pathway-related protein expression in
intestinal tissue. (g) Color intensity of TLR4 signaling pathway-related protein in liver tissue. (h) Color intensity of TLR4 signaling
pathway-related protein in intestinal tissue. (i) RT-qPCR detection of TLR4 signaling pathway-related protein mRNA expression in liver
tissue. (j) RT-qPCR detection of TLR4 signaling pathway-related protein mRNA expression in intestinal tissue. n = 8. Compared with the
control group, ##P < 0:01; compared with the model group, ∗P < 0:05 and∗∗P < 0:01.
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also observed to reduce the incidence of liver inflammation
and fibrosis in Hu et al.’s research [42]. Similarly, the current
research found that TAK-242 lowered the levels of inflam-
matory factors IL-1β, IL-6, and TNF-α in the liver. Further-
more, following TAK-242 treatment, the contents of
inflammatory components in the small intestine of rats
reduced, indicating that control of TLR4 expression may
not only suppress the inflammatory response in the liver of
HF rats. It also reduced the inflammatory response mediated
by intestinal mucosal barrier damage in HF rats. These
results revealed that TAK-242’s anti-HF action in rats was
connected to improved liver inflammation through the
liver-gut axis.

The TLR4 receptor is a pattern recognition receptor. Its
primary ligands are PAMP (LPS and Gram-negative endo-
toxin) and DAMP, which include cell death products
(mitotic nucleosomes, histones, and HMGB1) [43, 44]. The
research by Wu et al. [45] revealed that this membrane
receptor was expressed on a wide range of nonsubstantial
and substantial cells, including hepatocytes and hepatic stel-
late cells. Following ligand binding, the receptor dimers and
recruits adaptor molecules, such as TIR-domain adaptor
protein (TIRAP) MyD88 and TRIF-associated adaptor mol-
ecule (TRAM) TRIF, to create intracellular signaling com-
plexes [45, 46]. MyD88-dependent signaling activates NF-
κB, while the TRIF-dependent pathway modulates inter-
feron regulators, resulting in cytokine and interferon pro-
duction [13]. Previous research by Naihua Hu et al. [47,

48] has demonstrated that TLR4/MyD88/NF-κB may have
an anti-inflammatory and hepatoprotective effect by
decreasing ECM accumulation and inflammatory factor
expression. It was consistent with our findings that TLR4,
MyD88, and NF-κB levels in HF rat liver tissue were ele-
vated, whereas TLR4, MyD88, and NF-κB levels were dra-
matically lowered following TAK-242 therapy. TLR4 is the
initial barrier to bacterial detection in the gut and is a key
aspect of gut innate immunity. It functions as a cell surface
immunological recognition receptor and an intracellular
transmembrane signaling protein. Furthermore, TLR4,
MyD88, and NF-κB levels in the small intestine of HF rats
were significantly reduced after TAK-242 intervention,
implying that TAK-242 improvement in HF rats may play
a role by inhibiting the inflammatory response mediated
by the TLR4/MyD88/NF-κB signaling pathway via the
liver-gut axis.

Furthermore, changes in intestinal flora may help to
explain the therapeutic mechanism; however, no research
was conducted for this paper. As a result, the particular
mechanism of TAK-242’s therapeutic action on HF
through the liver-gut axis requires additional investigation.
Nonetheless, there is no doubting that this research has
demonstrated the critical function of TAK-242 in the
management of hepatic fibrosis. Nonetheless, this study
has described an important role for TAK-242 in the treat-
ment of liver fibrosis. The creation process using Cmap-
Tools is shown in Figure 7 [49].
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Figure 7: Flow chart of possible mechanisms of HF resistance in TAK-242, created using CmapTools.
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5. Conclusion

In summary, this research illustrates that TAK-242 is impli-
cated in CCL4-induced HF and inflammatory factor release
in HF rats. TAK-242’s anti-Hf effect is most likely achieved
by liver-gut axis suppression of inflammation through the
TLR4/MyD88/NF-κB signaling pathway.

Abbreviation

ALT: Alanine aminotransferase
AST: Aspartate aminotransferase
DBIL: Direct bilirubin
TBIL: Total bilirubin
IL-1β: Interleukin-1β
IL-6: Interleukin-6
TNF-α: Tumor necrosis factor alpha
TLR4: Toll-like receptor 4
MyD88: Myeloid differentiation factor 88
NF-κB: Nuclear factor kappa B
ZO-1: Membrane protein
Claudin-1: Transmembrane proteins.
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