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Millions of people around the world have bone-tissue defects. Autologous and allogeneic bone grafting are frequent therapeutic
techniques; however, none has produced the best therapeutic results. This has inspired researchers to investigate novel
bone-regeneration technologies. In recent years, the development of bone tissue engineering (BTE) scaffolds has been at the
forefront of this discipline. Due to their limitless supply and lack of disease transmission, engineered bone tissue has been
advanced for the repair and reconstruction of bone deformities. Bone tissue is a highly vascularized, dynamic tissue that
constantly remodels during an individual’s lifetime. Bone tissue engineering is aimed at stimulating the creation of new,
functional bone by combining biomaterials, cells, and factor treatment synergistically. This article provides a review of
wollastonite’s biomaterial application in bone tissue engineering. This work includes an explanation of wollastonite minerals
including mining, raw materials for the synthesis of artificial wollastonite with various methods, its biocompatibility, and
biomedical applications. Future perspectives are also addressed, along with topics like bone tissue engineering, the qualities
optimal bone scaffolds must have, and the way a scaffold is designed can have a big impact on how the body reacts.

1. Introduction

The first step in creating an effective scaffold for bone
healing is to comprehend the physiology of real bone.
Bone is a remarkable organ that plays a significant role
in vital physiological processes in humans, including blood
production, mineral storage and homeostasis, blood pH
management, and various progenitor cells (mesenchymal
and hemopoietic) housing [1, 2]. It mostly consists of can-
cellous (trabecular) and cortical bone. The cortical tissue is
the outermost and denser boundary of the bone mass,
whereas the cancellous tissue makes up the interior, softer,
lighter-density, and highly vascularized core of the bone
mass (50-90 v/v%) [3, 4].

The cancellous bone is exceedingly porous (30-90%)
[5, 6] and is wherein maximum metabolic activities take
place. It has a compressive strength of 7-10MPa and is
characterized by a lower elastic modulus and very low ten-
sile strength (Y < 2MPa) [7, 8]. Cellular activity affects
how permeable the cancellate tissue is, and mediators that

impact cellular activity can change the trabeculate structures
that determine pore size. It allows the passage of nutrients
and metabolic waste and house bone marrow, blood vessels,
and many other biological components [8, 9]. The cortical
tissue has a higher elastic modulus, higher stiffness, and
lower toughness due to its increased mineralization content
and lack of organic matter [10]. It serves as a protective cage
for the interior delicate cancellous tissue and has a denser,
tougher structure (5-30% porosity). Because of its high com-
pressive strength range of 130 to 225MPa, cortical bone also
serves as the primary structural support element in the body
(Y: 60-160MPa; E: 3-30GPa) [11]. The combination of these
two tissues gives bone a special mechanical structure that can
withstand more loads and deformations than each of its
constituent parts could have done on their own [12].

The calcium phosphate mineral family member nano-
hydroxyapatite (HA, Ca10(PO4)6(OH2)), which makes up
about 70% of bone, is a typical complex tissue with a hier-
archical structure [13]. The remaining 20-30% is made up
of a mix of water, which is connected to the collagen
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protein family, and other proteins and proteoglycans,
which make up the organic components of bone mass
[14]. Volume and weight fraction ratios of hydroxyapatite
to collagen and water are not consistent. It depends on age
and is also species-specific [2]. However, bone can lose
one or all functions because of different damages.

Bone loss can take the form of actual faults and struc-
tural loss within an existing bone, as in osteopenia, or it
can take the form of structural defects and areas lacking of
bone due to external sources. Trauma and pathological con-
ditions such as osteomyelitis, osteoarthritis, osteoporosis,
and cancer can all result in a bone defect [14, 15]. Bone loss
can occur primarily or secondarily. Primary bone loss can
happen in bone illnesses like cancer. Metastatic illness is
the most frequent cause of secondary bone loss. Osteoblastic
or osteolytic characteristics may be present in tumor metas-
tases. Both compromise the structure, nourishment, and
metabolism of the bone [16, 17]. Trauma is the most com-
mon cause of bone defects. When the variety of bone defects
surpasses the critical-size defect (CSD), the bone defects
cannot heal with the aid of using themselves and require
affordable medical intervention. Large bone defects or inju-
ries are therefore severe issues in orthopedics that harm
health and quality of life. These conditions can be brought
on by old age, traffic accidents, fracture nonunion, and bone
tumor removal [18–20].

An epidemiological study from 2010 to 2025 found that
fractures increased in frequency in Europe at a rate of 28%
per year, with an additional 25% economic burden, spark-
ing intense interest in the field of bone repair medicine
[21]. The quality of life of a patient is significantly impacted
by bone loss. Consequently, the cost of bone-related medi-
cal operations is increasing. Broken or fractured bones are
routinely among the most frequent traumatic injuries suf-
fered by people, regardless of race, age, or gender. Due to
this, with over two million surgeries performed each year,
bone is now the second most frequently transplanted tissue
worldwide [22, 23].

Autologous and allogeneic bone transplants are the main
treatment options currently used in clinical settings to
address large-sized bone defects. The fact that autogenous
bone has good osteoinductivity, osteoconductivity, and
osseointegration properties, which can form a coordinated
structure and ensure mechanical strength at the bone-
defect site, makes autologous bone grafts the gold standard
for bone-tissue reparation and regeneration [24–26]. Auto-
genic bone transplantation does, however, have certain
unavoidable downsides, including high prices, donor loca-
tion neurovascular damage, inflammation, and infection.
Allogeneic bone implants are frequently used to correct
those flaws because they are readily available. However,
issues with allograft bone transplantation include inadequate
osseointegration, immunological denial, and the spread of
blood diseases [27]. Researchers began looking for artificial
substitutes for grafts made naturally from bone as a result
of this circumstance. To replace autograft and allograft
therapy, artificial bone has undergone several preparations.
With the use of bone tissue engineering (BTE), it is possible
to create artificial bone substitutes that have the same, better,

or more functional properties as natural bone. BTE currently
enables researchers to employ a variety of strategies to mix
cells, biomaterials, and biological factors to create synthetic
tissues for mending bone abnormalities [28, 29]. There are
no obvious problems with this method, which has the
advantages of great modifiability, low infectivity risk, and
excellent biocompatibility [30, 31].

2. Bone Tissue Engineering (BTE)

BTE encompasses applying engineering techniques, bioma-
terial concepts, and finally the use of chemicals and growth
hormones to enhance biological processes. It strives to suc-
cessfully integrate bone regeneration at the locations of the
host’s defects without introducing any extra problems, such
as donor site morbidity, immunogenicity, or poor vasculari-
zation. To create the ideal bioactive conditions and crucial
mechanical support to encourage the formation of new bone
tissue in defect areas, BTE uses biocompatible and biode-
gradable natural materials [32–34]. BTE induces new tissue
repairing and regeneration by the synergy of cells, signals,
and scaffolds [35]. Biomaterial-based scaffolds act as carriers
for cells and messages. Scaffolding promotes cell adhesion,
development, and differentiation in addition to providing a
possibility for bone growth [36]. BTE attempts to create
3D constructs using a combination of cells and organic
and synthetic materials and scaffolds that may be mechani-
cally, structurally, and functionally superior to or function-
ally similar to the injured tissues [37, 38]. The implanted
scaffold gradually deteriorates as the new tissue develops,
eventually being totally replaced by it. Computer-aided
design and computer-aided manufacturing (CAD/CAM)
technology can be used to design and manufacture custom-
ized scaffolds. Typically, biological research should be done
on the generated scaffolds [35, 39].

In vitro culture experiments, such as scaffold toxicity
tests using animal or human cells, and in vivo animal exper-
iments, such as repairing femur defects in rats, are two
categories into which the fundamental strategies of biologi-
cal studies can be divided as forecasting checks before the
preclinical test [40, 41]. Animal models have been used in
clinical investigations with successful outcomes. The optimal
cell source, the type of biomedical treatment method, the
preparation process, and the application of growth factors
are just a few of the challenges that prevent laboratory-
made biomedical devices and procedures from moving
quickly to the clinical stage [42, 43]. The loading of medica-
tion, such as antibiotics, proteins, genes, anti-inflammatory
medicines, and growth factors into scaffolds for tissue regen-
eration, is likely to have a role in the restoration of damaged
tissues [44]. Wollastonite has lately emerged as a promising
choice for biomaterials due to its beneficial characteristics,
such as biocompatibility, biodegradability, nontoxicity, and
excellent mechanical capabilities [45–47]. The porous wol-
lastonite scaffold utilized in bone tissue regeneration may
contain the desired medicines [48].

The single or multiphase scaffold composition, surface
chemistry [49, 50], architectural parameters like pore size
and interconnectivity [51–53], the rate of degradation and
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the degradation products [54], and the local mechanical
properties of the matrix like modulus and viscoelasticity
can all have a significant impact on the biological response.
Surface alterations or the inclusion of bioactive components
are commonly required for structural biomaterial scaffolds
that provide appropriate mechanical properties to attain
the desired combination of attributes [55, 56]. Host cells
should be able to deposit extracellular matrix (ECM) and
eventually replace the scaffold structure because scaffolds
are not intended to be long-lasting implants [57, 58].

The architecture of the scaffold must be extremely
porous and constant to permit cell and nutrient mobility
[59, 60]. Optimizing the scaffold surface is also necessary
to encourage cell adhesion, proliferation, and differentiation
[61, 62]. The scaffold fabric needs to be versatile enough to
be easily molded into a range of shapes and sizes to allow
in situ therapy of particular patient bone defects. Successful
material design for BTE requires an appropriate choice of
biomimetic natural or tunable synthetic materials (biomate-
rials), including polymers, bioceramics, metals, and compos-
ites. This includes understanding the composition and
structure of the local bone tissue [30, 58, 63].

Figure 1 Shows the timeline of major milestones in
biomaterials design for bone-tissue engineering. In the
early stages of bone regeneration, calcium phosphates
and bioresorbable metals were used. After that, research
on bone formation in polymeric materials and the discov-
ery of bioglass and the first man-made substance capable
of attaching to living tissues were conducted. Further
investigation led to the identification of bioactive com-
pounds like proteins and peptides, and BTE was created
as a distinct scientific field. Afterward, scaffolds were cre-
ated using a variety of materials and then modified to
trigger different biological processes. Regulatory bodies
have evaluated products comprising different biomaterials
as they were being developed for use in BTE applications,

and some commercial products have been approved for
use in clinical settings. BMP stands for bone morphoge-
netic protein; FDA stands for Food and Drug Adminis-
tration of the United States; RGD stands for arginine-
glycine-aspartic acid [64, 65].

A synthetic bone scaffold must meet the following bio-
mimetic requirements: biocompatible, sufficient surface area
with 3D structure [66], gives temporary mechanical support
to the afflicted zone [67], serves as a substrate for osteoid
deposition [68], vascularization, and bone in-growth that
are made possible by their porous architecture [69, 70],
elicits the migration of bone cells into the scaffold [71, 72],
osteogenic differentiation support and promotion in the syn-
thetic, nonosseous scaffold (osteoinduction) [69], promotes
cellular activity for osseointegration, the process by which
the scaffold is incorporated into the host tissue [69, 73, 74],
to enable weight transfer to growing bone, deteriorate in a
regulated manner [17, 75], provides harmless degradation
byproducts [76–78], not incite an active chronic inflamma-
tory response [79, 80], be capable of sterilization without loss
of bioactivity [81, 82], and delivers bioactive molecules or
drugs in a controlled way to accelerate healing and prevent
pathology [83].

3. Synthesis, Structure, and
Properties of Wollastonite

Wollastonite (CaSiO3) has a theoretical composition of
51.7% silicon dioxide (SiO2) and 48.3% calcium oxide
(CaO) [84–86]. However, it might have trace or negligible
levels of aluminum, iron, magnesium, manganese, potas-
sium, sodium, or strontium [87] and manifests as large to
acicular prismatic crystals that fracture [88]. Typically, it is
white, but depending on its makeup, it could also be gray,
brown, or red [89]. When impure limestones undergo
metamorphosis (are heated and pressed), or when silica-
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Figure 1: Timeline of the major milestone for BTE material design (reprinted with permission from [64]).
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bearing fluids are added to calcareous sediments during the
metamorphic processes, wollastonite is created. Both times,
calcite and silica react to form wollastonite and carbon diox-
ide [90]. Wollastonite naturally exists in two polymorphic
states: the low-temperature phase β-wollastonite and the
high-temperature phase α-pseudowollastonite [91, 92]. β-
Wollastonite powders exhibit phase change and transform
into α-wollastonite by sintering at temperatures above
1125°C [93]. The β-wollastonite mineral is obtained as a nat-
ural silicate mineral, whereas α-wollastonite is rarely found
in nature [94]. The CaO-SiO2 binary phase diagram [93]
shows that the wollastonite mineral phase is formed at lower
temperatures than wollastonite. White, needle-like wollas-
tonite mineral powder is its natural state. Micrographs taken
using scanning electron microscopy show that wollastonite
powder is solid and has rough surfaces as shown in
Figure 2 [95–97].

The size of wollastonite in ore form and the degree to
which the shape and size are kept during processing deter-
mine the grades of wollastonite [45, 98]. Crushing, sorting,
and beneficiation procedures are used to produce natural
wollastonite powder. The grades of wollastonite particles will
then be determined by specialized milling methods [45, 99]
as shown in Figure 3. It is possible to produce low aspect
ratio grades ranging from 3 : 1 to 5 : 1 and high aspect ratio
grades with average lengths between 20 and 200m using
various mills and classifiers [45, 98]. Wollastonite’s surface
is typically modified using chemical coupling agents includ-

ing titanate, silane, and betaine as well as surface modifiers
like stearic acid and pimelic acid [100]. The physical proper-
ties of wollastonite are presented in Table 1.

Wollastonite crystallizes triclinically in space group P1
with the lattice constants a = 7:94 Å, b = 7:32Å, and c =
7:07 Å; α = 90, 03°, β = 95, 37°, γ = 103,43°, and 6 formula
units per unit cell [105]. Due to its crystal structure,

(a) (b)

500 𝜇m

(c)

50 𝜇m

(d)

Figure 2: (a) Wollastonite ore. (b) Wollastonite powder. (c, d) SEM micrographs of coarse and fine wollastonite particles (reprinted with
permission from [95]).
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Wollastonite

Figure 3: Production process of wollastonite powder from ore (reprinted with permission from [45]).

Table 1: Physical properties of wollastonite [101–104].

Properties Typical Value

Appearance White

Shape Acicular

Molecular weight (g/mol) 116.159

Specific gravity 2.87–3.09

Specific surface area (m2/kg) 845

Melting point (°C) 1540

pH 9.9

Water solubility (g/100 cc) 0.0095

Density (kg/m3) 2899.3

Mohs hardness 4.5 to 5.0

Coefficient of expansion (1/°C) 6:5 × 106

Theoretical melting point (°C) 1540

Young’s modulus (GPa) 303–530

Tensile strength (MPa) 2700–4100
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wollastonite belongs to the class of minerals known as
pyroxenoids. It has been established that pyroxenoid chains
are more kinked and have a greater repeat distance than
pyroxene group chains. Infinite (SiO4) tetrahedra with
shared vertices that are parallel to the b-axis make up wollas-
tonite [106]. In pyroxenes, only two tetrahedra are required,
as opposed to three in wollastonite, where the chain pattern
repeats after each (Figure 4) [105].

China, Finland, India, Mexico, Canada, and the USA are
the countries where most wollastonite minerals are located
and mines [47]. The United States Geological Survey
(USGS) reports that China would produce 890,000 tons of
wollastonite in 2020, making it the world’s top producer of
the mineral. With 120,000 tons, India comes in second.
Mexico and Canada are in third and fourth place with
around 100,000 and 20,000 tons, respectively. There is a
shortage of production data from USGS reports, but it is
anticipated to be large and unchanged from 2019 [107].

Wollastonite is a tremendously interesting, but little-
studied mineral that has a mixture of properties, such as a
lack of volatile constituents [108], low shrinkage [109], flux-
ing characteristics [110], low dielectric constant and low
dielectric loss [91, 111], thermal stability and low thermal
expansion [98], low of loss on ignition [112] and low ther-
mal conductivity [111], good bioactivity, biocompatibility,
and degradability [113, 114], hence, is used in ceramic fabri-
cation, medical material for artificial bones and dental roots,
high-frequency insulator, filler for plastics and resins, paper,
glazes for ceramics, metallurgy, paint, and frictional prod-
ucts [115, 116]. Due to its mechanical bioactivity and bio-
compatibility qualities, wollastonite, a glassy mineral with a
calcium silicate base that is part of a class of bioactive and
biocompatible materials, has a wider range of uses in medi-
cine and as fillers for composite fabrication as well as for
dental restoration and artificial bones [117–119]. Synthetic
wollastonite can be prepared from various raw materials
using different types of methods (Table 2).

4. Properties of Wollastonite Scaffolds and
Implications to Use

When grafting native tissue, a bioactive material devoted to
bone tissue restoration must encourage good bony growth
[139, 140]. Biocompatibility and bacterial infections are the

main challenges to current alternatives to bone transplants.
Wollastonite-based scaffolds for bone tissue engineering
have a greater potential to replace bone grafts in orthopedic
applications due to their physicochemical characteristics,
antibacterial properties, biocompatibility, and osteogenic
induction effect on human bone marrow-derived stromal
cells [141].

A more recent technology developed for bioactive glass-
ceramic foams involves the use of polymer-derived ceramics
[142–144]. In this approach, metal oxide precursors in the
form of micro- or nanosized particles are added to a
polymeric precursor (e.g., a silicone resin), allowing the
production of silicate bioceramics (Figure 5). The foaming
is obtained by water release from specific hydrated fillers.
The foams are then sintered. Fiocco et al. showed the
possibility of obtaining wollastonite-diopside (CaSiO3-
CaMgSi2O6) foams with 77% porosity and compressive
strength of 1:8 ± 0:3MPa [145].

New materials for a bone replacement that offer extended
implant lives, full integration, and suitable mechanical qual-
ities were required on a clinical level. According to Dyson
et al., human mesenchymal stem cells (MSCs) were utilized
to fill porous apatite-wollastonite (A-W) glass-ceramic
scaffolds created using the layer manufacturing procedure
and selective laser sintering, to produce individualized bone
replacements [146].

The addition of 50% wollastonite to the hydroxyapatite
matrix improves the porous scaffolds’ strength, bioactivity,
and biodegradability. The biodegradability tests reveal
that the wollastonite-based composite scaffold could be
quickly degraded when compared to pure hydroxyapatite
[147, 148]. It was possible to develop biomedical appli-
cations for the β-wollastonite materials made from rice
husk ash and limestone due to their favorable bioactivity
and degradation characteristics. The SEM analysis of cell
development on A-W scaffolds at various time points is
displayed in Figure 6.

The loss of mass increased incrementally while the β-
wollastonite samples were immersed in simulated body fluid
(SBF) as a function of the soaking period [126]. According to
the study of Ge et al., the wollastonite-hydroxyapatite com-
posite biomaterial developed more blood vessels after 12
weeks of surgery. The material is safe in vivo therapeutically
and can encourage the production and growth of new bone

a

c

b

Ca+2

Si+4

O–2
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(001)

(010) Wollastonite

Pyroxene (Enstatite)

(b)

Figure 4: (a) Unit cell of triclinic wollastonite-1A and (b) tetrahedra arrangement within the chains in pyroxenes compared to wollastonite.
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in the faulty location [147]. In earlier research, a porous
glass-ceramic scaffold derived from apatite and wollastonite
was produced with controlled pore size and porosity that
revealed open macropores and met the fundamental criteria
for a bone tissue engineering scaffold. The scaffolds also
show great potential for use in bone regenerative medicine
[149]. Wollastonite is an ideal candidate for biomaterial
applications, particularly in orthopedics, as demonstrated
by the development of the bioactive substance hydroxycar-

bonate apatite on the surface of a plasma-sprayed wollaston-
ite coating soaked in simulated bodily fluid [150].

The Mg-doping wollastonite (CSi-Mg)/β-tricalcium
phosphate (TCPx) scaffolds are capable of treating some
challengeable bone defects, especially for load-bearing bone
repair [151]. The two-step chemical precipitation and
porogen burnout processes that were used to create the
wollastonite/tricalcium phosphate macroporous nanosin-
tered scaffolds resulted in less strength loss during the

Table 2: Raw materials and methods used to derive synthetic wollastonite with its main application.

Raw materials/precursors Process Synthesis temperature (°C) Application References

Eggshells and commercial silica Microwave 1100 - [93]

Eggshells and rice husk ash
Sol-gel 850 Biomedical [113]

Solid-state reaction 1000 Biomedical [120]

Rice straw ash and calcium nitrate Sol-gel - Biomedical [121]

Silica sand and limestone Solid-state reaction 1400 Biomedical [3, 122]

Stone wastes and silica fumes Solid-state reaction 1100 - [123]

Rice husk ash and cement kiln dust Solid-state reaction 1100 Ceramic [124]

Zirconium oxychloride slag and CaO Sol-gel 1000 Environmental [125]

Rice husk ash and limestone
Microwave 950 Biomedical [126]

Sintering 1050 Ceramic [127]

Eggshell and waste glass Solid-state reaction 900 Ceramic [128]

Calcium nitrate and sodium silicate Coprecipitation 1200 Biomedical [129]

Waste fluorescent glass and CaCO3 Sintering 1300 Environmental [130]

Waste soda-lime-silica glasses Sintering 1000 Ceramic [119]

CaCO3 and sodium metasilicate-pentahydrate Coprecipitation 1100 Biomedical [131]

Bentonite clay Sintering 850 Biomedical [132]

Calcium nitrate and fumed silica Solution combustion 950 Biomedical [133]

Calcium nitrate and tetraethoxysilane Sol-gel method - Biomedical [134]

Ca(NO3)2 solutions and Na2SiO3 solution Hydrothermal microemulsion 800 Biomedical [46]

Limestone and SiO2 smoke Solid-state reaction - Materials [135]

Calcium chloride and sodium disilicate - 1200 - [136]

Silica and calcium carbonate Hydrothermal 1000 - [94]

NaSiO3 9H2O and Ca(OH)2 Hydrothermal 800 - [137]

Calcium nitrate tetrahydrate and colloidal silica Combustion 600 [138]

CaCO3 Metal oxide
precursors Silicone

matrix

Low-temperature
foaming

Foamed cross-linked
silicone

Ceramization

Pores

Na-Ph anhydrous Wollastonite
Diopside
Glass phase

MgO
Pores

MgOH2
Na-Ph hydrate

Figure 5: An illustration showing how sodium hydrate phosphate filler (Na-Ph hydrate) is used to create glass-ceramic foams from
wollastonite-diopside (CaSiO3-CaMgSi2O6) polymer (reprinted with permission from [142]).
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degrading phase. The scaffolds provide great potential for
applications in bone reconstruction [152]. The CSi-Mgx
ceramic powders and scaffolds’ characterization are shown
in Figure 7.

Xie et al. achieved ultrahigh strength bioceramic porous
(>120MPa) scaffolds using dilute magnesium-doped wollas-
tonite inks and 3D printing techniques [154]. They show
exceptional strength and degradability on osteogenic capac-
ity in rabbit calvarial defects, making the 3D-printed diluted
magnesium doping wollastonite, CSi-Mgx scaffolds promis-
ing for bone regeneration in thin-wall bone defects [153].

The 3D-printed diluted magnesium doping wollastonite,
CSi-Mgx scaffolds show amazing strength and degradability
on osteogenic capacity in rabbit calvarial defects, making
them promising for bone regeneration in thin-wall bone
defects [155]. The morphological and physiologically identi-
cal properties of the bone scaffold are created using a combi-
nation of bioactive porous silicon and wollastonite. It can
open up the door for treating particular orthopedic prob-
lems by altering the design using additive manufacturing.
In order to build the scaffolds in various topologies, additive
manufacturing using a selective laser melting technique has

100 𝜇m

(a)

100 𝜇m

(b)

100 𝜇m

(c)

100 𝜇m

(d)

Figure 6: SEM examination of cell development on A-W scaffolds throughout time. After (a) 0 days, (b) 7 days, (c) 14 days, and (d) 21 days
of culture in an osteogenic media, scaffolds were seeded with MSCs per scaffold and examined by SEM. Arrows indicate confluent sheets of
cells (reprinted with permission from [146]).
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Figure 7: CSi-Mgx ceramic powders and scaffolds’ characterization: (a) XRD patterns of ceramic powders, (b) SEM images of surface
morphologies and microstructures of the ceramic scaffolds, (c) 3D model and macroscopic view of ceramic scaffold sample, and (d) bone
defect and implantation of the ceramic scaffolds in rabbit skull defect (reprinted with the permission from [153]).
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been used [156, 157]. Stereolithography and the lost-mold
method with gel-casting were used to create highly porous
ceramic scaffolds from a wollastonite glass power. These
scaffolds’ strength and modulus are equivalent to those
reported for other porous ceramic scaffold materials of
similar porosity created by various fabrication techniques
[158, 159]. Silicon-wollastonite-based scaffolds produced
by selective laser melting show high bioactivity and con-
trolled growth of the hydroxyapatite-like layer on the surface
of the structures [156].

Compression molding, heat processing, and salt particu-
late leaching method and strategy were used to successfully
produce the composite scaffolds of poly(3-hydroxybuty-
rate-co-3-hydroxy valerate) (PHBV) with bioactive wollas-

tonite [160]. One of the crucial factors for scaffolds
designed for tissue engineering is water uptake [161]. This
property influences the transport of water and nutrients into
the scaffold, which promotes cell growth. The water absorp-
tion of the PHBV scaffold is altered when wollastonite
(WOL) is added [162, 163]. The addition of 10wt% wollas-
tonite exhibited a different kinetic mechanism and absorbed
44.1% more water than the uncontaminated PHBV scaffold
when compared to other samples. Therefore, PHBV/WOL
scaffolds can be a good choice for biological applications
[163]. He et al. prepared a scaffold with excellent mechanical
properties and long-term stability using diopside- (DIO-)
based porous bioceramic composites via dilute magnesium-
substituted wollastonite reinforcing and three-dimensional

Table 3: A summary of studies conducted on wollastonite applications in bone tissue engineering.

Application Sample Method Reference

Implant/bone repair Wollastonite/β-TCP porous ceramic scaffolds Polymer sponge replication [169]

Titanium (Ti) implant
Minerals (Mg2+ and Gd3+) biocompatible

composite coating
Electrophoretic deposition (EPD) [132]

Bone substitute application
Porous hydroxyapatite-wollastonite-reinforced

alumina nanoparticles (ALN: 40-80 nm)
Space holder (SH) technique [170]

Clinical applications/bioceramics
Wollastonite-containing glass-ceramic coatings

on alumina
Airbrush spraying of glass-based aqueous

suspensions followed by sintering
[171]

Antibacterial activity Silver-doped wollastonite Sol-gel method [96]

Implant applications Wollastonite (WA) glass-ceramic with titanium Sintering [172]

Osseointegration Apatite-wollastonite/poly (lactic acid)
3D-printed polymer and ceramic

macrostructures
[173]

Implant material
Wollastonite/titanium oxide nanofiber

bioceramic composite
Sintering/electrospinning [174]

Bone tissue engineering 3D wollastonite-diopside scaffolds
Direct ink writing of ink made of silicone

polymer and inorganic fillers
[175]

Bioceramic scaffolds
Wollastonite-diopside scaffolds with tailorable

shell micropores
Direct ink writing technique with
coaxially aligned bi-nozzle system

[176]

Scaffolds for bone repair
Porous composite materials (poly(L-lactide)
(PLLA) and apatite-wollastonite (AW))

[177]

Bioceramics Wollastonite/gold nanoparticles (aunps) Spark plasma sintering
[178,
179]

Bone tissue engineering Hydroxyapatite (HA) and β-wollastonite (WT) Coprecipitation method [180]

Bioactive ceramic scaffolds
Mg-substituted wollastonite (Csi-Mg6)

bioceramic powders
Wet-chemical co-precipitation [181]

Ceramic composites for
biomedical applications

Wollastonite/titanium oxide and
hydroxyapatite

Spark plasma sintering [182]

Biomedical applications;
bone graft

Wollastonite/hydroxyapatite scaffolds Polymeric sponge replica [148]

Bone formation and growth
Wollastonite coating on surgical grade

stainless steel
[183]

Bone graft implants
Bioactive glass-ceramic based on the
CaO-SiO2-MgO-Na2O-Li2O system

Sinter-crystallization process [184]

Antibacterial activity and
enhanced bioactivity

Silver-doped wollastonite (CaSiO3) synthesized
using natural waste

[96]

Implants Hyroxyapatite surface layer [185]

Apatite-wollastonite ceramics
Calcium hydroxyapatite and

wollastonite powders
Compacted and sintered [186]

Repair and replacement of living
bone (load-bearing situations)

Wollastonite powder sprayed onto
Ti–6Al–4V substrates

Plasma-sprayed wollastonite coatings [187]
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(3D) printing. The scaffold can potentially be used in the
clinic, especially for the treatment of osteonecrosis of the
femoral head working as a bioceramic rod [164]. Schmidt
et al. also demonstrated that the wollastonite-diopside
glass-ceramic complex structures material may be used to
make bioceramic scaffolds for bone tissue engineering. They
maintained their structure flawlessly, showed no viscous
flow, and uniformly shrank by around 25%. With Kelvin
structures, the cell design has a compressive strength of
more than 3MPa at 83% porosity [165].

The use of three-dimensional (3D) bioactive glass-
derived porous scaffolds is an excellent method for accelerat-
ing bone healing and regeneration in substantial osseous
defect areas [166, 167]. By using the foam replica process
and the aforementioned bioactive glass powders as the
parent material, the macroporous glass-ceramic scaffolds
were created from SiO2, P2O5, CaO, MgO, Na2O, and
CaF2. The scaffold exhibits bioactive behavior in vitro while
submerged in simulated bodily fluids, and the mechanical
characteristics were also possibly acceptable to indicate use
in load-bearing bone applications [166]. A possible tech-
nique for promoting mineralization while the scaffold is
incubated in a simulated physiological fluid is the produc-
tion of biomimetic paste-type inks produced from wollas-
tonite and fish gelatin in a mass ratio similar to that of
natural bone. Also highlighted are the bicomponent inks’
capacity to create three-dimensional bioactive scaffolds and
their anticipated osteogenic capabilities for applications
involving bone regeneration [168].

5. Bone Tissue Engineering
Applications of Wollastonite

Despite the high capacity of Wollastonite, little attention has
been given to its application in the field of bone tissue engi-
neering. In the following table (Table 3), different works
published on wollastonite applications in bone tissue engi-
neering are presented.

6. Conclusion

The goal of the paper is to review the applications of wollas-
tonite in bone-tissue engineering by investigating the results
presented in several published articles. It has been found that
both natural and synthesized wollastonite can be a potential
candidate for bone tissue engineering. However, the litera-
ture review indicated that there was still little data about
the employment of wollastonite in bone tissue engineering
and demonstrating further study would be performed, and
that a lot of research would be needed about wollastonite,
its composites, and its uses in bone tissue engineering. In
conclusion, wollastonite illustrated different favorable prop-
erties; hence, it could be further investigated in diverse bone
tissue engineering applications.
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