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Background. Sufficient evidence indicated the crucial role of NF-κB family played in gastric cancer (GC). The novel discovery that
NF-κB could regulate cancer metabolism and immune evasion greatly increased its attraction in cancer research. However, the
correlation among NF-κB, metabolism, and cancer immunity in GC still requires further improvement. Methods. TCGA,
hTFtarget, and MSigDB databases were employed to identify NF-κB-related metabolic genes (NFMGs). Based on NFMGs, we
used consensus clustering to divide GC patients into two subtypes. GSVA was employed to analyze the enriched pathway.
ESTIMATE, CIBERSORT, ssGSEA, and MCPcounter algorithms were applied to evaluate immune infiltration in GC. The
tumor immune dysfunction and exclusion (TIDE) algorithm was used to predict patients’ response to immunotherapy. We
also established a NFMG-related risk score by using the LASSO regression model and assessed its efficacy in TCGA and
GSE62254 datasets. Results. We used 27 NFMGs to conduct an unsupervised clustering on GC samples and classified them
into two clusters. Cluster 1 was characterized by high active metabolism, tumor mutant burden, and microsatellite instability,
while cluster 2 was featured with high immune infiltration. Compared to cluster 2, cluster 1 had a better prognosis and higher
response to immunotherapy. In addition, we constructed a 12-NFMG (ADCY3, AHCY, CHDH, GUCY1A2, ITPA, MTHFD2,
NRP1, POLA1, POLR1A, POLR3A, POLR3K, and SRM) risk score. Followed analysis indicated that this risk score acted as an
effectively prognostic factor in GC. Conclusion. Our data suggested that GC subtypes classified by NFMGs may effectively
guide prognosis and immunotherapy. Further study of these NFMGs will deepen our understanding of NF-κB-mediated cancer
metabolism and immunity.

1. Introduction

Gastric cancer (GC) ranks as the fifth most common cancer
and the fourth leading cause of cancer-related deaths world-
wide, as well as an important barrier to increasing life expec-
tancy [1]. Though the popularity using of endoscopy
improved the early detection of GC, a great number of
patients were still diagnosed at late stage, associated with
poor outcome [2]. Hitherto, platinum or/and fluorouracil-
based chemotherapy remains the first-line treatment for

GC, while patients with late-stage GC still suffered poor out-
come with a median overall survival (OS) being nearly 1 year
[3]. The rapid boost of immunotherapy renovated the
oncotherapy in the recent decade. Several immune check-
point inhibitors (ICIs), such as Nivolumab and Pembrolizu-
mab, have been approved by the FDA for GC treatment.
Unfortunately, however, only a small cohort of patient could
benefit from these treatments [4, 5]. Intratumoural heteroge-
neity may be responsible for the different individual
response to the treatment [6]. Traditional typing is difficult
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to penetrate into GC’s heterogeneity, and whereby further
molecular research is necessary and urgent for treatment
and prognostic determination.

The NF-κB family, comprised of five members: NF-κB1
(p50), NF-κB2 (p52), c-Rel, RelA (p65), and RelB, is a
well-known transcription factor family which regulates a
large number of target genes and plays crucial roles in can-
cers including GC [6–8]. NF-κB signaling pathway directly
and indirectly controls key cancer hallmarks, such as cell
proliferation and survival, epithelial-mesenchymal transfor-
mation (EMT), angiogenesis [8]. Novel identified hallmarks,
immune evasion, and abnormal metabolism attracted the
great attention of oncologists [9]. Complex tumor microen-
vironment conferred the complicated entanglement between
cancer immunity and metabolism [10]. Recent study indi-
cated that the canonical NF-κB subunits c-Rel and RelA
played a key role in the identity and function of regulatory
T cells (Tregs, a type of T cell with inhibition activity against
antitumor immune responses) [11]. The RelA-mediated
pathway also inhibited the ubiquitination and degradation
of PD-L1 [12]. In addition, several study showed that TP53
status in cancer determined RelA’s affection on oxidative
phosphorylation (OXPHOS). On the one hand, RelA upreg-
ulated the expression of synthesis of cytochrome c oxidase 2
(SCO2) and thereby sustained OXPHOS in wild-type TP53
expressing cancer cells [13]. On the other hand, RelA
accompanied with mortalin could translocate to the mito-
chondria and whereby repressed OXPHOS in mutant TP53
expressing cancer cells [14]. These study emphasized the
potential role of NF-κB transcription factors in cancer
immune evasion and abnormal metabolism.

However, whether NF-κB transcription factors mediated
cancer metabolism can affect GC immune microenviron-
ment needs further exploration. A nuanced evaluation of
NF-κB-related metabolism and cancer immunity may reveal
novel cancer vulnerabilities upon which may improve GC’s
immunotherapy response. Here, we hypothesized that NF-
κB-mediated abnormal metabolism may be involved in the
regulation of GC’s immune microenvironment. To this
end, NF-κB-related metabolic genes (NFMGs) were identi-
fied by combined analysis of The Cancer Genome Atlas
(TCGA), the Molecular Signatures Database (MSigDB),
and hTFtarget database. And then, we employed multiple
algorithms to investigate the prognostic value of NFMGs
and their correlation with GC’s immune microenvironment.

2. Materials and Methods

2.1. Data Source and Differentially Expressed NFMGs. GC
RNA-sequencing (RNA-seq) data (32 normal and 375
tumor) were downloaded from TCGA database (https://
gdc-portal.nci.nih.gov/), among which 51 tumor RNA-seq
data were excluded for incomplete clinical information. In
addition, 300 GC samples (GSE62254) [15] with survival
data were from the Gene Expression Omnibus (GEO) data-
base (https://www.ncbi.nlm.nih.gov/geo/). The clinical char-
acteristics of GC samples in TCGA and GSE62254 were
displayed (Table 1).

To identify differentially expressed NFMGs, “limma”
package of R (version 4.1.0) was used to screen the differen-
tially expressed genes (DEGs) between normal and GC tis-
sues [16]. Pearson correlation analysis was conducted
between NF-κB transcription factors (NFKB1, NFKB2, REL,
RELA, and RELB) and DEGs. NF-κB-related DEGs were
selected according to the cutoff of ∣R ∣ >0:3 and p < 0:001.
NF-κB-targeted genes were obtained from the hTFtarget data-
base (http://bioinfo.life.hust.edu.cn/hTFtarget#!/) [17]. Fur-
thermore, Kyoto Encyclopedia of Genes and Genomes
(KEGG) gene set was downloaded from the MSigDB database,
and metabolism-related pathways were selected [18, 19].
Metabolism genes (n = 948) were distinguished from these
pathways. The overlapped genes among these parts were con-
sidered as the NFMGs.

2.2. NF-κB Expression and Prognostic Analysis. The TIMER
2.0 dataset was employed to estimate the expression of NF-
κB transcription factors (NFKB1, NFKB2, REL, RELA, and
RELB) in various cancer types [20]. The Human Protein
Atlas (HPA) database (https://www.proteinatlas.org/) was

Table 1: Characteristics of GC patients in TCGA and GSE62254
datasets.

TCGA
(n = 324)

GSE62254
(n = 300)

Age

≤65 144 172

>65 180 128

Sex

Male 206 199

Female 118 101

Grade

G1 8

G2 115

G3 201

Stage

I 43 30

II 107 97

III 142 96

IV 32 77

Pathology

Adenocarcinoma 178 71

Mucinous adenocarcinoma 17 3

Papillary adenocarcinoma 4 8

Tubular adenocarcinoma 61 141

Signet ring cell carcinoma 10 42

Other 54 35

HP infection

No 131 72

Yes 16 55

Recurrence

No 198 157

Yes 54 125
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used to evaluate the protein expressions of NF-κB transcrip-
tion factors in normal and tumor tissues. To investigate the
prognostic value of NF-κB transcription factors in GC,
related survival analysis was conducted by using the
Kaplan-Meier Plotter online tool [21].

2.3. NFMG-Based Consensus Clustering. At first, the least
absolute shrinkage and selection operator (LASSO) algo-
rithm and recursive feature elimination (RFE) algorithm
were adopted to shrink the number of NFMGs, achieved
by “glmnet” and “caret” package of R, respectively [22, 23].
The shared genes from two algorithms were served as candi-
date NFMGs. Consensus clustering was realized by using
“ConsensusClusterPlus” package (http://www.bioconductor
.org/) of R based on the candidate NFMGs. The expression
of NFMGs between two clusters was visualized by using
“pheatmap” package (https://cran.r-project.org/package=
pheatmap). The survival analysis was performed by “sur-
vival” package (https://cran.r-project.org/package=survival).

2.4. KEGG and Gene Ontology (GO) Analyses. KEGG and
GO analyses of NFMGs were performed by using “cluster-
Profiler” package of R [24] and visualized by applying
“ggplot2” package (http://cran.r-project.org/package=ggplot2).

2.5. Gene Set Variation Analysis (GSVA). GSVA was
employed to quantify the involvement of KEGG pathways
of each sample using “GSVA” package of R software [25].

2.6. Immune Microenvironment Estimation. The immune
microenvironment estimation was achieved by multiple
algorithms. The stromal score, immune score, ESTIMATE
score, and tumor purity of each sample were calculated by
“estimate” R package [26]. The abundance of infiltrated
immune cells in each sample was estimated by CIBERSORT,
Single-sample Gene Set Enrichment Analysis (ssGSEA), and
MCPcounter algorithms [18, 27, 28]. Furthermore, the
response to ICI was assessed by applying the tumor immune
dysfunction and exclusion (TIDE) algorithm [29].

2.7. Tumor Mutant Burden (TMB) Estimation. TMB indi-
cates the total number of mutations in the coding region of
the evaluated gene in the tumor cell genome. The TMB of
each sample was calculated by employing “TCGAmutations”
package of R [30].

2.8. Construction of NFMG Signature with Prognostic Value.
To confirm NFMGs with prognostic signature, the pairwise
relationships of the candidate NFMGs were evaluated by
the STRING (https://string-db.org/) online tool [31]. The
cutoff for confidence scores of interactions is 0.4. MCODE
app of Cytoscape (version 3.8.2) was employed to select
the subclusters of the coexpression networks with the default
settings (node score cutoff: 0.2 and K-core: 2), aiming to
analyze the physical relationships among these distance-
related genes [32, 33]. The genes in subclusters were selected
as the hub NFMGs. The LASSO algorithm was applied to
construct risk score (RS) for predicting patients’ OS.

2.9. Decision Curve Analysis (DCA). DCA was an ideal tool
to calculate the clinical net benefit of each model compared

to all or none strategies [34]. It was employed to judge the
efficacy of mentioned RS.

2.10. Establishment of Nomogram. Based on RS and stage,
the nomogram was constructed by using the “rms” package
(https://cran.r-project.org/package=rms). The efficacy of
nomogram was validated by applying calibration plots.

2.11. Statistical Analysis. All statistical analyses were com-
pleted by using the R software (version 4.1.0). The t-test
was used for comparing normally distributed data, and
Mann–Whitney test was for nonnormally distributed data.
Continuous variables are shown as the mean ± standard
deviation ðSDÞ. OS analyzed by the log-rank test meant the
time from diagnosis to the last follow-up or death. If not
specified above, p < 0:05 was regarded as statistically signifi-
cant. The main code used in the R software was also
uploaded (Supplemental file 1).

3. Results

3.1. NF-κB Transcription Factors Were Upregulated in GC.
At first, the expression of NF-κB transcription factors in var-
ious cancer types was retrieved in the TIMER 2.0 database.
As shown, the expression of NFKB1, NFKB2, REL, RELA,
and RELB varied in different cancer types (Figure 1(a)). In
some cancer types, such as cholangiocarcinoma (CHOL),
esophageal carcinoma (ESCA), and head and neck squa-
mous cell carcinoma (HNSC), all of NF-κB transcription
factors were upregulated, while in some cancer types, such
as colon adenocarcinoma (COAD), skin cutaneous mela-
noma (SKCM), and uterine corpus endometrial carcinoma
(UCEC), different NF-κB transcription factors showed con-
tradictory expression. This contradiction may be concerned
in NF-κB’s bidirectional regulation of tumor [6, 8, 35, 36].
In GC, NFKB1, NFKB2, REL, RELA, and RELB were signifi-
cantly upregulated in tumor tissues (Figure 1(a)). Immuno-
histochemistry data from the HPA database showed that
positive expression of NF-κB1, NF-κB2, c-Rel, RelA, and
RelB could be observed in GC tissues (Figure S1). GC
patients with high expression of NFKB2, REL, RELA, and
RELB possessed a significantly shorter OS and first
progression (FP) than patients with low expression of these
four genes, while similar significance has not been observed
for NFKB1 (Figures 1(b)–1(f)). All NF-κB transcription
factors have a significant predictive significance with regard
to the postprogression survival (PPS) in GC: the higher
expression of NF-κB, the lower PPS (Figures 1(b)–1(f)).
These data suggested the close connection of NF-κB family
with GC and its prognosis.

3.2. Identification of NFMGs. DEGs (n = 4975) with protein
coding function have been identified between normal and
tumor samples from the GC RNA-seq of TCGA, which
included 3908 upregulated DEGs and 1067 downregulated
DEGs (Figure 2(a)). To identify NFMGs, we dug three gene
cohorts: first cohort consisted of 2927 NF-κB-related DGEs
that were confirmed by Pearson correlation analysis; second
cohort comprised of 26671 NF-κB-targeted genes that were
downloaded from the hTFtarget database; third cohort
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included 948 metabolic genes from the MSigDB database
(Figure 2(b)). The overlapped part of these three cohorts
was considered as the NFMGs, containing 110 upregulated
and 10 downregulated genes. The Sankey diagram displayed
the targeted interaction between NFMGs and NF-κB tran-
scription factors, and the expression of NFMGs was also
showed by heatmap (Figures 2(c) and 2(d)). GO analysis
indicated that the upregulated NFMGs were mainly
enriched in amino acid or ribonucleotide metabolism-
related biological process, while downregulated NFMGs
focused on lipid metabolism-related biological process
(Figures 2(e) and 2(f)). KEGG analysis demonstrated that
in the upregulated NFMGs, the majority enriched pathways
were also concerned in amino acid or ribonucleotide-related
metabolism pathway, including the metabolism of purine
and pyrimidine, as well as several essential amino acids
(Figure 2(g)). And the downregulated genes were mainly
enriched in arachidonic acid metabolism, pyruvate metabo-
lism, and regulation of lipolysis in adipocytes (Figure 2(g)).

3.3. Consensus Clustering Based on NFMGs. According to
the survival data, the number of NFMGs was reduced by
using LASSO and RFE algorithms. The parameters of
LASSO and RFE were also displayed (Figures 3(a)–3(c)).
Finally, 117 and 28 genes were identified by LASSO and
RFE algorithms, respectively, and 27 overlapped genes were
served as the candidate NFMGs (Figure 3(d)). The correla-
tion of these NFMGs and each NF-κB transcription factor
was shown in the heatmap (Figure 3(e)). Subsequently, con-
sensus clustering was performed in TCGA and GSE62254
chip independently (Figures 4(a) and 4(b)). Considering
the cluster based on NFMGs, GSVA was employed to ana-
lyze the enriched metabolic pathways in the two clusters.
Our data showed that cluster 1 had more enriched metabolic
pathways than cluster 2. Particularly, amino acid, lipid, and
nucleotide as well as glucose-related metabolic pathways
were significantly enriched in cluster 1, while few metabolic
pathways, such as glycosphingolipid-related pathways, were
enriched in cluster 2 (Figure S2). Principal component
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Figure 1: The expression of NF-κB family across various cancer types. (a) The expression of NFKB1, NFKB2, RELA, RELB, and REL in
different cancer types was determined by the TIMER 2.0 database. The abbreviations of cancer types were from TCGA database. (b–f)
Survival analysis of NFKB1, NFKB2, RELA, RELB, and REL in GC was achieved by the Kaplan-Meier Plotter online tool. ∗p < 0:05,
∗∗p < 0:01, ∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. OS: overall survival; FP: first progression; PPS: postprogression survival; GC: gastric cancer.
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analysis (PCA) indicated that the two clusters were well
classified (Figures 4(c) and 4(d)). Survival analysis
demonstrated that patients in cluster 1 showed more
favourable survival than patients in cluster 2 (Figures 4(e)
and 4(f)). In addition, the proportion of cluster 1 and cluster
2 in different age, sex, or tumor stage has no significant
difference (Figures 4(g)–4(i)).

3.4. Tumor Microenvironment and Immune Infiltration
Assessment across Two Clusters. The ESTIMATE algorithm
was further used to evaluate the tumor microenvironment
between two clusters. As shown, cluster 2 had higher stromal
(p < 0:0001), immune (p < 0:01), and ESTIMATE (p <
0:0001) scores than cluster 1 in both TCGA and GSE62254
datasets, while cluster 2 had lower tumor purity than cluster

0

5

10

15

20

–5.0 –2.5 0.0 2.5 5.0
Log2 (fold change)

–L
og

10
 (a

dj
.p

.v
al

)

Threshold
Down
No significance
Up

TCGA
(a)

(c)

(d) (g)

(b) (e)

(f)

NFKB1NFKB2RELRELARELB

Targeted mRNA (n = 120)

NF-κB family

hTFtargetTCGA
Pearson: |R2| > 0.3, adj.p.val < 0.001 NF-κB family targeted genes

465

2320

23634

21

120

597

210

MSigDB
Metabolism-related genes

10
/1

08

13
/1

08

16
/1

08

18
/1

08

2/
10

8

4/
10

8

4/
10

8

5/
10

8

6/
10

8

7/
10

8

8/
10

8

9/
10

8

Generatio

Gene count

5

10

15

0.01

0.02

0.03

Adj.p.val

Regulation of lipolysis in adipocytes

Arachidonic acid metabolism

Pyruvate metabolism

Purine metabolism

Pyrimidine metabolism

Alanine, aspartate and glutamate
metabolism

Cysteine and methionine metabolism

Arginine and proline metabolism

Tryptophan metabolism

Glutathione metabolism

Amino sugar and nucleotide sugar
metabolism

Glycerophospholipid metabolism

Sphingolipid metabolism

One carbon pool by folate

Drug metabolism - other enzymes

Biosynthesis of amino acids

Biosynthesis of cofactors

Antifolate resistance

RNA polymerase

DNA replication

Base excision repair

Nucleotide excision repair

Phospholipase D signaling pathway

Central carbon metabolism in cancer

Up

Down

KEGG

GO:0006520

GO:0009112
G

O
:0044282

GO:0019693

GO:0009259GO:1901657

GO:00
09

11
6

G
O

:0
03

22
01

GO:00
46

65
3

GO:0033260

Decreasing Increasing

z−score
Upregulated
LogFC

ID Term
GO:0006520 Cellular amino acid metabolic process
GO:0009112 Nucleobase metabolic process
GO:0044282 Small molecule catabolic process
GO:0019693 Ribose phosphate metabolic process
GO:0009259 Ribonucleotide metabolic process
GO:1901657 Glycosyl compound metabolic process
GO:0009116 Nucleoside metabolic process
GO:0032201 Telomere maintenance via semi-conservative replication
GO:0046653 Tetrahydrofolate metabolic process
GO:0033260 Nuclear DNA replication

GO:0019371

GO:0006692
G

O
:0019369

GO:0072330

GO:0033559GO:0120254

GO:00
06

69
0

G
O

:0
04

63
94

GO:00
16

05
3

GO:0006631

LogFC
Downregulated

Decreasing Increasing

z−score

ID Term
GO:0019371 Cyclooxygenase pathway
GO:0006692 Prostanoid metabolic process
GO:0019369 Arachidonic acid metabolic process
GO:0072330 Monocarboxylic acid biosynthetic process
GO:0033559 Unsaturated fatty acid metabolic process
GO:0120254 Olefinic compound metabolic process
GO:0006690 Icosanoid metabolic process
GO:0046394 Carboxylic acid biosynthetic process
GO:0016053 Organic acid biosynthetic process
GO:0006631 Fatty acid metabolic process

Normal

Tumor

−6

−4

−2

0

2

4

6

Figure 2: Differential expressed NFMGs in TCGA and their function analysis. (a) The volcano plot showed the DEGs in TCGA database.
(b) The overlapped genes among TCGA, hTFtarget, and MSigDB databases were considered as the differential expressed NFMGs. (c) The
Sankey plot displayed the targeted relationship between the 120 NFMGs and NF-κB transcription factor. (d) The expression of the 120
NFMGs in each TCGA sample was shown in heatmap. (e, f) GO analysis of (e) upregulated NFMGs and (f) downregulated NFMGs. (g)
KEGG analysis of the 120 NFMGs. NFMGs: NF-κB-targeted metabolic genes; TCGA: The Cancer Genome Atlas; DEGs: differential
expressed genes; MSigDB: the Molecular Signatures Database; GO: Gene Ontology; KEGG: Kyoto Encyclopedia of Genes and Genomes.

7BioMed Research International



−9 −7 −5 −3

1.5

2.0

2.5

3.0

3.5

4.0

Log (λ)

Bi
no

m
ia

l d
ev

ia
nc

e

117 114 110 86 40 9

(a)

−9 −7 −5 −3

−2

−1

0

1

2

Log lambda

Co
effi

ci
en

ts

118 111 65 4

(b)

Variables

RM
SE

 (c
ro

ss
−v

al
id

at
io

n)

0.50

0.52

0.54

0.56

0 20 40 60 80 100 120

(c)

90

1

27

RFE

LASSO

(d)

Figure 3: Continued.

8 BioMed Research International



1 (p < 0:0001) (Figures 5(a)–5(d)). Lower tumor purity usu-
ally implied higher immune infiltration. We next applied
CIBERSORT, MCPcounter, and ssGSEA algorithms to
determine the abundance of different immune cells. Com-
prehensive consideration of these analysis indicated that
cluster 2 had a higher immune infiltration than cluster 1
(Figures 5(e) and 5(f)). The MCPcounter algorithm showed
that the abundance of T cell, cytotoxic lymphocyte, mono-
cytic lineage, endothelial cell, and fibroblast was significantly
elevated in cluster 2 (Figures 5(e) and 5(f)). The ssGSEA
algorithm revealed that majority immune cells, such as effec-
tor memory CD4 T cell, effector memory CD8 T cell, natural
killer cell, plasmacytoid dendritic cell, and Tregs, were sig-
nificantly enriched in cluster 2, while memory B cell was
enriched in cluster 1 (Figures 5(e) and 5(f)). In addition,
we calculated the TMB value of each sample and found that
cluster 1 possessed higher TMB than cluster 2 (Figure S3(a)).
Intriguingly, we also observed 47.6% samples in cluster 1 had
high/low microsatellite instability (MSI-H/L), while only
15.9% samples in cluster 2 had (p < 0:0001) (Figure S3(b)).
These data suggested that cluster based on NFMGs could
achieve a distinct subtype of GC, associated with prognosis,
tumor microenvironment, and immune infiltration.

3.5. The Expression of Immune Checkpoint Genes (ICGs) and
Immunotherapy Sensitivity. According to previous study, a

total of 42 ICGs were selected for further analysis [37–45].
Overall, we observed more overexpressed ICGs in cluster 2
than that in cluster 1, while the distribution of ICGs in
TCGA and GSE62254 datasets was slightly different
(Figures 6(a) and 6(b)). Based on the two datasets, only 2
ICGs (YTHDF1 and LGALS9) were significantly overex-
pressed in cluster 1, and upregulation of them could predict
poor prognosis (Figure 6(c)). More ICGs (CCL2, CD8A,
CD28, CXCR4, IL6, PDCD1LG2, PTPRC, TGFB1, TNFSF4,
and CD86) were significantly overexpressed in cluster 2,
among which CD28, PTPRC, TGFB1, and TNFSF4 were
associated with poor prognosis (Figure 6(d)). Of note, the
expressions of TNFSF18 and TNFRSF18 were various in
two datasets, while they were significantly associated with
GC prognosis (Figure 6(e)). TIDE score was next used to
predict the response to ICI. The number of patients that dis-
played positive response to ICI in cluster 1 was higher than
that in cluster 2 (45.2% vs. 31.6%, p < 0:05) (Figure 7 and
Figure S4). These data demonstrated that cluster 2 had
higher ICGs but a less positive response to ICI, which may
be responsible for the poor prognosis.

3.6. Generation and Validation of Risk Score and Nomogram.
The protein-protein interaction (PPI) network of the 27 can-
didate NFMGs was analyzed by using the STRING online
tool and visualized by the Cytoscape software (Figure 8(a)).
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Figure 3: Identification of candidate NFMGs. (a) Cross-validation for tuning parameter screening in the LASSO regression model. (b) Log
(lambda) value of the 27 NFMGs in the LASSO regression model. (c) Parameter diagram of the RFE algorithm. The smaller the RMSE, the
less the error of the RFE model. The corresponding genes with least RMSE were selected. (d) Venn diagram showed the overlapped NFMGs
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Two modules were further identified by using MCODE app,
among which 12 NFMGs were selected for next analysis
(Figure 8(a)). To construct a RS for predicting survival, the
LASSO algorithm was employed again and calculated a for-
mula as follows: RS = ð−0:1751 × ExpADCY3Þ + ð0:4069 ×
ExpAHCYÞ + ð−0:0259 × ExpCHDHÞ + ð0:0766 × ExpGU

CY1A2Þ + ð−0:3318 × Exp ITPAÞ + ð0:0723 × ExpMTHFD
2Þ + ð0:2233 × ExpNRP1Þ + ð0:4586 × Exp POLA1Þ + ð−
0:5607 × Exp POLR1AÞ + ð−0:0574 × Exp POLR3AÞ + ð−
0:284 × Exp POLR3KÞ + ð0:3087 × Exp SRMÞ. The parame-
ters of the LASSO algorithm were also shown (Figures 8(b)
and 8(c)). Function enrichment analysis of these 12 genes
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Figure 4: Unsupervised clustering of GC based on the 27 NFMGs. (a, b) Consensus clustering sorts GC samples into two clusters in (a)
TCGA and (b) GSE62254 datasets. (c, d) Principal component analysis of the two clusters in (c) TCGA and (d) GSE62254 datasets. (e, f)
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suggested that they were related to purine metabolism, cyste-
ine, and methionine metabolism (Figure 8(d)). The RS of
each sample was further calculated. Setting interquartile as
the cutoff value, patients were divided into low-risk and
high-risk groups. Survival analysis suggested that patients
in the high-risk group may suffer a shorter OS than patients
in the low-risk group in training cohort (TCGA dataset) and
validation cohort (GSE62254 dataset) (Figures 9(a) and
9(b)). The OS of patients was gradually decreased along with
the increase of RS, and the expression of each related NFMG
was shown in the heatmap (Figures 9(c)–9(f)). We next

applied DCA curve aiming to compare the clinical efficacy
among RS and clinical characteristics. In training cohort,
RS possessed the most effective prediction capability, and
in validation cohort, the prediction efficacy of RS was second
only to stage (Figures 9(g) and 9(h)). To further improve the
clinical application, a nomogram was according to RS and
stage in both training and validation cohorts (Figures 10(a)
and 10(b)). The calibration plots indicated that the nomogram
had a well predictive efficacy for GC patients’ 1-year, 3-year,
and 5-year OS rates when compared with an ideal model in
training and validation cohorts (Figures 10(c) and 10(d)).
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Figure 5: Tumor microenvironment and immune infiltration assessment in the two clusters. (a–d) Estimate analysis in TCGA and
GSE62254 datasets. (e, f) The proportion of 22 immune cells in the two clusters was calculated by the CIBERSORT algorithm in (e)
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4. Discussion

Deregulating cellular metabolism and avoiding immune
destruction are important hallmarks for tumorigenesis and
development [9]. In this paper, we identified a set of meta-
bolic genes that may be regulated by NF-κB transcription
factors. Based on these NFMGs, we applied an unsupervised
clustering method to uncover a novel subtype of GC. Among
the subtypes, cluster 2 had poor prognosis, low tumor purity,

and enriched immune characteristics. Of note, cluster 2 pos-
sessed lower TMB, MSI, and response rate to ICI than that
in cluster 1. Finally, we constructed a risk score according
to NFMGs, which possessed an outstanding efficacy for pre-
dicting OS in GC patients.

Since discovery, NF-κB family was always the research
focus as classical transcription factors. Early study revealed
that NF-κB proteins can accelerate cell proliferation, inhibit
apoptosis, promote cell migration and invasion, and stimulate
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Figure 6: The expression of ICGs in the two clusters. (a, b) Differential analysis of the 42 ICGs in the two clusters. The expression of these
ICGs was shown as heatmap. (c) Kaplan-Meier plot of YTHDF1 and LGALS9 in GC. (d) Kaplan-Meier plot of CCL2, CD8A, CD28, CXCR4,
IL6, PDCD1LG2, PTPRC, TGFB1, TNFSF4, and CD86 in GC. (e) Kaplan-Meier plot of TNFSF18 and TNFRSF18 in GC. ∗p < 0:05, ∗∗p < 0:01,
∗∗∗p < 0:001, and ∗∗∗∗p < 0:0001. ICGs: immune checkpoint genes; GC: gastric cancer.
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angiogenesis in tumorigenesis and development [8]. In 2004,
two seminal studies uncovered that NF-κB proteins acted as
a molecular lynchpin linking inflammation to cancer in
inflammation‐driven colorectal cancer and hepatocellular car-
cinoma [46, 47]. Subsequently, development in cancer genetics
and genomics as well as identification of a novel generation of

cancer hallmarks conferred the discovery of novel NF-κB-
dependent cancer vulnerabilities [6]. Among those, the centre
of attraction is the intricate entwine between NF-κB and
reprogramming of energy metabolism or evasion from
immune surveillance [6]. As referred, aberrant metabolism
has intricate influence on cancer immunity: for one thing, high
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Figure 8: Screening of NFMGs with prognostic signature. (a) The PPI network and MCODE analysis. (b, c) Parameters of the LASSO
regression model. (d) The Sankey plot displayed the targeted relationship between NF-κB transcription factors and prognostic NFMGs,
as well as KEGG analysis of these NFMGs. NFMGs: NF-κB-targeted metabolic genes; PPI: protein-protein interaction; LASSO: least
absolute shrinkage and selection operator; KEGG: Kyoto Encyclopedia of Genes and Genomes.
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Figure 9: Performance assessment of the RS for survival predication in training and validation set. (a, b) Survival analysis of the RS in (a)
TCGA and (b) GSE62254 datasets showed that the low-risk group had a longer OS than the high-risk group. (c, d) RS was calculated in (c)
TCGA and (d) GSE62254 datasets and displayed as scatter diagram. (e, f) The expression of the related NFMGs in (e) TCGA and (f)
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metabolic activity of cancer cells conduces to a nutrient defi-
cient and hypoxic microenvironment, leading to metabolic
competition with infiltrating immune cells; for another, aber-
rant metabolism in immune cells also regulates immune cell
function [10]. Here, we identified 120 NFMGs in GC. These
genes may be the target genes of NF-κB transcription factors
and could regulate metabolic progress. Functional enrichment
analysis indicated that these NFMGs were mainly enriched in
amino acid, lipid, and nucleotide-related metabolic pathways,
which were closely associated with cancer immune cells [10].
Consequently, howNF-κB transcription factors mediated can-
cer immunity via regulating metabolism may be revealed by
the further study of these NFMGs.

Cancer classification based on clinical characteristics or
gene expression features is of great importance in predicting
prognosis and guiding therapy. More and more precise and
diversified oncotherapy weakens the advantage of traditional
cancer classification. Of note, increasing gene sets with spe-
cific function were employed for typing cancer. In hepatocel-
lular carcinoma, 41 ferroptosis-related genes were adopted
to divide patients into two phenotypes: Ferroptosis-L pheno-
type and Ferroptosis-H phenotype, in which Ferroptosis-H
phenotype had a worse OS than that in Ferroptosis-L pheno-
type (median OS: 3.11 vs. 6.93 years, p < 0:001) [48]. Glioma
was classified into low and high hypoxia risk groups accord-
ing to hypoxia signature, which was also associated with
patients’ OS [49]. Moreover, previous research used vari-
ous gene sets, including glycolysis-related gene set, cell
cycle-related gene set, angiogenesis-related gene set, and
N6-methyladenosine methylation gene set, to achieve clas-
sification of GC [50–53]. All of these classification could
effectively forecast patients’ prognosis. Therefore, the tran-
scriptome data of GC cases were investigated aiming to
identify NFMG-related classification. Indeed, this GC clas-
sification was significantly associated with patients’ OS, in
which cluster 1 possessed better prognosis.

Further analysis revealed that cluster 1 was a characteris-
tic of high active metabolism and low immune infiltration,
consistent with previous study [10]. In turn, cluster 2 was
characterized by high immune infiltration. Unfortunately,
however, these infiltrating immune cells did not bring a bet-
ter outcome for cluster 2, which could be explained by the
following reasons. Firstly, except antitumor immune cells
(CD8 T cell, memory CD8 T cell, and NK cell), several
immunosuppressive cells, such as Tregs and myeloid-
derived suppressor cells (MDSCs), were also enriched in
cluster 2. Secondly, more reported immune checkpoints
were overexpressed in cluster 2, which may depress the
activity of infiltrating immune cells. Thirdly, cluster 1 was
involved in more amino acid metabolism, including serine,
cysteine, leucine, and arginine. Leucine was necessary for
effector function and proper differentiation in effector
CD8+ and CD4+ T cells [54]; arginine was beneficial for T
cell survival and antitumor functionality [55]; cysteine was
required for T cells during antigen presentation and subse-
quent T cell activation [56]; serine as a key immunometabolite
could regulate T cell proliferative capacity [57]. These data
hinted that low infiltration immune cells in cluster 1 may have
certain antitumor activity due to the active metabolism.

As abovementioned, guiding treatment accounts for the
major purpose of cancer classification. TIDE score was an
excellent method for predicting response to ICI, especially
to anti-PD1 or anti-CTLA4 therapy—the main ICI therapy
in clinic [29, 58]. We found that cluster 1 had higher
response rate to ICI than cluster 2. From the ICG expression
profile, PD1, PD-L1, and CTLA4 had no significant differ-
ence between the two clusters, while several other immune
checkpoints were enriched in cluster 2. Additional inhibitory
checkpoints were considered as the reason of cancer’s resis-
tance to ICI [59]. In addition, we observed higher TMB and
higher proportion of MSI-H/L in cluster 1 than in cluster 2.
Previous study indicated that MSI cancers have a higher
antitumor activity of ICI therapy, and TMB is also associated
with improved survival in patients receiving ICI across a
wide variety of cancer types [60, 61]. Therefore, these addi-
tional inhibitory checkpoints, low TMB, and MSI may con-
tribute to the low response rate of cluster 2 to ICI in GC.

Previous paper also studied the metabolism-related
genes (MRGs) in GC and identified a 13-MRG risk model
with prognostic signature [62]. The different is that we only
focused on NF-κB transcription factors targeted metabolic
genes. Here, we constructed a 12-NFMG RS with prognostic
signature based on the LASSO regression analyses, in which
the high-risk group had a significantly shorter OS than the
low-risk group. We also established a nomogram according
to the RS and GC stage and followed the nomogram was ver-
ified to have a well performance in predicting patients’ OS.
Reviewing the 12 NFMGs, GUCY1A2 has been reported to
be an independent prognostic marker for GC [63]; single-
cell RNA sequencing on gastric hepatoid adenocarcinoma
indicated that AHCY may be potential targets for its treat-
ment [64]; MTHFD2-encoded key enzyme in folate metabo-
lism and methyl donor SAM production and its knockdown
significantly suppressed GC cell proliferation [65]; ADCY3-
encoded protein may exert its tumor-promoting effects via
the cAMP/PKA/CREB pathway [66]; POLR1A has also been
identified to be associated with prognosis in GC [62]; NRP1-
encoded protein could accelerate cell proliferation, invasion,
and migration in GC [67, 68]. The rest involved genes,
including POLR3K, POLR3A, ITPA, POLA1, CHDH, and
SRM, have not been reported in GC, providing multiple
research objectives for exploring the underlying mechanisms
of NF-κB-mediated metabolism.

Several limitations should also be mentioned. First of all,
the same metabolism in cancer cells or immune cells makes
different influence on tumor immune microenvironment
[10]. However, our data were from the simple RNA-seq data
of tumor tissues, and whereby it is hard to clarify the intri-
cate tumor microenvironment. Further application of
single-cell sequencing technique or spatial transcriptome
may better uncover the characteristics and regulatory mech-
anisms of GC’s microenvironment. What is more, the tar-
geted regulation of NF-κB transcription factors against
these NFMGs was only predicted by using online dataset,
which should be further confirmed by using protein-
nucleic acid interaction assays, such as luciferase reporter
gene assay, chromatin immunoprecipitation, and electro-
phoretic mobility shift assays. Last but not the least, the
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clinical application of this classification and RS for GC
should also be further testified by more clinical data.

5. Conclusion

In summary, we used NFMGs to cluster GC samples into
two subtypes that possessed significantly different metabo-
lism, immune infiltration, TMB, and microsatellite status.
These subtypes also had different response to ICI therapy,
which may provide better individualized regimens for GC’s
ICI therapy. We further established a risk score based on
12 NFMGs, and this score could effectively predict GC
patients’ OS. Further expanding of the population data for
validation may facilitate the clinical application of our
models in GC. In addition, in depth study of these NFMGs
would contribute to further understanding of the link
between metabolism and immunity in GC, as well as its
underlying mechanisms.
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