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Tuberculosis (TB) is a severe infectious disease worldwide. The increasing emergence of drug-resistant Mycobacterium
tuberculosis (Mtb) has markedly hampered TB control. Therefore, there is an urgent need to develop new anti-TB drugs to
treat drug-resistant TB and shorten the standard therapy. The discovery of targets of drug action will lay a theoretical
foundation for new drug development. With the development of molecular biology and the success of Mtb genome
sequencing, great progress has been made in the discovery of new targets and their relevant inhibitors. In this review, we
summarized 45 important drug targets and 15 new drugs that are currently being tested in clinical stages and several
prospective molecules that are still at the level of preclinical studies. A comprehensive understanding of the drug targets of
Mtb can provide extensive insights into the development of safer and more efficient drugs and may contribute new ideas for

TB control and treatment.

1. Introduction

Tuberculosis (TB) is a respiratory infectious disease caused
by Mycobacterium tuberculosis (Mtb). The World Health
Organization (WHO) reported approximately 9.9 million
incident cases and 1.28 million deaths related to TB in
2020 [1]. Although a declining trend in the incidence and
mortality of TB has been observed since 2010, the global
TB burden remains a challenge. In addition, multidrug-
resistant (MDR)-TB poses a threat to TB control. For more
than 10 years, approximately 3-4% of new TB cases and
18-21% of patients with TB with retreatment had MDR-TB
or rifampicin (RFP)-resistant TB (RR-TB) [1]. Therefore,
the importance of preventing Mtb transmission and identi-
tying treatments for MDR-TB and XDR-TB must be recog-
nized and addressed.

Effective anti-TB regimens kill Mtb, improve the clinical
symptoms of TB, and prevent the malignant development of
the disease. The current standard treatment for drug-

sensitive TB is a combination of a short-course chemother-
apy regimen under direct supervision recommended by the
WHO, which uses four first-line drugs [isoniazid (INH),
RFP, ethambutol (EMB), and pyrazinamide (PZA)] in the
first two months of development, followed by INH and
RFP in the last four months of consolidation. The WHO
TB guidelines in 2021 showed that this “short-course che-
motherapy” has successfully cured 66 million patients with
TB since 2000 [1]. However, the treatment of MDR-TB
and XDR-TB is difficult and may have no significant effect
on the persistent Mtb, because they need to be treated with
more toxic and costlier second- and third-line drugs for a
longer time, even up to two years, and usually with limited
success. The primary causes of drug-resistant TB in clinical
cases include gene mutations in drug targets or drug-
activating enzymes, compensatory evolution, and the activa-
tion of efflux pumps [2, 3]. At present, there are limited vari-
eties of anti-TB drugs in clinics, leaving clinicians with
limited options. Therefore, there is an urgent need to
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develop new drugs with novel mechanisms to cure TB or
shorten the treatment time for MDR-TB and provide effec-
tive support for TB control [4]. Here, we reviewed the 45 tar-
gets of drug action on Mtb and reported the corresponding
newly developed drugs in recent years. These new drugs
showed excellent anti-TB activity due to their action on dif-
ferent new targets, improved the cure rate of patients with
MDR/XDR-TB, and significantly reduced the total mortal-
ity; however, some new drugs were more toxic than existing
anti-TB drugs. Clearly, the rational and effective implemen-
tation of new drug regimens will overcome the “barrier” of
drug-resistant TB and provide strong support for the goal
of ending TB globally. Table 1 shows the specific anti-TB
targets, while Figure 1(a) presents the clinical trial stages of
the new anti-TB drugs.

2. Cell Wall Biosynthesis

Cell wall biosynthesis offers several molecular targets
because biosynthetic enzymes do not have homologs in the
mammalian system. Traditional anti-TB first-line drugs
(INH and EMB) and second-line drugs (cycloserine [CS]
and ethionamide [ETH]) inhibit cell wall synthesis by acting
on different targets.

2.1. Targeting Mycolic Acid Biosynthesis. The cell wall of Mtb
contains a large amount of mycolic acid, which surrounds
the peptidoglycan layer. Mycolic acids are considered the
main virulence factor of Mtb because they make Mtb natu-
rally resistant to most antibiotics [5]. The synthesis of the
Mitb cell wall is mainly regulated by fatty acid synthases
(FAS). FAS-I is also involved in the synthesis of fatty acids
in eukaryotes, while FAS-II is unique to Mtb cells and is a
target of anti-TB drugs. The biological enzymes enoyl-acyl
carrier protein reductase (inhA) and f-ketoacyl-acyl carrier
protein synthase III (FabH) are important targets of anti-
TB drugs.

2.1.1. Enoyl-acyl Carrier Protein Reductase. InhA is closely
related to the extension of the fatty acid chain in the cell wall
[6]. InhA is the only target of ETH and protionamide (PTH)
and is one of the targets of INH. Mutations in inhA (rv1484)
could induce Mtb resistance to ETH, PTH, and INH [7]. It
has been confirmed that <10% INH-resistant Mtb clinical
isolates are associated with mutations in inhA [7]. Several
compounds with a diaryl ether structure and their deriva-
tives have been identified as inhibitors of inhA, some of
which showed activity against both drug-sensitive and
drug-resistant Mtb [8, 9]. Triclosan, a diaryl ether derivative,
is a potential anti-TB drug candidate because its polychlori-
nated molecular structure does not require any biological
activation in vivo and directly targets inhA. However, these
compounds have several limitations, such as undesirable
bioavailability, limited solubility, and cytotoxicity [8]. Mtb
has been reported to be resistant to triclosan, but the specific
drug resistance mechanism is still unclear [10]. In addition,
3-nitropropanoic acid, gallic acid derivatives, pyrrolidone
derivatives, tetrahydrofuran derivatives, 4-hydroxy-2-pyri-
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done analogs, aryl amides, and other inhA inhibitors have
been reported [9, 11-14].

2.1.2. B-Ketoacyl-acyl Carrier Protein Synthase III. 3-Ketoa-
cyl-acyl carrier protein synthase III (FabH) is an important
link between type I and type II FAS, and it catalyzes the con-
densation of malonyl-ACP with acyl-CoA to form f-ketoa-
cyl-ACP [15]. Mtb fabH has no homologous proteins in
humans. The six alkaloids (vasicoline, vasicolinone, vasici-
none, vasicine, adhatodine, and anisotine, Figure 1(b))
extracted from the leaves of Justicia adhatoda and the
selected synthetic small molecule compounds were found
to have moderate activity against fabH [16, 17].

2.1.3. Methoxy-mycolic Acid and Keto-mycolic Acid. Mycolic
acid synthesized by Mtb is classified into three types accord-
ing to positional modification: a-, keto-, and methoxy-
mycolic acid [18]. Nitroimidazole compounds exert anti-
TB activity by mainly targeting methoxy-mycolic acid.

Delamanid, a nitro-dihydro-imidazooxazole derivative,
inhibits keto- and methoxy-mycolic acid synthesis and dis-
plays higher activity against Mtb than RFP, INH, EMB,
and streptomycin (SM), without obvious cross-resistance
with first-line anti-TB drugs [19]. However, delamanid
monotherapy can rapidly produce delamanid-resistant Mtb
strains.

In addition, PA-824 also acts on deazaflavin-dependent
nitroreductase (Ddn). Ddn is mainly responsible for catalyz-
ing the formation of lethal nitrogen atoms in cells by nitroi-
midazoles to cause bacterial cell lysis [20]. Phase II clinical
trials showed that PA-824 disrupted the formation of myco-
lic acids and demonstrated potent activity against drug-
sensitive and drug-resistant Mtb, including nonreplicating
strains  (https://www.croiconference.org/abstract/efficacy-
bedaquiline-pretomanid-moxifloxacin-pza-bpamz-against-
ds-mdr-tb/). In an anoxic environment, Ddn activates PA-
824 and further generates lethal reactive nitrogen in Mtb
cells, leading to nitric oxide (NO) release. In addition, as
an NO donor, PA-824 can cause respiratory toxicity in bac-
terial cells and enhance the inherent killing mechanism of
the innate immune system, resulting in bacterial death
[21]. Under aerobic conditions, the methoxy and keto
groups of mycolic acids in the cell wall of Mtb could be effec-
tively inhibited by PA-824 to exert significant antibacterial
activity [22].

TBA-354 has a narrow-spectrum bactericidal effect
in vitro against replicating and nonreplicating Mtb. Its
potency is similar to that of delamanid and greater than that
of PA-824. TBA-354 has a higher bioavailability and a lon-
ger elimination half-life than other nitroimidazole drugs
[23]. Unfortunately, the findings from the clinical trials
showed that TBA-354 could result in mild signs of reversible
neurotoxicity; therefore, Global TB Alliance discontinued
this research [24].

2.2. Targeting Arabinogalactan Biosynthesis

2.2.1. Decaprenylphosphoryl-p-D-ribose-2' -epimerase. Deca-
prenylphosphoryl-B-D-ribose-2' -epimerase (DprE) is a het-
erodimeric enzyme comprising DprEl and DprE2 proteins.
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DprEl, a key enzyme in the cell wall biosynthesis of Mtb,
was initially discovered as a target of benzothiazinones,
which show potent activity against Mtb [25, 26]. Recently,
four new drugs, namely, BTZ-043, PBTZ-169, OPC-
167832, and TBA-7371 (Figure 1(c)), have been formally
tested in the clinical trials (http://www.newtbdrugs.org/
pipelines/clinical).

BTZ-043, the first discovered DprEl inhibitor, exhibited
more significant anti-TB activity than INH and EMB in vitro
(minimum inhibitory concentration [MIC] 2.3nM) and
in vivo [27]. A phase I clinical trial of BTZ-043 has been
completed (ClinicalTrials.gov identifier: NCT04874948),
and a phase III clinical trial is recruiting now (Clinical-
Trials.gov identifier: NCT04044001). Meanwhile, PBTZ-
169 had lower cytotoxicity and better efficacy in a murine
model than BTZ-043. The protonation of piperazine nitro-
gen makes it more soluble and improves its potency
in vivo [28]. The phase II clinical trial of PBTZ-169 has been
suspended owing to slow enrollment (ClinicalTrials.gov
Identifier: NCT03334734).

OPC-167832, a newly synthesized carbostyril derivative,
exerts potent inhibitory effects on both growing and intra-
cellular Mtb. The MICs of OPC-167832 against Mtb, includ-
ing MDR/XDR-Mtb, ranged from 0.24 to 2 ng/mL (https://
www.newtbdrugs.org/pipeline/compound/opc-167832). In
vivo experiments in mice showed that optimized regimens
of OPC-167832 combined with delamanid have the poten-
tial to shorten the therapy course and significantly improve
the prognosis of drug-sensitive TB and MDR-TB.

TBA-7371 is a noncovalent DprEl inhibitor that has
completed a phase I clinical trial. It inhibits DprE1 with an
IC,, value of 10nM and is active against Mtb with a MIC
range of 0.78-3.12uM (https://www.newtbdrugs.org/).
TBA-7371 could shorten the standard therapy course and
has no cross-resistance to the current anti-TB drugs [29].
At present, a phase II clinical trial to assess the safety, early
bactericidal activity, and pharmacokinetics of TBA-7371 is
recruiting  participants  (ClinicalTrials.gov  Identifier:
NCT04176250).

2.2.2. GIcNAc-1-P  Transferase. GlcNAc-1-P  transferase
(WecA) is a phosphotransferase that catalyzes uridine
diphosphate (UDP)-GlcNAc and decaprenyl-P to form dec-
aprenyl-P-P-GIcNAc, which is further extended by rhamno-
syl transferase to form decaprenyl-P-P-GlcNAc-rhamnose.
WecA has been proposed as a target of the caprazamycin
derivative CPZEN-45 (a Streptomyces-derived product,
Figure 1(d)). CPZEN-45 showed excellent activity against
both replicating and nonreplicating Mtb strains, with a
MIC of 1.56 yug/mL and 6.25 ug/mL for Mtb H37Rv strain
and MDR-Mtb strain, respectively. However, the develop-
ment of an oral formulation for CPZEN-45 may not be fea-
sible owing to its poor solubility and low bioavailability [30].

2.2.3. TDP-6-deoxy-D-xylo-4-hexulose 3,5-Epimerase. TDP-
6-deoxy-D-xylo-4-hexulose 3,5-epimerase (RmIC), the rate-
limiting enzyme in the production of thymidine dipho-
spho-L-rhamnose, is responsible for converting dTDP-4-
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keto-6-deoxy-glucose into dTDP-4-keto-rhamnose [31].
Potential RmIC inhibitors with benzimidazolone structures
were identified using high-throughput screening of 201,368
compounds. Nevertheless, in vitro experiments showed that
most of these compounds displayed no significant anti-TB
activities, except for compound SID 7975595 (Figure 2(a)),
which exhibited an IC,, of 0.398 uM on RmlC [32].

2.3. Targeting Peptidoglycan Biosynthesis

2.3.1. Translocase I. Translocase I (murX), an essential
enzyme for the growth of Mtb, converts UDP-N-acetylmur-
amyl-pentapeptide into prenyl-N-acetylmuramyl-pentapep-
tide (lipid I) in peptidoglycan biosynthesis [33]. MurX
inhibitors (e.g., lead compound SQ641) rapidly killed Mtb
during the growing stage. SQ641, a chemically modified
nucleoside analog, killed Mtb faster than any existing anti-
TB drugs and had a pronounced postantibiotic effect up to
55h. However, a lipophilic decanoyl side chain in SQ641
likely contributes to its low solubility and poor oral absorp-
tion, resulting in modest intracellular activity against Mtb
and poor in vivo activity [34]. Scientists have developed an
SQ641 phospholipid nanoemulsion structure (SQ641-NE),
which accommodates higher drug loading and is compatible
with human use. SQ641-NE demonstrates better intracellu-
lar and in vivo activity and has synergistic interactions with
the three first-line anti-TB drugs, INH, EMB, and PZA [35].

2.3.2. Mycobactin. Mtb releases high-affinity siderophores,
namely, mycobactin, which binds to iron more efficiently
than host proteins [36]. Mbtl, the product of rv2386¢ in
Mtb, is the presumed isochorismate synthase that catalyzes
the transformation of chorismate into salicylate and pyru-

vate in the first step of the mycobactin biosynthesis pathway.
Being a chorismite-utilizing enzyme, mbtI does not exist in
the host; therefore, mbtI inhibitors, including chromane-
based derivatives and synthetic compounds, such as benzo-
dihydropyranones, furans, and benzimidazole derivatives,
are likely to be good therapeutic candidates for humans
[37-39]. In addition, carbonyl and 7-hydroxyl groups are
the necessary structures for these inhibitors.

MbtA, an adenylating enzyme encoded by mbtA, the ini-
tiating gene of mycobactin biosynthesis, catalyzes the syn-
thesis of salicylic acid and ATP into salicyl adenylate.
Nucleoside analogs, reported as mbtA inhibitors, exhibited
potent anti-TB activity under iron-deficient conditions and
had no obvious toxicity to mammals. However, these inhib-
itors possess unsatisfactory pharmacokinetic properties,
including poor oral bioavailability, low oral exposure, and
rapid clearance [40].

2.3.3. Alanine Racemase and D-Ala-D-Ala Ligase. Among
the existing second-line anti-TB drugs, CS is known to
inhibit alanine racemase (alr) and D-Ala-D-Ala ligase
(ddlA) with MIC values in the micromolar range. Alr is an
essential enzyme for the racemization of L-alanine to D-
alanine in most bacteria [41]. DdIA is a multidomain protein
that binds two D-Ala fragments in the presence of ATP to
form the precursor of the peptidoglycan D-Ala-D-Ala,
which acts as a dipeptide donor in pentapeptide peptidogly-
can biosynthesis [42]. Alr and ddIA are considered attractive
drug targets owing to their essentiality in Mtb and the
absence of a homolog in humans.

2.3.4. N-Acetylglucosamine-1-phosphate Uridyltransferase.
UDP-GIcNAg, an essential precursor of peptidoglycan and
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lipopolysaccharide in Mtb, is produced by a four-step bio-
synthetic pathway in the cytoplasm catalyzed by three
enzymes [D-fructose-6-phosphate aminotransferase, phos-
phoglucosamine mutase, and N-acetylglucosamine-1-phos-
phate uridyltransferase (GImU)] [43]. Deletion of GImU in
Mtb can lead to extensive perturbation of bacterial morphol-
ogy and substantial reduction in cell wall thickness under
normal and hypoxic conditions [44]. Three classes of com-
pounds were identified as promising inhibitors of GImU,
namely, aminoquinazolines, GlcN-1-P analogs, and some
diterpenoids extracted from the traditional Chinese medi-
cines (Figure 2(b)) [45-47].

2.4. Targeting Other Targets in Cell Wall Biosynthesis

2.4.1. Inositol-1-phosphate Synthase. Inositol is vital for the
biogenesis of mycothiol, phosphatidylinositol, and glycosyl-
phosphatidylinositol anchors linked to complex carbohydrates
in Mtb. In the inositol biosynthesis pathway, glucose-6-
phosphate is converted to inositol-1-phosphate through
inol. Inol is further dephosphorylated by inositol monopho-
sphatase to produce inositol [48]. Inol, encoded by rv0046c,
is essential for Mtb growth. A previous study has shown that
inol mutation in Mtb strains attenuated growth and repro-
duction in the normal medium [49]. Therefore, inol may be
a rational target for the development of anti-TB drugs. How-
ever, it is necessary to consider the possible side effects of
inol inhibitors due to the ubiquity of inol in eukaryotic cells.

2.4.2.  Methylerythritol Phosphate Pathway. Isopentenyl
diphosphate (IPP) and its isomer dimethylallyl diphosphate
(DMAPP) are crucial for the synthesis of arabinogalactan,
peptidoglycan, and mycolic acid in the cell wall of Mtb [50].
It has been found that the mevalonate pathway and methyler-
ythritol phosphate (MEP) pathway can be used in the biosyn-
thesis of IPP and DMAPP. Most bacterial pathogens utilize the
MEP pathway, whereas the mevalonate pathway is present in
humans. A series of potent inhibitors of several enzymes in
the MEP pathway, including fosmidomycin, thiazolyl pyrimi-
dines, and natural products such as alkaloids, have been eval-
uated in the preliminary stage; therefore, further studies are
needed on their pharmacological activities [50, 51].

3. Targeting Protein Biosynthesis
and Breakdown

3.1. Targeting Protein Biosynthesis. In Mtb, the functional
ribosomes are composed of 50S subunits (including 23S
rRNA, 5S rRNA, and 35 proteins) and 30S subunits (includ-
ing 16S rRNA and 22 proteins) [52]. Preliminary studies
have demonstrated that most oxazolidinone compounds
inhibit bacterial protein synthesis at the initial stage of trans-
formation by binding to the V domain of 23S rRNA [53].
Certain other compounds act on the 50S ribosome subunit
or leuRS to exhibit anti-TB activity.

3.1.1. 50S Ribosome Subunits. AZD5847, an oxazolidinone
derivative, blocks translation by binding with 50S ribosome
subunits to inhibit protein synthesis. AZD5847 is a prodrug
that is mainly activated into disodium phosphonate of

BioMed Research International

AZD5847 in vivo to play an anti-TB role [54]. With regard
to safety, AZD5847 showed adverse reactions of thrombocy-
topenia and hyperbilirubinemia when administered at high
doses in phase II clinical studies [55].

3.1.2. 23S rRNA. Sutezolid (PUN-100480), a novel oxazolidi-
none and a thiomorpholinyl analog of linezolid, significantly
reduces the number of colony-forming units and acts by
binding to the 23S ribosome [56]. Preliminary evidence
showed that the activity of prodrug sutezolid in killing intra-
cellular Mtb in patients was 10 times higher than that of its
metabolite [57]. Phase I studies revealed that sutezolid was
well tolerated at all dosages, was more active against MDR-
Mtb isolates, and was less toxic than linezolid [58]. Phase II
clinical trials showed that 14% of patients had a slight eleva-
tion in alanine aminotransferase levels [59]. At present, phase
IT and phase IV clinical trials are ongoing (ClinicalTrials.gov
Identifiers: NCT03959566 and NCT 03237182, respectively).

Delpazolid (LCB01-0371) is a second-generation oxazoli-
dinone compound that contains a cyclic amidrazone. The
compound had high aqueous solubility, good absorption, dis-
tribution, metabolism, excretion, and pharmacokinetic pro-
files, and low toxicity. In clinical trials, no obvious serious
side effects were observed in any subjects, but mild diarrhea,
dyspepsia, headache, nausea, and common adverse reactions
were observed [60]. Currently, a phase II clinical trial was per-
formed to evaluate the safety, efficacy, tolerability, and phar-
macokinetics of delpazolid (combined with bedaquiline,
delamanid, and moxifloxacin) in patients with pulmonary
TB. This clinical trial is recruiting, and the result is not pub-
lished (ClinicalTrials.gov Identifier: NCT04550832).

Contezolid (MRX-I), a new class of oxazolidinone pro-
tein inhibitors, is mainly used for the treatment of gram-
positive bacteria. Eckburg et al. [61] reported that MRX-I
had high bioavailability when taken with food and low drug
accumulation after multidose administration. When a single
dose was increased, the subjects showed good tolerance to
MRX-I. Other studies have demonstrated that the anti-TB
activity of MRX-I is comparable to that of linezolid, while
MRX-I is less toxic in inhibiting bone marrow and mono-
amine oxidase [62, 63].

3.1.3. Leucyl-tRNA Synthase. Leucyl-tRNA synthase (LeuRS)
belongs to the class I aminoacyl-tRNA synthase subgroup
and plays an important role in intracellular transport.
GSK-3036656, a benzoxazole compound, exerts anti-TB
effects by inhibiting Mtb LeuRS to block protein synthesis.
The results of a phase I clinical trial showed that
GSK3036656 was generally well tolerated after single and
multiple doses; no serious adverse events were reported. In
addition, GSK3036656 showed 2- to 3-fold accumulation
when administered repeatedly, and the pharmacokinetic
parameter experiments were not altered in the presence of
food [64]. Recently, to evaluate the early bactericidal activity,
safety, and tolerability of GSK3036656 in TB patients, a
phase II clinical trial was conducted by GlaxoSmithKline in
drug-sensitive pulmonary TB patients (ClinicalTrials.gov
Identifier: NCT03557281); this clinical trial has been com-
pleted but the results are not yet available. Moreover, the
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results from another randomized, double-blind, placebo-
controlled FTTH study showed that GSK3036656 is safe
and generally well tolerated after single and multiple doses
in  healthy  subjects (ClinicalTrials.gov  Identifier:
NCT03075410) [64].

3.2. Targeting Clp Proteases. Clp proteases, which are
responsible for the degradation of abnormal proteins and
nonfunctional proteins, are highly conserved intracellular
proteolytic enzymes in prokaryotes and eukaryotes [65,
66]. The clp protease complex consists of a protease subunit
(clpP) and an ATPase subunit (cIpC or clpX) [67]. In con-
trast to the clp system of Escherichia coli with only one sub-
unit, Mtb contains two coexpressed clpP subunits (clpP1 and
clpP2) that function together with clpCl and clpX, but both
subunits have different substrate specificities [68]. It has
been demonstrated that clp protease is a promising drug tar-
get [69]. To date, several compounds have been shown to
target clp systems. For example, acyldepsipeptide antibiotics
(ADEPs) and peptide boronates target clpP [70, 71], and
four compounds, including lassomycin, cylomarin A, ecumi-
cin, and rufomycin, targeting clpC1 ATPase showed potent
activity against Mtb [72-75].

4. DNA-Related Enzymes

4.1. DNA Gyrase. DNA gyrase, which binds to DNA as a tet-
ramer comprising two subunits A (gyrA) and two subunits B
(gyrB), is the only type II topoisomerase in Mtb. The inhibi-
tion of the gene encoding DNA gyrase results in significant
cell death because there are no viable alternative mecha-
nisms for performing this function.

Fluoroquinolones (FQs), a class of antibiotics showing
anti-TB activity, inhibit the supercoiling action of DNA gyrase
by binding to the gyrA subunit and trapping the gyrase-DNA
covalent complex. DC-159a is a newly synthesized broad-
spectrum 8-methoxyfluoroquinolone that exhibits consider-
able inhibitory activity on the gyrA subunit of DNA gyrase
in Mtb [76]. The MIC,, of DC-159a against drug-susceptible
Mtb was 4 and 8 times higher than that of moxifloxacin and
levofloxacin, respectively, with an MIC,, of 0.5 ug/mL against
MDR-Mtb isolates resistant to other FQs [77].

A novel GyrB inhibitor, SPR720 (a phosphate prodrug of
SPR719), is currently in clinical development for the treat-
ment of PTB. A randomized, double-blind, placebo-con-
trolled, phase I clinical trial evaluated the safety, drug
resistance, and pharmacokinetics of SPR720. The results
showed that SPR720 was well tolerated orally, and the most
common adverse events were mild to moderate gastrointes-
tinal reactions and headache, which were shown to be dose-
dependent (ClinicalTrials.gov Identifier: NCT03796910)
[78]. Besides, active compounds with aromatic skeleton
structures were identified through high-throughput screen-
ing, and they showed desirable gyrB inhibitory and anti-
Mtb activities in vitro (Figure 2(c)) [79-81].

4.2. DNA Topoisomerase 1. DNA topoisomerase I, encoded
by topA, catalyzes the cleavage and binding of DNA strands
by cleaving phosphodiester bonds on one strand of DNA
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and then religating the seal. It is a basic enzyme that main-
tains the biological growth activity of Mtb without the need
for energy factors such as ATP [82]. Depletion of intracellu-
lar protein levels upon downregulation of topA expression
led to the loss of Mtb viability.

Several inhibitors of DNA topoisomerase I have been
identified. For example, boldine-derived alkaloids, dihydro-
benzofuranyl urea, and amsacrine derivatives inhibited
DNA topoisomerase I and showed moderate inhibitory
effects on Mtb [82-84].

5. Energy Metabolism

5.1. ATP Synthase. ATP synthase provides the energy needed
by Mtb during its life cycle (aerobic and hypoxic dormant
stages). Bedaquiline (TMC207), sold under the brand name
Sirturo, acts as an active substance against Mtb by inhibiting
ATP synthase responsible for generating energy to Mtb cells.

Bedaquiline inhibits mycobacterial ATP synthase by
binding to the C subunit and depletes cellular energy stores.
It is highly selective for Mtb and has no obvious cytotoxicity
to host cells. In addition, it has no cross-resistance with
other anti-TB drugs and may be an important treatment
option for patients with MDR-TB [85]. Bedaquiline has
shown potent activity against drug-sensitive and MDR-Mtb
strains with a MIC value of 0.03 ug/mL, thus shortening
the duration of treatment to 2—-4 months [86]. Bedaquiline
was approved for marketing by the Food and Drug Admin-
istration and was officially approved in China. In clinical tri-
als, combining bedaquiline with other anti-TB drugs (e.g.,
FQs, clofazimine, PA-824, delamanid, and azithromycin)
increased the risk of QTc prolongation in patients. As an
indispensable drug in short-term MDR-TB regimens, the
safety and efficacy of bedaquiline administrated with PA-
824 and linezolid are being validated in phase III clinical tri-
als (ClinicalTrials.gov Identifier: NCT 03086486). In addi-
tion, several clinical trials of bedaquiline are currently
underway in different countries (https://www.clinicaltrials
.gov/ct2/results?term=bedaquiline&cond=tuberculosis&
Search=Apply&recrs=b&recrs=a&recrs=f&recrs=d&age_
v=&gndr=&type=&rslt=).

At present, bedaquiline resistance has appeared. The
drug resistance mechanisms can be summarized into three
types: (1) as the target of bedaquiline, the mutation of aptE
gene encoding the C subunit of ATP synthase weakened
the binding force between bedaquiline and C subunit [87];
(2) the mutation of Rv0678 gene encoding transcription sup-
pressor of efferent pump MmpS5/MmpL5 will lead to upreg-
ulation of MmpS5/MmpL5 expression in efferent pump
system and decrease intracellular drug concentration [88];
and (3) mutations in the pepQ gene may enhance efflux
effect of the drug. Besides, bedaquiline and clofazimine
showed complete cross-resistance to Rv0678 and pepQ
mutations [88, 89]. Therefore, the emergence of bedaquiline
resistance will bring a new challenge to this novel drug treat-
ment of TB.

5.2. Type-II NADH Dehydrogenase. Type-1I NADH dehy-
drogenase (NDH-2) is a key enzyme in the respiratory chain
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for the growth and metabolism of Mtb. The absence of
NDH-2 in mammalian mitochondria renders this enzyme
an attractive target for antibiotic development [90]. Several
compounds, such as phenothiazines, quinoline pyrimidines,
quinazolones, and diphenyl iodine (DPI) analogs, have been
found to be potent inhibitors of this enzyme [91-94].

5.3. Respiratory Cytochrome bcl Complex. The respiratory
cytochrome bcl complex is responsible for catalyzing the
transmission of electrons from hydroquinone to cyto-
chrome, allowing protons to cross the plasma membrane
in the respiratory chain of Mtb. Q203, an imidazopyridine
amide, inhibits ATP synthesis by acting on the respiratory
cytochrome bcl complex. It inhibited MDR- and XDR-
Mtb isolates at the nanomolar level and exhibited satisfac-
tory anti-TB activity in mice infected with Mtb at a dose of
<1mg/kg. Q203 is effective against drug-resistant, MDR-
and XDR-Mtb strains [95]. The result of phase I clinical tri-
als demonstrated that Q203 was safe and well tolerated at
different doses, and no significant adverse reactions were
observed in the subjects (http://www.qurient.com/bbs/
content.php?co_id=q203).

5.4. 1,4-Dihydroxy-2-naphthoyl CoA Synthase. Prokaryotes
utilize menaquinone (vitamin K2) as a lipid-soluble redox
cofactor in the electron transport chain. Menaquinone is
mainly produced from mycolic acid, and the reaction is cat-
alyzed by 1,4-dihydroxy-2-naphthoyl CoA synthase (menB);
this biosynthesis pathway is absent in humans [96]. There-
fore, mutation of the gene encoding menB hinders the trans-
mission of electrons among membrane-bound protein
complexes, and thus, it serves as a potential target for anti-
TB drugs. It has been reported that 2-amino-4-oxo-4-phe-
nylbutanoate derivatives containing a succinylbenzoate skel-
eton and some compounds with a benzoxazine skeleton
structure exhibited good inhibitory effects on both replicat-
ing and nonreplicating Mtb by inhibiting menB [97, 98].

6. Lipid Metabolism

6.1. Fatty Acid Desaturase. Fatty acid desaturase in Mtb cat-
alyzes the oxidation of alkyl-saturated fatty acids to produce
alkyl-unsaturated fatty acids by introducing two cis-double
bonds at the proximal or distal end [99]. Three potential aer-
obic desaturases (encoded by desA1l, desA2, and desA3) were
identified through the whole genome analysis of Mtb [100].
DesA3 (Rv3229c) is a membrane enzyme with stearyl-
CoA9-desaturase (A’-stearyl desaturase) activity that pro-
duces oleic acid, which is an essential component of myco-
bacterial membrane phospholipids and triglycerides.
Thiocarlide, an effective anti-TB drug developed in the
1970s against a range of MDR-TB strains, causes a decrease
in oleic acid synthesis by inhibiting desA3 and in stearic acid
synthesis of Mtb, eventually resulting in cell death [101].

6.2. Pantothenate Synthetase. Pantothenic acid, also known
as vitamin B5, is an important precursor of coenzyme A
(CoA) and ACP and plays a decisive role in the energy
exchange of Mtb. In the process of pantothenic acid biosyn-
thesis, four pantothenate synthetases (pan) (B, C, D, and E)

BioMed Research International

are involved. Of these, panC is the rate-limiting enzyme in
the synthesis process, which catalyzes the final step of the
reaction. Some compounds containing aromatic heterocyclic
skeletons have been identified as inhibitors of panC of Mtb
[102]. However, further modifications need to be considered
to improve potency and selectivity based on the structural
characteristics of the active site of the enzyme.

7. Signal Transduction Pathways

7.1. Shikimic Acid Pathway. In the shikimate pathway,
erythrose-4-phosphate is converted to the final product
chorismate through seven enzymatic steps (Figure 3) [103].
It is thought to inhibit the growth of Mtb by inhibiting the
activities of seven related enzymes involved. Shikimate
kinase (SK), encoded by arok, is a key enzyme that converts
shikimic acid to shikimic acid-3-phosphate catalyzed by
ATP.

Dicyclic sesquiterpenes, which are natural products
linked to quinones and synthetic small molecular com-
pounds 3-nitrobenzyl derivatives, are promising SK inhibi-
tors. The sesquiterpene derivative ilimaquinone (IQ)
showed time-dependent inhibitory activity against Mtb shi-
kimate kinase (MSK). Besides, 3-nitrobenzyl derivatives
and pyrazole derivatives compounds also showed strong
inhibitory activity against MSK [104, 105].

8. Other Targets

8.1. Filamenting Temperature-Sensitive Protein Z (FtsZ).
FtsZ, a bacterial tubulin homolog, is a significant cell divi-
sion protein that attaches to the membrane of the bacterial
center and forms a cell dynamic ring called the Z ring. Inac-
tivation of ftsZ or alteration of ftsZ protein can inhibit the
formation of the Z ring and septum, which in turn affects
cell division [106].

Several ftsZ inhibitors have been found to be effective
against Mtb, including natural products containing curcu-
min, coumarins, berberine, and resveratrol, small-molecule
compounds comprising bisindole methane derivatives, ben-
zamides, taxanes, and rhodamine derivatives, and some
polypeptides and nucleic acids [107-110]. Most of these
compounds have been tested in vitro. Some tricyclic
substituted benzimidazoles have been evaluated in vivo in
mice, and they showed potent anti-Mtb activity [111].

8.2. Mycobacterial Membrane Protein Large Proteins. Resis-
tance-nodulation-division (RND) is a ubiquitous family of
efflux pumps that may contribute to the recognition and
transport of a great diversity of cationic, anionic, or neutral
compounds in bacteria [112, 113]. Among the RND super-
family of transporters, mmpL proteins play an important
role in the elaboration of the cell envelope of mycobacteria.
The genes encoding for mmpL proteins are associated with
gene clusters involved in the synthesis of cell wall-
associated glycolipids [114]. The anti-TB lead compound
BM212 and the new drug SQ109 target mmpL3 [115].

The potent compound BM212, a 1,5-diarylpyrrole deriv-
ative, showed MIC values ranging from 0.7 to 1.5ug/mL
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against several Mtb strains. However, owing to its poor bio-
availability and severe toxicity, BM212 was not subjected to
clinical trials [115].

SQ109, an ethylenediamine compound optimized from a
library based on EMB, is currently the only candidate drug
for use in clinical research. It was considered a potential can-
didate owing to its submicromolar MIC values (0.78-2 yM)
and low cytotoxicity. SQ109 showed improved activity on
intracellular Mtb compared to EMB and at a similar level
to INH. Several studies have reported that in addition to
inhibiting Mtb cell growth, SQ109 also acts on the growth
of other bacteria, fungi, and malarial parasites, all of which
lack the common functional target point mmpL3 orthologs
[116-118]. Therefore, it can be presumed that mmpL3 is
not the only target of SQ109.

8.3. Ser/Thr Protein Kinase. The presence of several STPKs
suggests that protein phosphorylation plays a central role
in regulating various biological functions, ranging from
environmental adaptive responses to bacterial pathogenicity.
Among the 11 Mtb STPKs, only protein kinase A (pknA),
pknB, pknG, and serine/threonine phosphatase are essential
for intracellular survival of Mtb cells [119]. The anti-TB effi-
cacy of pknA inhibitors was not significant. The IC., values
of many compounds that inhibited pknB were at the micro-
molar level; however, these compounds had no effect on Mtb
[120-122].

8.4. Alkyl Hydroperoxidases. Although the alkyl hydroperox-
idases ahpD and ahpC of Mtb have no sequence homology,
they are regulated by the same promoter. AhpC provides
hydrogen to protect Mtb from H,O, or other oxidants, while
ahpD reduces ahpC in an oxidized state, thereby ensuring
that ahpC can continue to catalyze the reactions and guaran-
tee recycling. On the other hand, ahpD exhibits alkylhydro-
peroxidase activity, and the highly oxidative environment in
macrophages prevents ahpD from providing antioxidant
protection to the internally retained Mtb. Therefore, the cat-

alytic reaction of ahpC can be blocked by inhibiting ahpD
activity in the antioxidant system of Mtb. In this case, Mtb
is no longer protected by alkylhydroperoxidase, resulting in
cell lysis [123]. These features make ahpD a potentially
attractive target for anti-TB drugs.

8.5. Arylamine N-Acetyltransferase. NATs constitute a major
family of enzymes that acetylate arylamines and hydrazines
using acetyl-CoA as an acetyl donor [124]. A NAT isoen-
zyme in humans (known as human NAT2) is responsible
for the acetylation and inactivation of INH. If INH is acety-
lated by NAT2, the product acetylisoniazid cannot be oxi-
dized to its active form (isonicotinic acid) by katG.
Therefore, the bioavailability of INH can be improved by
effectively inhibiting the activity of NATSs to kill Mtb.

8.6. Diterpene Cyclase and Diterpene Synthase. Diterpene
cyclase and diterpene synthase, encoded by rv3377¢ and
rv3378c¢, respectively, produce diterpenoids of tuberculosi-
nols in the cell membrane of Mtb, which ensures the patho-
genicity and virulence of Mtb [125]. Rv3377c cyclizes
bicyclization and rearrangement of (E, E, E)-geranylgeranyl
diphosphate to halimadienyl-diphosphate (HPP). Mean-
while, Rv3378¢ hydrolyzes HPP to the novel tricyclic diter-
pene edaxadiene, which directly inhibits phagosomal
maturation in vitro [126-128]. Diterpenoid and triterpenoid
acids, including isosteviol and betulinic, oleanolic, and urso-
lic acids, as well as binuclear isosteviol derivatives, showed
moderate anti-TB activity by competitively binding to the
active site of diterpene synthase.

8.7. Isocitrate Lyase (ICL). ICL is a pivotal enzyme that cat-
alyzes the first step of the glyoxylate cycle and has been dem-
onstrated to be essential for Mtb survival against
macrophages [129]. Studies have shown that the persistence
of Mtb disappears after the deletion of the ICL gene. The 3-
nitropropionamide derivatives, which are synthetic
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compounds, showed potent antimycobacterial activity with
an IC,, value of 0.1 uM [130, 131].

8.8. Redox-Related Enzymes. Cytochrome P450 enzymes,
belonging to the monooxygenase system, are mainly distrib-
uted in the endoplasmic reticulum and mitochondrial inner
membrane of eukaryotic cells and are found freely in the
cytoplasm of prokaryotic cells. Antifungal azoles, such as
fluconazole and itraconazole, inhibit cytochrome P450-
dependent enzymes. Studies have shown that econazole
and clotrimazole are most effective against Mycobacterium
smegmatis (MIC values <0.2 and 0.3 uM, respectively).
Moreover, they are superior inhibitors of mycobacterial
growth than RFP and INH, suggesting that CYP51 might
be a potential target for azole drugs to exert anti-TB activi-
ties [132].

8.9. Mycothiol. Mycothiol (MSH) protects Mtb from oxi-
dants and cytotoxins. The biosynthesis of MSH is a multi-
step process that four enzymatic reactions catalyzed by
mshA, mshB, mshC, and mshD. Both mshB and mshD are
not essential for the growth of Mtb, while the knockout of
mshA and mshC could cause fatal damage to the growth of
Mtb [133]. Three classes of compounds comprising the
adenosine derivatives 5-O-[N-(L-cysteinyl) sulfamonyl]
adenosine, NTF1836, and dequalinium chloride, were iden-
tified as promising inhibitors of mshC [134-136].

8.10. 4'-Phosphopantetheinyl Transferases. Phosphopan-
tetheinyl transferases (PptTases) play a major role in activat-
ing fatty acids, polyketides, and nonribosomal peptide
synthases, which endow Mtb with its unique ability to pro-
duce an impressive variety of lipids with unusual structures.
PptT, one of two PptTases produced by Mtb, is encoded by
rv2794c and is responsible for the activation of Pks13
enzyme and various type-I Pks required for the formation
of mycolic acids and lipid virulence factors in mycobacteria
[137]. Amidino-urea 1-[(2,6-diethylphenyl)-3-N-ethylcarba-
mimodoyl]urea, called “8918”, effectively killed Mtb, includ-
ing drug-resistant clinical strains [138]. The “8918” showed
an MIC,, of 3.1 yuM and 0.56-3.0 uM against Mtb laboratory
strain and 29 Mtb clinical strains, respectively [138]. How-
ever, the short half-life of “8918” leads to rapid microsomal
metabolism, resulting in insufficient time to eliminate Mtb
in vivo.

8.11. MptpA and mptpB. Mtb encodes two protein tyrosine
phosphatases, mptpA and mptpB, which act as key virulence
factors and are secreted during infection and are important
for the entry and survival of Mtb in the host cell. At present,
four classes of compounds have been identified as promising
inhibitors, namely, chalcones, aryldifluoromethylphospho-
nic acids, cyclic peptides, and halogen-containing aromatic
compounds [139-142]. The IC,, values of compounds with
the best anti-mptpA and anti-mptpB activities were 0.16
and 0.038 nM, respectively [142].

8.12. Biofilm. Biofilm is an organized colony of bacteria sur-
rounded by large extracellular molecules of bacteria attached
to the surface of living or inanimate objects. Mtb forms bio-
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films in an anaerobic environment and is highly resistant to
anti-TB drugs. Although the mechanism of biofilm forma-
tion of Mtb is not clear, the formation process of it can be
divided into reversible adhesion and irreversible adhesion
[143]. The formation mechanism of Mtb biofilm is similar
to that of other bacterial biofilm. The biofilm maturation
process of Mtb includes four steps, such as attachment, ses-
sile growth, biofilm maturation, and dispersal [144]. It has
been reported that compound C10 could prevent the forma-
tion of a pellicle biofilm to a large extent, making Mtb more
susceptible to antibiotics [145]. C10 in conjunction with
INH may restore the efficacy of INH in patients with INH-
resistant TB and increase the efficacy of antibiotics in killing
Mtb, including those of INH-sensitive strains.

8.13. Type VII Secretion System. The pathogenicity of Mtb is
related to its type VII secretion system, which secretes a large
number of effector proteins to resist the host’s immune
defense and promote Mtb infection. The type VII secretion
system of Mtb consists of five members: ESAT-6 secretion
systems (ESX) 1 to 5, among which ESX-1 is the most widely
studied. The ESX-1 gene cluster is located in the RD1 region,
which is not included in the BCG strain, suggesting that
ESX-1 plays a critical role in Mtb virulence [146, 147]. The
pathogenicity of ESX-1 deficient Mtb mutants is highly
attenuated [148, 149]. Several ESX-1 inhibitors have been
successfully identified and may be promising anti-TB drugs
[150, 151]. Recent studies have shown that IMB-BZ can spe-
cifically inhibit the secretion of CFP-10 to reduce virulence,
which will significantly reduce the survival of mycobacteria
in the intracellular and in vivo [152]. In addition, the inhib-
itors of protein synthesis (chloramphenicol and kanamycin)
and protein degradation (lassomycin and bortezomib) can
specifically block ESX-1 secretion activity in Mtb and reduce
the growth of Mtb by 50% or less [153]. Moreover, subinhib-
itory concentrations of chloramphenicol can specifically
attenuate ESX-1-mediated Mtb virulence in macrophages
[153]. Taken together, targeting ESX-1 may promote the
development of new TB drugs, and these potential inhibitors
still need to be further studied.

9. Problems and Prospects

At present, steady progress has been made in the research
and development of new anti-TB drugs, many promising
drug targets have been identified, and many new and differ-
ent action mechanisms of the leading compounds, candidate
drugs, and anti-TB drugs have been developed. However,
there are still problems and challenges.

9.1. Elucidate the Biological Characteristics and Pathogenesis
of Mtb. The genes, proteins, and pathways involved in the
growth and metabolism of Mtb and their pathogenesis are
undoubtedly the strategies for discovering new drug targets.
Based on the physiological characteristics of bacterial mem-
branes, Chen et al. [154] presumed that Mtb cell membranes
could be used as a feasible target for blocking bacterial per-
sistence and sustained survival. All biological organisms,
regardless of their replication state, need to rely on
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functionally and structurally complete cell membranes to
survive. Bacterial cell membranes are disrupted when
numerous physiological metabolic targets and their trans-
duction pathways are inhibited. However, at present, the
selection of targets in the membrane is a major obstacle to
the development of cell membrane inhibitors. Lipophilic
drugs may cause toxic effects on mammalian cell mem-
branes, resulting in irreversible damage to host cells [154].
These challenges notwithstanding, selective targeting of
Mpycobacterium cell membranes offers an opportunity to
solve the problems of existing anti-TB drugs.

The pathogenicity of Mtb is related to the inflammatory
response caused by the mass reproduction of Mtb in tissue
cells, the components of the bacteria and cell walls, the tox-
icity of metabolites, and the anti-TB immune response of the
body. Although there is abundant evidence that lipids may
be the main pathogenic agent of Mtb, all pathogenic sub-
stances and their pathogenic mechanisms have not been
fully elucidated. At least five different cell wall glycolipids
are released by Mtb into the body’s macrophages. The
release of these components may affect physiological pro-
cesses in and between cells. Therefore, lipid studies are
essential to elucidate the pathogenesis of Mtb and to identify
effective targets.

9.2. Strengthen the Research of Anti-TB Drug Targets. Identi-
fying drug targets is the key to the research and development
of new anti-TB drugs, and the ideal anti-TB drug target
obtained should meet the following conditions: (1) the target
should be the molecule necessary for the growth and metab-
olism of Mtb; once inactivated, it will lead to death or the
lack of retention ability of Mtb; (2) the target does not rap-
idly produce drug resistance or bypass pathway; (3) there
is no homology between the target and human molecules;
and (4) the target should be different from other compounds
already discovered. Some new action mechanisms and
action targets, such as the biological characteristics of reten-
tive Mtb, tissue liquefaction and cavity formation, and the
host immune mechanism of latent tuberculosis infection,
have also become research hotspots.

If the latent mechanism of Mtb could be elucidated and
identify the targets clearing latent Mtb, it will greatly shorten
the course of TB treatment and reduce the production of
drug-resistant Mtb. For instance, the glyoxylate pathway is
involved in the pathogenicity of a variety of pathogens,
which can play a broad-spectrum antibacterial role as a drug
target.

In addition, we need to expand the research ideas to
focus on those proteins related to TB in the host, in which
increasing or reducing the expression of these proteins can
destroy the survival environment of Mtb and enhance the
resistance of the body. The latent mechanism underlying
Mtb in macrophages can be elucidated to find a target to
break its immune escape in macrophages to promote the
clearance of latent Mtb.

One of the traditional methods of drug target discovery
is to identify the target through molecular pharmacology
studies of drugs with significant pharmacological effects.
Although lead compounds with pharmacological effects
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can be observed through animal experiments, disadvantages
including duration of the study, high cost, and low efficiency
are noted. Bioinformatics, including proteomics, genomics,
gene function prediction, and data mining, have been used
in drug development processes in recent years. A study
established a characteristic model of cell body-related genes
and identified 127 potential cell wall-related genes through
bioinformatics analysis of Mtb, which provided strong sup-
port for the discovery of drug targets in the future [155].
In addition, a recent study confirmed that arabinosyltrans-
ferase C, which is involved in the cell wall synthesis of
Mtb, was a potential anti-TB target from the insight of
molecular docking and found that E1 and E2 (Figure 2(d))
with binding affinities of —5.77 kal/mol and-5.13 kal/mol,
respectively, could be potential inhibitors of arabinosyltrans-
ferase C [156]. The combination of biotechnology, such as
gene sequencing, connectivity mapping, and molecular
docking, has become a new strategy for identifying drug tar-
gets for different diseases. Simulated binding with small
molecular compounds using a structure simulation tech-
nique may quickly screen the inhibitors of the target from
a compound library. Moreover, the application of gene
manipulation techniques, such as gene knockout and gene
transfer, makes the identification of drug targets easier.
Therefore, the analyses of drug targets from the perspective
of biology and statistics have broken through the bottleneck
of traditional cytological or molecular screening methods
and have greatly improved the screening speed and effi-
ciency of new anti-TB drug targets.

9.3. In-Depth Study and Modification of Lead Compounds
with Anti-TB Activity. It is well known that target inhibitors
are identified mainly through high-throughput screening,
which often ignores the inhibitory activity of compounds
against Mtb and the adverse reactions to the host itself, lead-
ing to the slow discovery of effective lead compounds. A
large number of novel lead compounds with anti-TB activity
have been identified using high-throughput screening
methods, but the mechanism of action of a few new drugs
remains unclear. Studying the active molecular groups and
mechanism of action of the lead compounds can modify
the lead compounds to obtain more active anti-TB drugs.
In recent years, after an in-depth study of the structure
and anti-TB mechanism of bedaquiline, which still has safety
concerns including QTc prolongation and hepatotoxicity,
scientists have found that replacing the naphthalene C units
with different heterocycles could confirm its efficacy and
reduce its side effects, among which the most classical struc-
tural modification compound is TBAJ-587 [157, 158].
Recent animal studies have shown that TBAJ-587, with addi-
tional improved properties, has better anti-TB activity,
safety, and pharmacokinetic properties and a lower pre-
dicted clinical dose than bedaquiline (https://www
.newtbdrugs.org/pipeline/compound/tbaj-587-
diarylquinoline, https://www.tballiance.org/portfolio/
compound/tbaj-587-diarylquinoline). Currently, a random-
ized, double-blind, placebo-controlled phase I clinical trial
is recruiting healthy adults to evaluate the safety, tolerability,
and PK of TBAJ-587 (NCT04890535).
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9.4. Identify Anti-TB Activity from Existing Antibiotics or
Natural Products. There is no doubt that the discovery of
new chemical scaffolds with novel mechanisms of action is
risky. Therefore, it is an effective strategy to identify the
anti-TB activity of existing antibiotics or optimize their
structure to find new anti-TB drugs. Linezolid is a synthetic
oxazolidinone antibiotic approved by the United States Food
and Drug Administration in 2000 to treat infections caused
by gram-positive cocci. In recent years, linezolid has been
shown to be effective in the clinical treatment of MDR-TB
[159]. Due to the lack of drugs for treating drug-resistant
TB, a combination therapy strategy containing linezolid
has been reported to be a promising option for MDR-TB
and XDR-TB treatment [160]. At present, owing to the seri-
ous side effects of longer-term use, including bone marrow
suppression and optic and peripheral neuropathy, limits
the clinical application of linezolid [161]. If this concern is
amended through structural modification, linezolid analogs
could be developed as new anti-TB drugs in the future. Met-
ronidazole, a class of nitroimidazole antibiotics, has been
widely used to treat local infections caused by anaerobic bac-
teria in clinical settings and has entered the clinical trial
stage of anti-TB in recent years (https://www.clinicaltrials
.gov/ct2/results?cond=tuberculosis&term=metronidazole
&entry=&state=&city=&dist=). The approved delamanid
and PA-824 were derived from the metronidazole scaffold
through different chemical structure modifications. The
advantage of this strategy is that there is a large amount of
pharmacodynamics and human safety data available that
can be quickly entered into clinical trials, but the number
of antibiotics that can be reevaluated is limited.

Although a large number of natural products have
emerged with anti-TB activity, few natural products or
derivatives have been developed into drugs since the discov-
ery of RFP in 1968. There were few unmodified natural
products that could exert the drug activity directly, all of
which need to be modified by introducing chemical groups.
CPZEN-45 and capuramycins, natural product derivatives
with detailed synthetic routes discovered in recent years,
were all suitable for the treatment of TB. Nevertheless, it is
still necessary to develop more unknown natural products
to expand the pipeline of anti-TB drugs. Scientists have iso-
lated more than 170 compounds with anti-TB properties
from marine organisms, of which 10 had strong activities
and potential for further development [162]. In addition,
traditional Chinese medicine is a promising source for the
development of anti-TB lead compounds. For example, cor-
dycepin, an efficient component of Cordyceps spp., kills Mtb
by hijacking bacterial adenosine kinase [163]. An active
compound isolated from Arisaema sinii Krause could inhibit
biofilm formation of Mtb [164]. However, these studies are
limited to in vitro experimental studies, and there are few
reports on further animal experiments and clinical trials.
Therefore, the development of traditional Chinese medicine
against TB is relatively slow.

9.5.  Computational Technologies for Screening and
Developing Novel Anti-TB Drugs. In recent years, with the
development of bioinformatics, a growing number of com-
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putational technologies have been used for drug design and
development. Compared with the traditional drug screening
methods, the emerging computational approaches for drug
screening greatly improve the chance of determining effec-
tive drug molecules and save time and effort. For example,
Puhl et al. developed several computational screening
approaches based on the identified crystal structure of
DG167 in KasA protein which is involved in mycolic acids
synthesis and identified several drug molecules that bind
effectively to KasA protein [165]. Almeleebia et al. selected
224,205 compounds and screened the catalytic site of Mtb
proteasome by the computational approach and then docked
the top hit compounds with the Mtb proteasome molecule,
discovering the interaction mechanism between these com-
pounds and the proteasome and successfully identifying sev-
eral Mtb proteasome inhibitors [166]. The effective
combination of machine learning, artificial intelligence,
CRIS, and other technologies will greatly save time and
reduce the cost, providing a powerful weapon in the fight
against TB in the future [167].

10. Conclusion

In summary, there are currently more than 15 kinds of anti-
TB drugs in clinical trials, but only bedaquiline and delama-
nid have been listed with a new target and structure as of yet.
Screening more anti-TB candidates is urgently needed to
develop more effective and safer anti-TB drugs, especially
against MDR-TB and XDR-TB. Cell wall synthesis, ATP
synthesis, protein synthesis, DNA synthesis, and other signal
transduction pathways of Mtb mentioned in this review have
been considered the research hotspots of anti-TB drug devel-
opment in recent years. Targeting persistent Mtb in infected
host cells has become a focus of research in this field. In the
future, we should find more reasonable and effective targets
to develop new drug candidates with high activity and fewer
adverse reactions, and the research and development of anti-
TB drugs still have a long way to go.
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