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Breast cancer (BC) has been a serious threat to women’s health. Exosomes contain a variety of biomolecules, which is an excellent
choice as disease diagnostic markers, but whether it could be applied as a noninvasive biomarker for BC diagnosis demands to be
additional studied. In this study, we aimed at creating a predictive model and reveal the value of plasma exosomal miRNA (exo-
miRNA) in early diagnosis of BC. Firstly, exosomes isolated from plasma were identified by Nanoparticle Tracking Analysis
(NTA), Transmission Electron Microscope (TEM), and Western Blot. miRNA expression in plasma samples from 56BC
patients and 40 normal controls was analyzed by high-throughput sequencing. miRNAs with strong correlation characteristics
were selected by Lasso logistic regression. Then, we built the training set and test set, evaluated the Lasso regression accuracy,
and evaluated the performance of different models in the training set and test set. Finally, GO analysis, KEGG, and Reactome
pathway enrichment analysis were used to understand the biological significance of 16 characteristic miRNAs. The successful
separation of exosomes in serum was identified by NTA, TEM, and Western Blot. The training set data matrix containing
1962 miRNAs was obtained by sequencing for model construction, and 16 strongly correlated miRNAs were selected by Lasso
logistic regression. The accuracy of Lasso regression in training set and test set were 97.22% and 95.83%, respectively. We built
different models and evaluated the performance of each model in the training set and test set. The results showed that the
AUC values of Lasso, SVM, GBDT, and Random Forest model in the training set were 1, and the AUC values in the test set
were 0.979, 0.936, 0.971, and 0.979, respectively. Bioinformatics analysis showed that 16 signature miRNAs were significantly
enriched in cancer-related pathways such as herpes simplex virus 1 infection, TGF-β signaling, and Toll-like receptor family.
The results of this study suggest that the 16 characteristic miRNAs screened from plasma exosomes can be used as a group of
biomarkers, and the prediction model constructed based on this set of markers is expected to be used in the early diagnosis of BC.

1. Introduction

As the highly heterogeneous malignancies at the molecular
level, the morbidity and mortality rate of breast cancer (BC)
are very high and increasing year by year. In 2018, the inci-
dence rate of cancer in the United States displayed that about
266 thousand of new cases of BC accounted for 30% of all

women’s malignant tumors, far exceeding the second lung
cancer (13%) and the third colorectal cancer (7%) [1].
Experts pointed out that the cure rate of the disease can reach
more than 90% if diagnosed and treated as soon as possible.
At present, BC screening methods include B-mode ultra-
sound, mammography, magnetic resonance imaging, and
biopsy. However, these methods are low sensitivity, radiative,
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expensive, or invasive, which makes the diagnosis of BC still
lags behind [2–5]. Most patients missed the best treatment
period at the time of diagnosis, which indicates that there is
a great demand for effective early diagnosis methods in clinic.
Exosome is an attractive source of biomarker for disease
detection and prognosis because of their selective enrichment
and ease of accessibility from biofluids [6]. Saliva and urine
exosomal proteins have already been proposed as biomarkers
for non-small lung carcinoma, prostate cancer, and gastric
cancer [7–9]. Moreover, plasma exosome is a source of early
disease biomarker for Alzheimer’s and Parkinson’s neurolog-
ical diseases [10, 11].

Exosomes are a kind of membrane vesicles with a diame-
ter of about 30~150nm, which can come from diversified
cells, are closely related to multiple biological processes
[12], and are important tools for material and information
exchange between cells. The size of miRNA (miRNA) is usu-
ally about 20 nucleotides. Studies have confirmed that the
regulation of fertility in mammals is inseparable from
miRNA, while exosomes can carry miRNA to remote cells
to modulate cell physiological activities and its double-layer
membrane structure can ensure the stability of miRNA in
body fluids [13]. Therefore, exosomal miRNA (exo-miRNA)
is suitable for the study of diagnostic markers and pathogen-
esis of diseases. Studies have shown that the detection of
miR-1246, miR-21 [14], miR-373 [15], or miR-423-5p [16]
in plasma exosome can be used to diagnose BC. However,
the sensitivity and specificity of single miRNA detection in
disease diagnosis is relatively low. Combined detection of
multiple miRNAs may effectively improve the detection rate
of BC. Therefore, developing a set of exo-miRNAs which can
be used for BC diagnosis is a vital task.

In this study, after determining the success of plasma
exocrine separation, we analyzed the expression of miRNA
in plasma exocrine and selected 16 strong correlation fea-
tures miRNA by Lasso logistic regression. We assessed the
performance of 16 miRNA for early detection and diagnosis
of BC by constructing different machine learning algorithm
models. The biological significance of 16 characteristic miR-
NAs was evaluated by bioinformatics analysis. Overall, these
data highlight the value of exo-miRNA as a biomarker for
BC. They may be used for early detection and diagnosis of
BC in future clinical practice.

2. Material and Methods

2.1. Patients and Sample Collection. 96 participants (56
patients with BC and 40 healthy subjects) who voluntarily
provided informed consent were enrolled at the First People’s
Hospital of Foshan from January 2021 to December 2021. All
patients underwent pathological biopsy to confirm the diag-
nosis of BC and none of the patients had received any treat-
ments. Patients with systemic diseases or other infectious
diseases were excluded. Healthy subjects were recruited
among healthy adults who took routine health examinations
at the First People’s Hospital of Foshan and did not have any
type of cancers. This study was carried out in accordance
with the Declaration of Helsinki, and the study protocol
was approved by The Human Investigation and Ethical

Committees of the First People’s Hospital of Foshan. The
tubes with 10mL ethylene diamine tetraacetic acid (EDTA)
were used to gather the fasting blood samples of participants.
The samples were centrifuged at low temperature and the
collected supernatant was stored at -80°C.

2.2. Exosome Isolation and Size Determination. The isolation
method of exosomes is detailed in the study of Thery and
Amigorena [17]. In short, the separated exosomes were
obtained by centrifugation, filtration (Merck KGaA, Darm-
stadt, Germany), and PBS resuspension of plasma samples,
and the size and morphology of exosomes were observed
by EM-2010 Transmission Electron Microscope (JEOL,
Ltd., Tokyo, Japan).

2.3. Nanoparticle Tracking Analysis (NTA). The equipment
used in this experiment is Zetaview PMX 110 (Particle
Metrix, Meerbusch, Germany). The collected exosomes were
diluted with PBS to the particle concentration of 1:0 × 108
~ 1:0 × 109 particles/mL, and the particle size distribution
and concentration of exosomes were detected by dynamic
light scattering method. The particle concentration was
obtained by video analysis and normalized.

2.4. Western Blot. The exosome surface marker proteins
CD63, CD9, and CD81 were selected for identification.
The isolated exosomes were lysed to obtain protein. The
denatured protein was mixed with the sample buffer and
separated by polyacrylamide gel electrophoresis, then trans-
ferred to membrane, sealed, incubated with primary anti-
body (antibodies used in this study include CD63 mouse
mAb (SC-5275, Santa Cruz, USA), CD9 rabbit mAb
(#13174, CST, USA), CD81 rabbit mAb (# 56039, CST,
USA), and β-actin rabbit mAb (#8457, CST, USA)), and
incubated with the secondary antibody labeled HRP and
developing using ECL agent.

2.5. Plasma Exosomal RNA Isolation and Small RNA
Sequencing. The methods and equipment involved are
equivalent to reference [18]. Plasma exosomes were isolated
using ultracentrifugation. Briefly, one milliliter of plasma
sample was centrifuged at 10,000× g for 30min at 4°C to
remove all cell debris. The collected supernatant was then
subjected for ultrahighspeed centrifugation at 150,000× g
for 70min at 4°C. The upper liquid was discarded and then
the pellet containing exosome was resuspended in 200μL
PBS. Total RNA including miRNA was isolated from plasma
exosome by miRNeasy Serum/Plasma Kit (QIAGEN). The
quantification and size distribution of the extraction were
analyzed by Qubit V.4.0 and Agilent Bioanalyzer 2100,
respectively. Quantified RNA was subjected for sequencing
library preparation using NEBNext Small RNA Library Prep
Set for Illumina (NEB Biolabs). Purified small RNA cDNA
library was quantified by Qubit V.4.0 and the size distribu-
tion was analyzed on Agilent Bioanalyzer 2100, followed
by sequencing on Illumina HiSeq4000 platform.

2.6. Model Establishment. In this study, there were 96 sam-
ples of primitive exosomes miRNA data, including 56 BC
patients (T) and 40 normal samples (N). The miRNA Count
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matrix of 96∗2504 was obtained by sequencing and data pro-
cessing. We set up a training set (72 samples) and a test set
(24 samples) by randomly assigning BC samples. The con-
struction and verification of the model were completed by
training set and test set, respectively. Four mainstream
machine learning algorithms were used to build the model,
including Lasso, SVM, GBDT, and Random Forest. The per-
formance measurement of the model was evaluated by ROC
curve, and the evaluation index was AUC. The accuracy was
general when AUC between 0.5-0.7, AUC between 0.7-0.9
had a certain accuracy, and AUC greater than 0.9 had a
higher accuracy.

2.7. Analysis of RNA Sequencing Data and miRNA
Expression Levels. Following sequence alignment, known
and novel microRNAs were identified using the miRDeep2
software algorithm. The miRNA expression levels were esti-
mated by the number of reads per million and the relative
miRNA expression levels were analyzed using the DEG seq
method [19]. miRNAs with read counts per million mapped
reads (CPM) ≥5 in at least 20% of all samples were identified
as expressed miRNAs [18]. Differential expression analysis
of miRNAs between the two groups were defined as having
a fold change ≥2 and a false discovery rate (FDR) adjusted
P value of <0.05. All data analysis and visualization of the
differentially expressed genes were conducted using R 3.3.1
(http://www.r-project.org).

2.8. Prediction of miRNA Target Genes and their Molecular
Pathways. Target genes of differentially regulated miRNAs
were predicted using the starBase database, an integrative
database for prediction of human functional microRNA tar-
gets [20]. The target gene prediction network of the 16 dif-
ferentially expressed miRNAs was plotted using the
Cytoscape software. The target genes were analyzed in terms
of Gene Ontology (GO) [21] functional annotation and
Kyoto Encyclopedia of Genes and Genomes (KEGG) [22]
pathway enrichment analysis using an R package named
clusterProfiler.

2.9. Statistical Analyses. The difference of miRNA expression
level in exosomes between cases and controls was deter-
mined using Mann–Whitney U test. All statistical analyses
were performed using SPSS version 23.0 (IBM Corporation,
Armonk, NY, USA) and GraphPad Prism 7.0 (GraphPad
Software, Inc., La Jolla, CA, USA). P < 0:05 was considered
to indicate a statistically significant difference. The glmnet
package (version number: 4.0-2) R language was used for
further screening of Lasso regression; the Lambda (λ) value
with the smallest standard error was selected to construct
the optimal Lasso regression model, and the regression coef-
ficients (β) factors not equal to 0 were included in the mul-
tivariate logistic regression model. SVM, random forest, and
other methods all use the corresponding package of the R
language. The package “pROC” (version number: 1.16.2)
was used to draw the nomogram to predict the receiver
operating characteristic (receiver operating characteristic,
ROC) curve and calculate its area under the curve (area
under ROC curve, AUC).

3. Results

3.1. Characteristics of Subjects. The clinical features of 56BC
patients and 40 healthy subjects were shown in Table 1.
There was no significant difference in age distribution
between BC patients and healthy subjects (P > 0:05). In 56
patients with BC, 46 patients (82.1%) were graded as tumor
size T1-T2, and 10 patients (17.9%) as tumor size T3-T4; the
number of patient with lymph node metastasis or nonlymph
node metastasis was 35 (62.5%) or 21 (37.5%); 26 patients
(46.4%) were graded as grading G1-G2, and 30 patients
(53.6%) as grading G3; there were 18 patients (32.1%) with
Estrogen Receptor (ER) negative and 38 patients (67.9%)
with ER positive; there were 19 (33.9%) and 37 (66.1%) Pro-
gesterone Receptor- (PR-) negative and positive patients,
respectively; there were 46 (82.1%) and 10 (17.9%) HER2-
negative and positive patients, respectively.

3.2. Identification of Plasma Exosomes from Patients with
Breast Cancer. The exosomes were successfully isolated from
BC and normal controls by differential ultracentrifugation
and identified with different methods. Nanoparticle tracking
analysis showed that the diam of extracellular vesicles (EVs)
was about 50~100nm, and the concentration was 6:8 × 107
particles/mL (Figure 1(a)), video capture of exosome move-
ment is shown in Figure 1(b). Transmission Electron
Microscopy (TEM) displayed that the isolated EVs were

Table 1: Clinical characteristics of patients with breast cancer
included in the study.

Characteristic Breast cancer no. (%) Control no. (%)

Total 56 40

Age

<50 27 (48.2) 18 (46.6)

≥50 29 (51.8) 22 (53.1)

Tumor size

T1-2 46 (82.1) —

T3-4 10 (17.9) —

Lymph node metastasis

(-) 35 (62.5) —

(+) 21 (37.5) —

Grading

G1-2 26 (46.4) —

G3 30 (53.6) —

ER

(-) 18 (32.1) —

(+) 38 (67.9) —

PR

(-) 19 (33.9) —

(+) 37 (66.1) —

HER2

(-) 46 (82.1) —

(+) 10 (17.9) —
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spheres about the same size as the exosomes (Figure 1(c)).
The expression levels of three exosome marker proteins were
detected by Western Blot. In the exosomes isolated from
plasma, we observed the expression of CD63, CD9, and
CD81 (Figure 1(d)).

3.3. Prediction Model Based on Circulating Exosomal
miRNAs. The analysis of Lasso logistic regression was per-
formed by R software glmnet package, and the optimal λ
value was determined through cross-validation. As shown
in Figure 2(a), the penalty term coefficient Lambda = 0:057
(Lambda. Min) achieves the best performance and there were
16 miRNAs selected into variables at this time. Lambda.lse
was to select a simpler model without significantly reducing
the performance of the model. Figure 2(b) was a penalty plot
of 1962 miRNA coefficients. The variations of penalty coeffi-
cient Lambda made more and more variable coefficients
compressed to 0.16 miRNAs were selected when Lambda
was 0.057. Figure 2(c) showed the distribution of different

categories of samples in the training set, while Figure 2(d)
showed the distribution of different categories of samples in
the test set. In addition, the Figures 2(c) and 2(d) also showed
the accuracy of Lasso regression. The results showed that the
model could show high accuracy in both training set and test
set. We further constructed the model using the selected 16
characteristic miRNAs. Taking the tumor sample as the con-
cern class (positive example), Figures 2(e) and 2(f) were the
ROC curves of the training set and the test set in different
models, and the diagnostic efficacy of each model was shown
in Table 2. The results showed that there was an excellent
diagnostic performance of these four models, and the AUC
values of Lasso, SVM, GBDT, and Random Forest models
in the training set were 1, and the AUC values in the test
set were 0.979, 0.936, 0.971, and 0.979, respectively (Table 2).

3.4. Expression of Exosomal miRNAs in Training Set and Test
Set and Prediction of their Target Genes. Further visual anal-
ysis was made on the expression of 16 miRNAs selected by
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Figure 1: Identification of exosomes isolated from serum. (a) NanoSight analysis for serum exosomes. The average concentration and size of
particles are 6:8 × 107 particles/mL and 154.68 nm. (b) Observation of exosome morphology using Laser Scattering Microscopy. (c)
Transmission Electron Microscopy images of isolated exosomes. Scale bar = 200 nm. (d) Using β-actin as an internal reference, we
detected the expression levels of three exosomal protein markers, CD63, CD9, and CD81 by Western Blot.
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Lasso in the normal group and the tumor group. The heat-
maps shown in Figures 3(a) and 3(b) showed the expression
of 16 miRNAs in the normal and the tumor groups of the
training set and the test set, respectively. The results showed

that there were 6 upregulated and 10 downregulated miRNAs
in the training set, while 5 upregulated and 11 downregulated
miRNAs in the test set (Supplementary Table 1). Next, we
verified our results through the GEO databases, as shown in
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Figure 2: Machine learning-based diagnostic using 16 exo-miRNAs. (a) We used the R software glmnet package with the parameter family
set to binomial to implement Lasso logistic regression and selected strongly correlated features. Using 5-fold cross-validation, the best
performance was obtained at the highest point of the curve AUC and the penalty term coefficient Lambda. Min (0.057). Lambda.lse
(0.109) is to choose a simpler model without significantly reducing the performance of the model. (b) This figure is a penalty plot of
1962 miRNA coefficients. As the penalty coefficient Lambda changes, the coefficients of more and more variables are compressed to 0,
and 16 miRNAs are selected when Lambda is 0.057. (c,d) These pictures show the distribution of the training set (c) and test set (d) in
different categories of samples and the accuracy of Lasso regression. (e,f) The ROC curves of the training set (e) and the test set (f) in
different models, the area under the curve represents the model AUC value.
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Supplementary Figure 1, miR-1292, miR-5189, and miR-660
were upregulated in the tumor group, while miR-4804-3P,
miR-5701, miR-889, miR-513b, and miR-450a were
downregulated in the tumor group, which was consistent
with our results. Based on 16 characteristic miRNAs, each
miRNA target gene was predicted using the starBase
database. The number of each miRNA target gene was
shown in Figures 3(c) and 3(d) which showed the target
gene prediction network of the 16 differentially expressed
miRNAs plotted using the Cytoscape software.

3.5. Biological Function Prediction of 16 miRNAs. Go function
annotation was made for miRNA target genes to explore the
biological significance represented by each miRNA. The
results showed that 16 characteristic miRNAs were enriched
in biological processes such as DNA damage checkpoint,

DNA integrity checkpoint, and mitotic DNA damage check-
point, in cell composition such as ubiquitin, ligase complex,
nuclear chromatin, and transfer complex, transferring phos-
phorus containing groups, and in phosphoric ester hydrogen
activity, core promoter binding, and ubiquitin like protein
transfer activity (Figure 4(a)). KEGG pathway enrichment
analysis found that herpes simplex virus 1 infection, proteo-
glycans in cancer and viral carcinogenesis were the enrich-
ment entries of 16 characteristic miRNAs (Figure 4(b)).
Reactome pathway enrichment results showed that 16 charac-
teristic miRNAs were mainly enriched in signaling by TGF-β
receptor complex, signaling by TGF-β family members and
Toll-like receptor family (Figure 4(c)). Furthermore, we per-
formed the GO and KEGG enrichment analyses of target
genes of 6 upregulated miRNAs and 10 downregulated miR-
NAs, respectively (Supplementary Figures 2–3).

Table 2: Model diagnostic performance based on Lasso algorithm.

Diagnostic value
Training set Test set

Lasso SVM GBDT Random Forest Lasso SVM GBDT Random Forest

AUC 1.000 1.000 1.000 1.000 0.979 0.936 0.971 0.979

Accuracy 0.972 0.986 1.000 1.000 0.958 0.833 0.875 0.917

Sensitivity (%) 0.933 0.967 1.000 1.000 0.900 0.700 0.900 0.900

Specificity (%) 1.000 1.000 1.000 1.000 1.000 0.929 0.857 0.929
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Figure 3: Expression of 16 miRNAs in training set and test set and prediction of their target genes. (a) Heatmap showing the expression of
16 miRNAs in the training set in tumor and normal samples. (b) Heatmap showing the expression of 16 miRNAs in the test set in tumor and
normal samples. (c) The bar plot shows the total number of genes targeted by each of dysregulated miRNAs. (d) Target gene prediction
network of differentially expressed miRNAs.
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4. Discussion

MicroRNA (miRNA) in plasma exosomes has been reported
to be a potential biomarker in many cancers. However, its
diagnostic value in BC needs to be further determined. In
our study, 96 participants (56 patients with BC and 40
healthy subjects) were randomly divided into 72 samples in
the training set and 24 samples in the test set. The expression
of exosome miRNAs in plasma of all subjects was evaluated
by RNA sequencing technology. Finally, 16 characteristic
miRNAs were selected by using Lasso logical regression,
and different models were constructed to evaluate the diag-
nostic performance of 16 characteristic miRNAs in training
set and test set. Furthermore, we used bioinformatics analy-
sis to predict 16 crucial miRNA signaling pathways involved
in BC, which linked our biomarkers with the underlying
mechanisms of BC.

In recent years, many related studies have applied machine
learning models to the diagnosis and prognosis evaluation of
BC. As early as 2005, there were researchers using artificial neu-
ral networks and decision trees algorithms and logistic regres-
sion to develop large datasets to establish a prognostic model
for BC patients, and this is the first time that machine learning
algorithm has been applied to the study of BC patients’ progno-
sis evaluation [23]. Other studies have shown that the prognosis
of invasive BC could be predicted well by machine learning
models [24]. Exosomes contain many types of proteins, DNA,
RNA, and other substances, which are promising biomarkers
of cancer for early diagnosis. In addition, in vitro and in vivo
miRNAs in plasma have been shown to be differentially
expressed. In this study, we used plasma exosomes miRNAs
as biomarkers to construct a model for detection of BC. Among
the four models we constructed, it is preliminarily considered
that Lasso and Random Forest have the best properties, and
their AUC values are 0.979, higher than SVM and GBDT.
The models based on 16 miRNAs in this study have high diag-
nostic value in the early diagnosis of BC, and the sensitivity of
the training set and test set of Lasso, GBDT, and Random forest
models was as high as 90%, which was superior than routine
tumor biomarkers CA153, CA125, and CEA (their sensitivities
were 14.6%, 14.6%, and 81.3%, respectively) [25]. It is also
reported that the combined detection of CA153 and other exo-
somal miRNA can improve the sensitivity of BC diagnosis [26].
Therefore, the diagnostic value of the combination of the 16
miRNAs and CA153 is worth to study in the future, and we will
also enhance the performance of the predictive model through
increasing the sample size.

It has been reported that miR-889-3p, miR-660-5p, miR-
513b-5p, and miR-450a are related to the proliferation, inva-
sion, and migration of BC, and high expression of miR-660-
5p was closely related to lymph node metastasis, advanced
TNM stage, and vascular invasion of BC tumors, whichmight
be a promising target for BC treatment [27–30]. Chen et al.
have reported the role of miR-4644 in prediction of therapeu-
tic responses and suggest that it could serve as valuable sources
for biomarker detections and optimal chemotherapeutic
choices for BC patients [31]. However, the role of the remain-
ing 11 miRNAs in BC has not been reported yet. This study is
the first to report the relationship between these 11 miRNAs

and BC. In order to determine the biological function of 16
characteristic miRNA selected in BC from this study, we used
starBase database topredict target genes and carried out bioin-
formatics analysis. The results showed that herpes simplex
virus 1 infection and proteoglycans in cancer pathway were
the main enrichment entries of the target genes of 16 charac-
teristic miRNAs. It has been reported that HSV-1 infection
is a key factor in the progression of BC; [32, 33] more interest-
ingly, HSV-1 is an oncolytic virus that can kill tumor cells, and
it has been found that the attenuated HSV-1 clone, namely
HF10, can lysate human and mouse BC cells in vitro and is
expected to be further used in the treatment of BC [34]. The
above data fully supported the close relationship between
HSV-1 and BC, and our data showed that 16 characteristic
miRNA target genes were significantly enriched in HSV-1
infection, proving that it had important biological signifi-
cance. Another study reported that TGF-β signal pathway
regulates the EMT process, tumor microenvironment, and
the stemness in BC cells; [35] TLR2 and TLR4 were highly
expressed in serum of BC patients and were associated with
multiple clinicopathological parameters, it might be a poten-
tial diagnostic biomarker for BC [36]. Reactome pathway
enrichment analysis in this study showed that 16 characteris-
tic miRNA target genes were enriched in signal pathways
mediated byTGF-β andToll-like receptors, whichwas consis-
tent with the results of reported studies, and it further illus-
trated the importance of 16 characteristic miRNAs in the
development of BC. One of the limitations of this study was
related to the sampling quantities, especially for the construc-
tion of prediction models. Consequently, the actual accuracy
of the prediction might not be as vigorous as it seems. In our
next step, the samples will be expanded and the predictive
model will be further refined accordingly.

Although the biological and functional characteristics of
exosomes in BC are becoming more clear, there are still
some difficulties in applying exosome detection to clinical
diagnosis. The exosomes obtained from the body originate
from different cell types. The traditional analysis methods
are not enough to identify the specific source of exosomes.
It is imperative to explore an efficient, rapid, and economical
method to determine the source of exosomes in the future.

5. Conclusions

To sum up, our research has identified a set of exo-miRNAs
that can be used to detect BC. This will provide a new pow-
erful basis for early diagnosis of BC.
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