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Background. With the development of research, the importance of microRNAs (miRNAs) in the occurrence, metastasis, and
prognosis of lung adenocarcinoma (LUAD) has attracted extensive attention. This study is aimed at predicting overall survival
(OS) results through bioinformatics to identify novel miRNA biomarkers and hub genes. Materials and Methods. The data of
LUAD-related miRNA and mRNA samples was downloaded from The Cancer Genome Atlas (TCGA) database. Upon
screening and pretreatment of initial data, TCGA data were analyzed using R platform and a series of analytical tools to
identify biomarkers with high specificity and sensitivity. Results. 7 miRNAs and 13 hub genes that had strong relation to the
overall surviving status were identified in patients with LUAD. The expression of seven miRNAs (hsa-miR-19a-3p, hsa-miR-
126-5p, hsa-miR-556-3p, hsa-miR-671-5p, hsa-miR-937-3p, hsa-miR-4664-3p, and hsa-miR-4746-5p) could apparently
improve the OS rate of patient with LUAD. The 13 hub genes, namely, CCT6A, CDK5R1, CEP55, DNAJB4, EGLN3, HDGF,
HOXC8, LIMD1, MKI67, PCP4L1, PPIL1, SCAI, and STK32A, showed a correlation with the OS status. Conclusion. 7 miRNAs
were identified as novel biomarkers for the prognosis of patients with LUAD. This study offered a deeper comprehension of
LUAD treatment and prognosis from the molecular level and helped enhance the understanding of the pathogenesis and
potential molecular events of LUAD.

1. Introduction

Lung carcinoma is among the commonest malignancies that
exert tremendous social and economic influence upon
patients and their families [1]. As a common lung carcinoma
form, non-small-cell lung cancer (NSCLC) can be further
divided into adenocarcinoma (LUADs) and squamous cell
carcinoma (LUSCs). Despite decades of progress in early
detection and treatment, the survival rates of patients in
advanced stages remain low [2]. Effective biomarkers to
identify patients who may have greater possibilities of recur-
rence and risk of death are also lacking. LUAD is the most
aggressive histologic kind of lung carcinoma. The incidence
of LUAD is also increasing year by year [3]. Given that early
detection and effective treatments are lacking in the early
stages of this disease, its mortality rate has not decreased.

Therefore, it is imperative to further study the occurrence
and development mechanism of LUAD.

MicroRNAs (miRNAs) refer to small noncoding RNAs
whose lengths range from 18 nucleotides to 25 nucleotides.
They regulate gene expression at the posttranscriptional
level by binding to the 3′-untranslated region of target miR-
NAs, resulting in mRNA degradation, cleavage, or transla-
tion inhibition [4]. The silencing complex degrades the
mRNA or prevents its translation under the guidance of
miRNA by pairing with the mRNA base of the target gene.
miRNAs are capable of acting as tumor suppressors or onco-
genes by regulating genes involved in tumorigenesis. Abnor-
mal miRNA expression is associated with most cellular
functions, especially those related to the occurrence and pro-
gression of cancer, thus enabling miRNA to be an attractive
biological marker in the detection, classification, and
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prediction of diverse carcinomas [5–7]. Earlier studies have
attempted to identify miRNAs served as potential biomark-
ers in lung carcinoma patients. Bishop et al. [8] found the
usability of methods upon the basis of miRNA for the classi-
fication of LUSC and LUAD. Li et al. [9] identified eight
miRNA signatures as latent biomarkers to predict the sur-
vival status in LUAD patients.

Although there has been considerable progress in the
systematic evaluation of carcinoma-related miRNAs and
molecular markers to predict overall survival (OS) or immu-
notherapy response in patients with LUAD, for example,
Zhong et al. [10] systematically revealed 38 common regula-
tory miRNAs in cancer tissues and circulation by integrating
literatures. However, more diagnostic and therapeutic
miRNA biomarkers are still needed for professional in-
depth clinical evaluation to support personalized treatment
for lung cancer patients, which needs to be confirmed by
randomized multicenter clinical trials.

The Cancer Genome Atlas (TCGA) database possesses
massive standardized clinical data, such as gene expression
information, miRNA expression data, DNA methylation
information, and tremendous samples from every kind of
carcinoma [11]. In the present study, RNA sequencing and
miRNA sequencing of data from TCGA were used to display
the dysfunctional miRNA microenvironment and establish
helpful biological markers for treatment with miRNA.

2. Methods

2.1. Data Collection. Raw data of miRNA and mRNA
expression and other clinicopathological information for
LUAD was acquired from TCGA data portal. R package
was used to isolate LUAD tissues from adjacent nonneoplas-
tic lung tissues in the downloaded sample. Finally, 594
mRNA LUAD-related samples (59 normal vs. 535 tumors)
and 567 miRNA LUAD-related samples (46 normal vs. 521
tumors) were downloaded from TCGA online database.
The clinicopathological data collected included sex, age,
stage, and TMN stage, as shown in Table 1. All data were
from TCGA, and they did not require further IRB approval.
This study complied with TCGA’s publication guidelines
and data access policies.

2.2. Establishment and Validation of Prognostic Signature
Based on miRNA. R-Pack (edgR) was used for the differential
analysis of mRNA expression data, and mRNAs possessing
apparently distinctive expression levels were selected
(FDR < 0:05) and jlog 2FCj ≥ 1:0. Normalization of the expres-
sion profiles was performed for miRNA through the R package.
Then, the profiles were classified into two groups: testing group
and training group. We used the Cox univariate proportional
risk regression to evaluate the miRNA levels, T, N, M, age,
sex, staging, and survival status in the training group.
Multivariate Cox analysis was utilized for those with P < 0:05.
Only miRNAs and clinical factors for which P < 0:05 in the
univariate and multivariate Cox analyses were thought to be
prognostic factors for LUAD. The prognostic features were
calculated as follows: risk score = ðcoefficientmiRNA1 ×
expression of miRNA1Þ + ðcoefficientmiRNA2 × expression

of miRNA2Þ +⋯+ðcoefficientmiRNAn × expressionmiRNA
nÞ. We divided patients with LUAD into high-risk and low-
risk groups based on the median risk score. Kaplan-Meier
analysis was used to analyze and compare overall survival
(OS) times between the two subgroups with a two-side log-
rank test. Time-dependent receptor operating characteristic
(ROC) curves were conducted to assess the specificity and
sensitivity of prognostic features based on miRNA expression.

2.3. Bioinformatic Analysis of miRNA Target Genes and
Pathways. Three online analysis approaches were employed
to forecast and ensure the completeness of the target genes:
miRDB (http://www.mirdb.org/miRDB/), TargetScanHuman
(http://www.targetscan.org/), and miTarBasee (http://
mirtarbase.mbc.nctu.edu.tw/). David Database (https://david
.ncifcrf.gov/) was used to perform Gene Ontology (GO) anal-
yses, which comprised molecular functionality (MF), biologi-
cal process (BP), and cell composition (CC), pathways
analyzing in the Kyoto Encyclopedia of Genes and Genomes
(KEGG). Cytoscape software was employed to visualize the
network of interactions in miRNAs and their target mRNAs.
The official gene symbols for the predictive target genes were
imported into the Search Tool for the Retrieval of Interacting
Genes (http://string-db.org) to evaluate the gene interaction
status within the protein-protein interaction network.

3. Results

3.1. Establishing miRNA Prognostic Signature in Association
with Survival Status of Patients with LUAD. A total of 5523
differentially expressed mRNAs, among which 3711 were
upregulated and 1812 were downregulated (Figures 1(a)
and 1(b), Table S1), and 362 differently expressed
miRNAs (266 upregulated and 96 downregulated
miRNAs, Table S2) were acquired (Figures 1(c) and 1(d)).
Subsequently, characteristics of the differently expressed
miRNAs were identified through univariate Cox analysis
(Table S3). Then, important miRNAs from the univariate
Cox regression models and clinical factors were used in
the multivariate Cox proportional hazard regression
models. Seven miRNAs with different expression levels
(hsa-miR-1293, hsa-miR-5001-3p, hsa-miR-550-5p, hsa-
miR-584-5p, hsa-miR-873-5p, hsa-miR-133a-3p, and hsa-
miR-148a-3p) were selected. These miRNAs were used as
the model miRNAs (Figure 2). The prognostic features

Table 1: The characteristics of LUAD patients in TCGA.

Variable Number of samples

Gender

Male/female 174/172

Age at diagnosis

≤65/>65 166/180

Stage

T 300

N 291

LUAD: lung adenocarcinoma; TCGA: The Cancer Genome Atlas; T: tumor;
N: node.
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Figure 1: Continued.
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Figure 1: (a) Volcano plot of differentially expressed mRNAs. (b) Heat map of mRNAs with different expressions. (c) Volcano plot of
miRNAs with different expressions. (d) Heat map of miRNAs with different expressions. The red color refers to upregulatory mRNAs/
miRNA, and the green color means downregulatory mRNAs/miRNA. mRNAs: messenger RNAs; miRNAs: microRNAs.
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were calculated as follows: risk score = ð5:412e − 02 ×
expression of hsa −miR − 1293Þ + ð5:754e − 02 × expression
of hsa −miR − 5001 − 3pÞ + ð8:253e − 02 × expression of hsa
−miR − 550 − 5pÞ + ð1:908e − 04 × expression of hsa −miR
− 584 − 5pÞ + ð3:372e − 02 × expression of hsa −miR − 873
− 5pÞ + ð−3:203e − 03 × expression of hsa −miR − 133a − 3
pÞ + ð−1:337e − 06 × expression of hsa −miR − 148a − 3pÞ.

3.2. Survival Outcome and Multivariate Examination. The
effect of the expression of seven miRNAs on the survival of
patients was analyzed using the Kaplan-Meier curve. As
shown in Figure 3, these seven miRNAs significantly influ-
enced the OS outcomes. Patients with LUAD were divided
into low-risk and high-risk subgroups based on the median
calculated using the risk score formula. The results showed
that the OS of patients in the high-risk group was lower than
that of patients in the low-risk group (P = 1:34e − 02 and P
= 7e − 04, Figure 4). Time-dependent ROC curve analyses
were used to evaluate the sensitive and specific features of
the 7 miRNA signatures in predicting the prognosis The area
under curve (AUC) of ROC was 0.617 in the training group
and 0.661 in the testing group at 5-year OS (Figures 5(a) and
5(b)), indicating the moderateness of this prognostic model
in terms of sensitivity and specificity. The risk scores of the
training and testing group were sorted, and the survival sta-
tus of each patient was plotted on a heat map. An apparently
higher mortality was seen in the high-risk group compared

with the low-risk group (Figures 5(c) and 5(d)). Risk factor
was identified, and a prognostic model was developed
through univariate and multivariate Cox analyses based on
these 7 miRNAs. In accordance with the characteristics of
the seven miRNAs, risk score (HR = 1:5261, 95%CI =
1:5639 – 4:0761, and P = 0:0319) and pathological stage
(HR = 2:5622, 95%CI = 1:4341 – 4:5775, and P = 0:0015)
were found to be independent prognosis factors for OS
(Figures 6(a) and 6(b)).

3.3. GO and KEGG Enrichment Analyses of Target Genes.
Three independent websites were used to predict the target
genes, and the potential biological functions of the seven miR-
NAs in the development of LUAD were determined. The over-
lapping genes were identified as hub genes. A total of 42 genes
were revealed as regulated by the 7 miRNAs (Table S4). As
shown in Figure 7, hub miRNAs regulated a range of genes,
some of which were regulated by two or more miRNAs.
Interestingly, miR-873-5p regulated 36 genes, accounting for
85.7% of the prognosis-related miRNAs. Then, these target
genes were functionally enriched through GO and KEGG
categories. According to Figure 8, the outcomes of the GO
analyses demonstrated unbalanced enrichment of genes
throughout three biological statuses. Biological process (BP)
analyses presented the enrichment of target genes during
angiogenesis and cell proliferation and negatively regulated
the transcription from RNA polymerase II promoter. Cellular
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Figure 2: Multivariate Cox analysis to identify differentially expressed miRNAs.

5BioMed Research International



component enrichment showed the main enrichment of
genes in plasma membrane, and molecular function
analyses demonstrated the main focus of target genes was
on protein binding. KEGG enrichment showed that those
genes may contribute to LUAD tumorigenesis through
multiple pathways related to carcinoma, such as pathways
in carcinoma, the Hippo signaling pathway, and the FoxO
signaling pathway.

3.4. Survival Outcomes of MicroRNA Target Genes. Accord-
ing to the analyses of the influence of target gene expres-
sion on survival outcomes, the expression of 13 genes,
namely, CCT6A (P = 0:00097), CDK5R1 (P = 0:03003),

CEP55 (P = 0:00777), DNAJB4 (P = 0:00097), EGLN3
(P = 0:00699), HDGF (P = 0:01732), HOXC8 (P = 0:00905),
LIMD1 (P = 0:04185), MKI67 (P = 0:00137), PCP4L1
(P = 0:00739), PPIL1 (P = 0:02906), SCAI (P = 0:00232), and
STK32A (P = 0:04903), played an important role on OS
(Figure 9).

4. Discussion

As the main regulator of many biological and pathological
processes, miRNAs are the focus of research on tumor gen-
esis and development. Diverse evidence suggested that miR-
NAs establish a complicated combination of gene expression
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Figure 3: Kaplan-Meier surviving curves of 7 miRNAs composing the prognostic signature of LUAD.
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and pathway regulations, prognostic factors, and therapeutic
targets in different kinds of carcinomas, such as lung carci-
noma. These potential miRNAs can be used for the early
detection, molecular classification, prognostic prediction,
and therapeutic efficacy of lung cancer [12]. To date, some
miRNAs with prognostic value in NSCLC were identified
in several studies, including miR-21, miR-200c, miR-125b,
miR-148b, miR-365, miR-124, miR-32, and miR-146a [13].
LUAD is characterized by advanced and metastatic tumors
that have poor survival outcomes compared with other car-
cinomas, and the 5-year survival rate is lower than 18% [14].
Thus, understanding the fundamental mechanisms of
miRNA regulation could provide a helpful way to develop
LUAD therapies possessing great effectiveness. Under the
Cox regression model of TCGA data, prognostic characteris-
tics based on miRNA have been found in more and more
malignant tumors [15, 16]. It was also confirmed that miR-
103a-3p, miR-152, miR-152-3p, miR-15b, miR-16, miR-
194, miR-34b, and miR-506 could affect the expression of
programmed cell death ligand 1 and programmed cell death
receptor [10]. Additionally, high expression of miR-155,
miR-17-3p, miR-106a, miR-93, and miR-21 and low expres-
sion of let-7a-2, let-7b, and miR-145 are associated with
adverse outcomes in LUAD patients [17, 18]. However, few
reports studied the prognostic characteristics of miRNAs in
LUAD based on TCGA data. The present study established
a novel and effective miRNA prognostic signal with good
prognostic value. The signature indicated miRNA status in
patients with LUAD and provided a potential biomarker
for therapeutic interventions.

Through Cox regression analysis and Kaplan-Meier
curves, 7 miRNAs that could significantly affect OS results
were identified, including hsa-miR-1293, hsa-miR-5001-3p,
hsa-miR-550-5p, hsa-miR-584-5p, hsa-miR-873-5p, hsa-
miR-133a-3p, and hsa-miR-148a-3p. Some of which have

earlier association with the molecular mechanisms of
tumors. Previous studies found that miR-1293 inhibited
the growth of tumor cells by simultaneously targeting
BRD4, APEX1, RPA1, and POLD4 via inhibiting the DNA
repair pathway. Luo et al. [19] found that miR-1293 was
capable of working as a prognostic biological marker for
papillary renal cell carcinoma. Through bioinformatic
method, miR-1293 was found to be highly expressed in renal
cell carcinoma, and the survival rate of the group possessing
high-level miR-1293 expression was worse versus that of the
group possessing low-level miR-1293 expression. These out-
comes revealed the upregulation of miRNA-1293 in cancer
and the association of high-expression miR-1293 with poor
prognosis. Chen et al. [20] found miR-1293 promoted the
proliferation, migration, and invasion of LUAD cells via tar-
geting PGM5, and high expression of miR-1293 was posi-
tively correlated with pathological stage and overall
survival difference in LUAD patients, suggesting that miR-
1293 may be an oncogene in the development of LUAD.
While studying the role of miR-550a-5p in tumors, the
researchers found that overexpression of miR-550a-5p in
A549 cells promoted tumor proliferation, while inhibition
of miR-550a-5p in H1299 cells inhibited tumor prolifera-
tion. miR-550a-5p was proved to promote the development
of LUAD through silencing LIMD1 [21]. This finding is con-
sistent with our present study. Abnormal expression of miR-
584-5p recently existed in various human tumors, such as
gastric carcinoma, neuroblastoma, medulloblastoma, and
lung adenocarcinoma [22–25]. miR-584-5p was found to
have a key function in the development of diverse carcinoma
through the regulation of distinctive target mRNAs. A
decrease in miR-584-5p could be seen in the tumor tissues
of patients with NSCLC and cell lines under MMP-14 regu-
lation [26] or YKT6 targeting [27]. In the present study,
miR584-5p expression was lower expression compared with

0 2 4 6 8 10 12 14

0.0

0.2

0.4

0.6

0.8

1.0
Risk score (P = 0.0134)

Time (year)

Su
rv

iv
al

 ra
te

High risk
Low risk

(a)

0 5 15 15

0.0

0.2

0.4

0.6

0.8

1.0
Risk score (P = 7e−04)

Time (year)

Su
rv

iv
al

 ra
te

High risk
Low risk

(b)

Figure 4: Overall surviving analysis for the training group and testing group: (a) training group and (b) testing group.
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that in normal noncancer samples, indicating that miR-584-
5p behaves as a tumor suppressor and is a latent molecular
biological marker among patients with LUAD. Low miR-
133a-3p expression has been found widespread in diverse
carcinomas, such as renal cell carcinoma, colorectal cancer,
and prostate cancer, and it predicted inferior prognosis
[28–30]. However, some evidence demonstrated high miR-
133a-3p expression among hepatocellular carcinomas, mul-
tiple myeloma, breast carcinoma, and osteosarcoma
[31–34], indicating the oncogenic or tumor-suppressive
miRNA of miR-133a-3p depending on carcinoma types.

At present, the relationship between hsa-miR-5001-3p
and cancer has not been reported, and it still needs in-
depth study by researchers. In addition, the miRNAs identi-
fied in this study have inconsistencies with the expression in
noncancerous tissues. Growing evidence showed that miR-
873 has an important function as a tumor suppressor among
several human cancers. For example, overexpression of miR-
873 could reduce proliferation, migration, and invasion of
glioblastoma pleomorphic cells by regulating IGF2BP1
expression [35], such as in colon cancer. However, other
studies suggested that miR-873 works as an oncogene. As
for hepatocellular carcinoma, upregulated level can be seen
in miR-873 expression in tissues and cells, and downregu-
lated miR-873 could inhibit cell growth and metastasis
[36]. Gao et al. [37] confirmed that miR-873 could boost
the proliferation and migration of LUAD cells, consistent
with our results of the present study. Similarly, miR-148a-
3p was found lower expression in tumors, and the related
expression of miR-148a-3p in esophageal cancer samples
was below the level of cancerous tissues [38]. Expression of
miR-148a-3p was also reduced in epithelial ovarian carci-

noma tissues, and low miR-148a-3p expression had an asso-
ciation with increased OS [39]. However, increasingly
expressed miR-148a-3p was found in other carcinoma tis-
sues. Hua et al. [40] revealed that miR-148a was high expres-
sion in glioblastoma by regulating the occurrence and
development of glioma cells and in osteosarcoma samples
[41]. miR-148a-3p has also been studied among NSCLC.
Xie et al. [42] reported miR-148a-3p prevented NSCLC from
proliferating and epithelial-mesenchymal transition progres-
sion through modulating the Ras/MAPK/Erk signaling path-
way. In conclusion, the findings of bioinformatic analysis in
this study demonstrated that these miRNAs have carcino-
genic or anticancer effects in the development of various
cancers through different mRNAs.

The target genes of these 7 miRNAs were identified, GO
annotation and KEGG enrichment analyses were performed,
and to further understand the role and mechanism of these
miRNAs in LUAD carcinogenesis, we mapped the interac-
tion network. Annotation analysis conducted on DAVID,
and the results showed that the target genes of these miR-
NAs were involved in significant BPs that may be related
to carcinogenesis. KEGG pathway analyses showed the main
enrichment of these target genes in carcinoma pathways, the
Hippo signaling pathway, and the FOXO signaling pathway.
The Hippo signaling pathway serves as a new signaling path-
way that has a regulatory function on various biological pro-
cedures. A growing number of evidence indicated that this
pathway could exert an essential role in LUAD development.
A recent lung cancer transcriptome meta-analysis showed
that several HIPPO pathway component (NF2, LATS1,
PTPN14, YAP1, TAZ, TAOK, and FAT1) genes were found
to fuse in lung carcinoma, and they were independent
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prognosis factors for low lung cancer survival [43]. Gobbi
et al. [44] showed that the Hippo pathway could regulate
the resistance of lung cancer cells to BET protein inhibitors.
Human adenocarcinoma-related gene AGR2 induces bidi-
rectional regulatory protein expression through Hippo path-

way coactivator YAP1 [45]. FOXO is a subfamily of the
forkhead transcription factor family, which has a significant
function in cellular fate determination. This subfamily is also
thought to play a key functional role as tumor suppressors in
a wide range of cancers. Hydroxychloroquine is a classic
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antimalarial drug used in preclinical studies and clinical tri-
als to treat cancer. It has been reported that it can inhibit
lung tumorigenesis by inducing nuclear translocation of
FOXO3a [46].

By analyzing the effect of target gene expression on
patient survival, 13 gene expression levels were obtained,
including those of CCT6A, CDK5R1, CEP55, DNAJB4,
EGLN3, HDGF, HOXC8, LIMD1, MKI67, PCP4L1, PPIL1,
SCAI, and STK32A. The results showed that target genes
had a significant association with the 10-year survival rates
of patients with LUAD. However, further explorations are
still needed to confirm these observations.

To sum up, nine miRNA signatures were constructed
based on TCGA dataset, which are capable of being applied
as a prognostic factor for patients with LUAD. However, this
study also has some shortcomings. The mechanism of
miRNA regulation of tumor biological behavior in LUAD
cells needs to be verified experimentally. In addition, multi-
center clinical cohorts should be used to validate the practi-
cability of prognostic models.

5. Conclusions

In summary, bioinformatic method was used to analyze
LUAD-related mRNAs and miRNAs in TCGA database
in a systematical manner. 7 miRNAs were found to signif-
icantly influence OS outcomes in patients with LUAD.
This study deepened the understanding on LUAD treat-
ment and prognosis from the molecular level and helped
boost the knowledge on the pathogenesis and latent
molecular events of LUAD. These findings contributed to
the early diagnosis and prognosis of patients with LUAD
and laid a foundation for upcoming clinical explorations.
However, the mechanism of action of miRNA and the reg-
ulatory network of miRNA-mRNA interactions are pecu-
liarly complicated. This study provided theoretical
knowledge and analyses of the clinical data. However,
additional scientific studies are required to confirm the
observations and investigate their clinical application
potential in the improvement of the outlook for patients
with LUAD.
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