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Medical imaging technologies such as computed tomography (CT) and magnetic resonance imaging (MRI) imaging are
indispensable for contemporary neurorehabilitation diagnostics, intervention, and monitoring. It would be desirable to
reconstruct images from sparse measurements to reduce the ionizing radiation and motion artifacts. Although recent
coordinate-based representation methods have shown promise advances for sparse-view reconstruction, they overfit a single
MLP on a single patient. In this work, we generalize it across many patients by incorporating an interpatient prior into the
ill-posed inverse/reconstruction problem, which is the missing ingredient in the previous works. The experiment demonstrates
that our method significantly improves image quality over the state-of-the-art both qualitatively and quantitatively. Thus, our
method provides a powerful and principled means to deal with the measurement-scarce problem.

1. Introduction

The majority of patients that enter neurorehabilitation ther-
apies will have undergone some kind of medical imaging [1].
Computed tomography (CT) and magnetic resonance imag-
ing (MRI) are the two most common modalities for neuro-
imaging. CT scans of the brain are much faster than MRI
making it the ideal choice in cases of trauma and other acute
neurological emergencies, where a rapid decision regarding
appropriate medical management is imperative. The soft-
tissue details generated by a CT are usually acceptable for
clinicians to assess the acute damage, while MRI has a much
greater range of available soft-tissue contrast. Although their
broad application in daily rehabilitation practice, CT, and
MRI have had their own weakness since their early days,
CT imaging involves the use of x-rays, which are a form of
ionizing radiation. Exposure to ionizing radiation is known
to increase the risk of cancer. MRI requires a longer scan
time than CT to collect sufficient data to form an image
thereby being sensitive to excessive patient motion during

the actively scanning. The effects of motion include blurring
and ghosting in the resulting image [2]. One possible
method of addressing these issues is to reconstruct CT or
MRI from partial measurements such as sparse-view projec-
tions/sinograms and low-resolution k-spaces. The sparse-
view restriction reduces the requirements of the number of
measurements thereby lowering the ionizing radiation for
patients and suppressing motion artifacts in clinical MRI.

However, reconstructing images from limited data, as
well as the ill-posed inverse problem, is very challenging to
be solved. For example, for sparse-view sinograms, the cor-
responding projection matrix or Radon transform has more
columns than rows. It can be shown that null vectors always
exist for this underdetermined linear system, which means
the solution for this system is not unique; more than one
image may yield the same measurement. We can obtain a
reasonable solution from the least-square minimum norm,
but the solution is usually smoothed version of the original
because the null vectors that are not measurable are disre-
garded. To obtain a better reconstruction, the conventional
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methods [3–6] add the prior information of the unknown
images such as sparse prior (e.g., total variation) and
redundant prior (nonlocal mean) to the null space. These
methods have been shown to achieve accurate recovery of
the real images under some circumstances. Machine
learning methods [7–9] especially the convolutional neural
networks (CNNs) have recently emerged as the state of the
art for solving the inverse problem though clinical-sized
applications have yet to be demonstrated.

The CNN-based reconstruction methods can be catego-
rized into three main directions. The first one is the learned
postprocessing methods [10] where a learned operator is
applied to the images that are reconstructed by conventional
methods such as filtered back-projection (FBP) [11]. This
operator performs the enhancement, denoising, and sharp-
ness to improve the image quality. This type of method is
relatively easy to be implemented because the physics princi-
ples are not involved. The second method is to learn the
prior and use this prior in the classical iterative reconstruc-
tion formulation [12]. This kind of priors is learned from
data, rather hand-designed, based on a large training patient
dataset. The learned priors introduce the data priors to
constraint the null space showing promise results though
clinical-sized applications have yet to be demonstrated.
The final method directly learns the reconstruction from
the partial measurements in a data-driven style [13]. The
partial measurements are directly mapped to the images by
supervised training on a large dataset consisting of the pairs
of measurements and images. Although these methods show
outstanding performance for medical image reconstruction,
they also have some shortages. For example, the requirement
of a large-scale training dataset may prevent the CNNs from
generalizing to the unseen view angles. Another issue is their
memory-hungry feature inheriting from the dense voxel-
based representation. While dense voxel-based representa-
tions are fast to query, they are memory inefficient, and 3D
CNNs, potentially operating on these volumes, are computa-
tionally heavy.

To overcome the aforementioned problem, we propose
neuRec (neural reconstruction) framework which is based
on the recent implicit neural representation [14]. Instead of
storing human tissues using voxels, it defines a coordinate-
based multilayer perceptron (MLP) to approximate the
quantities of interest, e.g., electronic density in CT. The

MLP maps continuous coordinates to voxel values, which is
in contrast to conventional CNNs methods that propagate
and backpropagate the 3D voxels tensor through the entire
network. The coordinate-based MLP representation offers
potential compact representation in terms of memory effi-
ciency. Moreover, theoretically, it presents voxels at infinite
resolution because continuous coordinate is used as the input
of the network. The continuous assumption is also a useful
characteristic for the sparse-view reconstruction, which
enforces spatial coherence to the null space. The spatially
nearby voxels are constraint to be associated with the same
value implicating human tissues change slowly over space.
The spatial coherence prior can also be combined with other
priors for medical image reconstruction as shown in recent
works [15, 16]. However, only interpatient priors such as
previous CT are employed in these works. Our neuRec differs
from them in that the interpatient prior is exploited for the
patient in hand.

2. Methods

2.1. NeuRec. As illustrated in Figure 1, we aim to learn a
coordinate-based representation f θ : X⟶ Y where the
voxel coordinate x ∈ X is mapped to voxel value y ∈ Y , and
the mapping is parameterized with θ. Given the limited
number of physic measurements z and their corresponding
geometry specifics, we can approximate the measurements
using linear perturbation theory with forwarding process
z = Fy, where F is the linearized measurement operator
or Jacobian. If the measurement is performed M times
and the image has N voxels, then F has the shape of
M ×N . For sparse-view measurements, the transform F
is a short, fat matrix, i.e., M≪N .

The reconstruction or inverse problem is to the
unknown image y when z and F are given. To solve y, we
turn to an optimal mapping f ∗θ that can be obtained by the
lowest average mean-squared distance to the true measure-
ment z:

argminθ E x,zð Þ~μ F f θ xð Þð Þð − zk k22
� �

, ð1Þ

where f θðxÞ predicts the voxel values that are then for-
warded to predicting measurements Fð f θðxÞÞ and are
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Figure 1: A schematic diagram of the neuRec.
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compared with the ground truth measurements z. Here, the
expectation is taken w.r.t the joint probability distribution μ
of random variables ðx, zÞ. Since we generally do not have
access to the true distribution μ, we then replace the expec-
tation in Equation (1) with its empirical estimator

θ∗ = argminθ
1
K
〠
K

F f θ xkð Þð Þ − zkk k22
� �

, ð2Þ

where k denotes the individual sample for a patient and K is
the number of all samples. After obtaining the optimal f θ,
we can easily compute the corresponding optimal voxel
values with the mapping f ∗θ ðxÞ. As we mentioned before,
the coordinate-based representation has a build-in spatial
coherence prior. This can be explained by noticing Equation
(2), where the coordinate x is assumed to follow a continu-
ous distribution though the discrete samples are drawn from
this distribution to train the f θ.

To further constraint the sparse-view inverse problem,
we introduce the interpatient priors in the next. To put it
simply, we train the coordinate-based representation f θ on
a large patient dataset such that the resulting θ is set at an
appropriate point where the pretrained model can generalize
to the patient in hand. To adapt the coordinate-based repre-
sentation f θ to variable voxel values and positions, we adopt
the Generative Latent Optimization (GLO) [17] in which
each patient is assigned a corresponding low-dimensional
latent vector that encodes the patient-dependent specifics.
We then change the input of the MLP mapping f θðxkÞ with
a patient-dependent variable ei to have

f θ,ei x
i
k

� �
, ð3Þ

where i denotes the patient index and k index the training
samples for the patient i. To reconstruct the voxels for a
patient i, the latent vector ei is also optimized so that the pre-
diction from the MLP f θ,eiðxikÞ matches the measurement zik
of this patient. With the low-dimensional latent vector, we
condition the coordinate-based representation f on a patient
to enable the network to explain certain voxel variations
derived from this patient. The network parameter θ is
trained and shared among all patients and serves as an initial
weight for a new patient. Moreover, the shared parameter θ
acts as a strong prior that encodes the common human anat-
omy structures, which enables both better generalization and
faster convergence during optimization.

Autoencoders or encoder-decoder networks are widely
used for representation learning as their bottleneck fea-
tures tend to form natural latent variable representations
[18, 19]. The Generative Latent Optimization used here
is different from the autoencoders in that only the decoder
part of the latter is retained for training and inference. The
encoder part of the autoencoders is dropped as it may waste
computational resources. Without the encoder, the latent
space can still emerge as we search for an optimal latent var-
iable representation during the training [20].

We follow the classical ResNets [21] to implement our
MLP network except by using feedforward layers in place

of convolutional layers, i.e., residual multilayer perceptron
(ResidualMLP). The inputs are fed to a sequence of MLP
blocks to produce output embeddings. Similar to ResNets,
each block is paralleled with a skip-connection [21] to
improve the convergence. We implemented ResidualMLP
with six residual blocks and condition the network on the
latent vector of dimension 16. The shortcut connections
are used to connect the adjacent blocks. Each block consists
of the affine layer defined by the weight matrix and the
biases applied on its input, followed by a sine nonlinearity
applied to each component of the resulting vector. We used
256 neurons for each hidden layer. To model the variation
across the patients, a small MLP is constructed with 2 affine
layers of 256 neurons so the dimension of the resulting fea-
ture vector is the same as the main network. We then add
the resulting feature vector to each block’s outputs to adapt
the main network for the patient-specific. The output
dimension of the last layer is 1.

2.2. Data. We used two datasets in this study. Dataset 1 con-
tains a set of MRI data volumes produced by an MRI simu-
lator [22]. These data are usually used by the neuroimaging
study to evaluate the performance of various image analysis
methods in a setting where the truth is known. Dataset 2
consists of customized versions of Shepp-Logan phantom
[23]. The radians, angles, and positions of 3D ellipses are
generated randomly. The Shepp-Logan phantom is often
used in CT reconstruction to evaluate the performance of
the reconstruction algorithms.

2.3. Implementation Details. We first train the network and
the latent vector with all training samples from two datasets
in the proposed neuRec way, then finetune the network from
the pretrained checkpoint on the remaining test patients to
evaluate the performance. The latent vector is initiated ran-
domly and not optimized during the finetune. Two NVIDIA
TITAN 3090 GPUs and PyTorch [24] deep learning frame-
work are used to develop codes. For training the model, the
measurements are centered and normalized by the mean
and standard deviation across the training samples. We
implement the details suggested in literature [25] to boost
the performance, i.e., the Adam optimizer is used with a
custom learning rate schedule that warms up linearly from
0 to 1e-4 for the first 100 iterations, then decays proportional
to the square root of the step count. The training takes about
17 hours due to the large patient samples, and the inference
takes only several milliseconds due to the simplicity of the
network.

2.4. Quality Evaluation Metrics. For reconstructions we
compute the mean squared error (MSE), structured similar-
ity (SSIM) index, and peak signal-to-noise ratio (PSNR)
values with respect to the ground truth image (higher is
better).

3. Results and Discussion

3.1. MRI Reconstruction. In order to verify the quality of the
new method in MRI reconstruction, it is compared with the
other four methods: filtered back projection (FBP) [26],
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simultaneous algebraic reconstruction technique (SART)
[27], total variation (TV), and nonlocal mean (NLM) priors
solved by the primal-dual algorithm (TV-NLM-PDHG)
[28], and Deep Prior [29]. The FBP reconstruction is used
as the representation of classical analysis methods. We use
the Hann filter for its filter stage. SART is superior to the
standard algebraic reconstruction technique and is useful
in cases when the projection data is limited. The TV corre-
sponds to the local structure prior, while NLM aims to reg-
ularize the image statistics at a global level. PDHG iterative
reconstruction is performed using 1000 iterations of the
classical PDHG algorithm. Deep prior is a CNN-based prior
for the inverse problem which captures the low-level image
statistics in the structure of the network.

As illustrated in Figure 2, the classical FBP method
performs worst because the analytical method assumes a
complete measurement is available which prevents it from
a plausible reconstruction. The SART method outperforms
the FBP qualitatively, as it suppresses the artifices effectively
and produces a clearer image. Compared with the last two
methods, the TV-NLM-PDHG algorithm produces a better
reconstruction because the local- and global-prior are intro-
duced to make up the null space. Finally, our neuRec
method shows unprecedented qualitative results as high-
frequency features such as the hippocampus are distinctly
observed. The quantitative results in Table 1 also suggest a

significant increase of PSNR and SSIM values is obtained
with our neuRec.

3.2. CT Reconstruction. To demonstrate the impact of inter-
patient prior, we carry on the experiments with the prior and
without the prior for CT sparse-view reconstruction. Only
10 sinograms of the 3D Shepp-Logan phantom are used to
push the neuRec to its limitation. Figure 3 shows the MSE
with respect to the test iteration for neuRec with and without
the interpatient prior. From the curves, we find neuRec with
interpatient prior enables faster and more accurate recon-
struction than neuRec without interpatient prior. To verify
this conclusion, we further plot the 100-iteration intermedi-
ate results in Figure 4. As we can see from the figure, neuRec
with interpatient prior achieves a much better reconstruc-
tion than neuRec without interpatient prior, even though
only 10 sinograms are used. The sparse-view reconstruction,
i.e., the ill-posed inverse problem is very challenging to be
solved. As illustrated in the figure, the results produced by
NeuRec without interpatient prior tend to be smoothed
because the least-square minimum in Equation (2) estimates
the average of the sparse samples. On the contrary, with
interpatient prior, the network parameter is trained and
shared among all patients and serves as an initial weight
for a new patient. The shared parameter acts as a strong
prior that encodes the common human anatomy structures,

Ground truth

TV+NLM PDHG iter = 3000 Deep Prior iter = 4000 NeuRec iter = 1000

FBP SART iter = 100

Figure 2: MRI reconstruction comparison.

Table 1: Comparison of the neuRec in MRI reconstruction with state-of-the-art methods.

Metrics neuRec FBP SART TV-NLM-PDHG Deep prior

SSIM 0.873 0.201 0.623 0.718 0.843

PSNR 31.6 15.3 22.6 25.3 27.6
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which enables both better generalization and faster conver-
gence during optimization.

4. Conclusions

This study proposes and evaluates a novel deep learning-
based method neuRec for the sparse-view reconstruction of
medical images, such as MRI and CT. It solves this ill-
posed inverse problem through a coordinate-based neural
network representation and the introduction of interpatient
prior that is not exploited in other works. We demonstrate
its performance on two datasets where it outperformed
several state-of-the-art reconstruction methods. Although
we presented results for CT and MRI reconstruction from

sinograms and k-spaces, neuRec can be used whenever the
rendering or measurement process is differentiable. A possi-
ble line of research is to investigate interpatient priors for
solving the more aggressive inverse problem.

Data Availability

Research data are stored in an institutional repository and
will be shared upon request to the corresponding author.
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Figure 3: Ablation study. The MSE of neuRec with interpatient (red) and without interpatient prior (blue) is compared.

(a) (b)

Figure 4: Qualitative ablation study. Reconstruction of neuRec without interpatient (a) and with interpatient (b).
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