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Background and Objective. Gastric cancer (GC) is the fifth most frequently diagnosed cancer and the third leading cause of cancer
death worldwide. Recurrence and metastasis are very common in advanced gastric cancer and indicate poor prognosis. We
attempted to establish a recurrence-associated gene panel to predict the prognosis for gastric cancer. Methods. Two datasets
were used as training and validation cohorts to establish the predictive model. We used three types of screening criteria:
background analysis, pathway analysis, and functional analysis provided by the cBioportal website. Fisher’s exact test and
multivariable logistic regression were performed to screen out related genes. Furthermore, we performed receiver operating
characteristic (ROC) and Kaplan–Meier curve analyses to evaluate the correlation between the selected genes and overall
survival. Result. We screened five genes (KNL1, NRXN1, C6, CCDC169-SOHLH2, and TTN) that were highly related to
recurrence of GC. The area under the receiver operating characteristic (ROC) curve was 0.813, which was much higher than
that of the baseline model (AUC = 0:699). This result suggested that the mutation of five selected genes had a significant effect
on the prediction of recurrence compared with other factors (age, stages, history, etc.). Furthermore, the Kaplan-Meier
estimator also revealed that the mutation of five genes positively correlated with patient survival. Conclusions. The patients
who have mutations in these five genes may experience longer survival than those who do not have mutations. This five-gene
panel will likely be a practical tool for prognostic evaluation and will provide another possible way for clinicians to determine
therapy.

1. Introduction

Gastric cancer, also known as stomach cancer, is one of the
most malignant tumors worldwide and is still a major health
threat in Asia-Pacific regions [1]. Evidence has shown that
approximately 10% of stomach cancers have familial cluster-
ing. Genome-wide association studies have implicated the
prostate stem cell antigen (PSCA) gene and the mucin1
(MUC1) gene as influencing susceptibility [2]. With high-
resolution SNP arrays, researchers identified 22 recurrent
genomic alterations, such as FGFR2, ERBB2, KLF5, and
GATA6 [3]. These results suggest that some key genes are
involved in pathological progression. Up to 50% of advanced
stage GC patients have peritoneal metastasis, which is also a
sign of recurrence [4]. The recurrence rate of GC is approx-

imately 42%, and the median survival time is 11-12 months
[5]. Early detection of recurrence will significantly improve
the prognosis of GC. Although harboring high precision,
there is also a lag effect [6]. Moreover, overestimation of
recurrence will unnecessarily increase the medical cost. Con-
sidering these factors, it is necessary to explore a plausible
and practical way to assess the possibility of gastric cancer
recurrence.

Tumorigenesis is a multistep process in which many
somatic mutations are involved. Most mutations are random
and probably occur as the cancer develops [7]. However, a
subset of a few hundred genes is presumed to be involved
in neoplasia progression and has been mutated at high fre-
quency. These genes are referred to as driver genes, whose
mutations tune gene expression towards specific tumor
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evolution [8]. Deep mining from tumor genomic profiling
and searching for driver genes are helpful to understand
the molecular mechanism of tumorigenesis and provide
guidance for the prevention, treatment, and prognosis of
patients.

Recently, due to the prevalence of next-generation
sequencing technology, many research groups have per-
formed tumor-related sequencing analysis [9, 10]. For
resource integration and efficient utilization, The Cancer
Genome Atlas (TCGA) and the International Cancer
Genome Consortium (ICGC) datasets are established and
provide researchers with a convenient way to obtain the
entire sequence signature of cancer cases [11, 12]. To detect
candidate tumor driver genes, many algorithms have been
developed according to different principles. The main algo-
rithm principles for driver gene identification are grouped
into five categories: a single gene mutation frequency with
the entire genome background mutation rate [13, 14], the
effect of the mutant gene on biological function [15, 16], bio-
logical network or pathway analysis [17, 18], and data
integration-based analysis [19, 20]. However, each algorithm
has limitations or biases. For instance, classical mutation
frequency-based approaches often have false-positive dis-
coveries owing to tumor heterogeneity and other factors
[21]. The network is often error prone because it is based
on large-scale experimental data or computational predic-
tion data [22]. It is plausible to combine various approaches
to screen out driver genes and improve accuracy.

In the present study, we selected nine different algo-
rithms based on the above principles to identify potential
driver genes of gastric cancer based on DNA sequencing
data from the TCGA-STAD project [23–25]. Then, we ana-
lyzed the correlation between the selected genes and the
recurrence of patients. Five mutated genes, KNL1, NRXN1,
C6, CCDC169-SOHLH2, and TTN, showed a significant neg-
ative correlation with the recurrence of gastric cancer
through multivariable logistic regression analysis.

In summary, our study constructed a five-gene panel to
predict the prognosis of gastric cancer. This study can pro-
vide new insights into the molecular mechanism of gastric
cancer and a theoretical basis for precision medicine.

2. Materials and Methods

2.1. Cancer Sequencing Data. We used all DNA sequencing
data and clinicopathological information from the TCGA
Data Portal (https://portal.gdc.cancer.gov). We used data
from 229 patients enrolled in the TCGA-STAD project as
training cohort and 440 samples in the TCGA-PanCancer
Atlas and 22 samples from a manuscript by Wang et al.
[26] as validation cohort.

2.2. Workflow. The basic workflow for data analyses was
described in a previous study and is listed in Figure 1 [27].
First, we downloaded the genomic DNA sequencing data
of 229 patients with gastric cancer from the TCGA-STAD
project. Second, potential cancer driver genes were identified
from these data using nine driver gene discovery algorithms.
We found 875 potential driver genes in total. Then, we made

a Venn diagram to identify 159 genes that overlapped with
each other as potential driver genes. Next, we used Fisher’s
exact test to detect the association of potential driver genes
with the recurrence of gastric cancer. We found 21 potential
driver gene (KRAS, TSPOAP1, C6, CCDC169-SOHLH2,
DNAH9, MAP7D1, NCKAP5, NRXN1, PREX2, SMG1,
TNKS1BP1, TTN, ABCB4, ALK, ATXN1, ASTN2,
C2ORF16, CARD6, KNL1, CENPF, CLCNKA) in this step.
The statistically significant genes were then subjected to
multivariable logistic regression analysis to construct a
recurrence prediction model. We obtained five genes in this
step, which were the final genes we identified in the five-gene
panel. Receiver operating characteristic (ROC) analysis and
Kaplan-Meier survival analysis were used to verify the reli-
ability of the five-gene panel in predicting recurrence.

2.3. Identification of Gastric Cancer Driver Genes. The DNA
sequencing data of the patients enrolled in the TCGA-STAD
project were used to identify potential driver genes using
nine algorithms based on three theories, including mutation
frequency differences or background differences, functional
impacts, and pathway or network enrichment. We first used
the Musig2CV, OncodriverFM, and ActiveDriver algorithms
[27], which are based on the mutation frequency of an indi-
vidual gene compared with the background mutation rate.
Then, we used structural genomic-based algorithms that
identified driver genes with the characteristics of mutual
exclusivity and incorporated copy number variation (CNV)
data for driver gene identification, including Dendrix,
MSEA, OncodriveCLUST, and pathway analysis algorithms,
including Dendrix and Netbox. The detailed criteria of each
method used to identify driver genes are listed in Table 1
[27]. Then, to improve the accuracy of the results, we used
a Venn diagram to select the potential driver genes detected
in at least three algorithms described as Figure 2.

2.4. Developing the Recurrence Prediction Model. To illus-
trate the mutational landscape between the recurrence and
the growth of new tumor vs. the recurrence-free group, we
carried out Fisher’s exact test. To develop an optimized
recurrence prediction model, the recurrence-associated
genes identified above and the patients’ clinicopathological
information were subjected to multivariable logistic regres-
sion analysis. The model was evaluated using ROC analysis
[28]. Additionally, we performed Kaplan-Meier survival
analysis to evaluate clinical significance [29].

2.5. Statistical Analysis. To detect the association of potential
driver genes with the recurrence of gastric cancer, we used
Fisher’s exact test. To construct a recurrence prediction
model, we performed a multivariable logistic regression
analysis. To assess the sensitivity and specificity of the recur-
rence models, we conducted an ROC analysis and calculated
the AUC. To estimate the prognosis, we performed Kaplan-
Meier survival analysis. A p value of less than 0.05 was con-
sidered statistically significant, and IBM SPSS Statistics 22
Software was used for all the statistical analyses.
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3. Results

3.1. Clinical Characteristics of Patients with Gastric Cancer.
To identify the driver genes of gastric cancer, we searched
for the genome sequencing data of 443 patients with gastric
cancer obtained from the TCGA-STAD Data Portal (stom-

ach adenocarcinoma, TCGA, provisional). After removing
the data for which new tumor events were not available,
we had 229 patients in total. Table 2 shows the pathological
and clinical characteristics of the patients. High-grade
tumors comprised 57.7% of the analysis cohort, whereas
low-grade tumors comprised 42.3%. Among 57.7% patients
with the available recurrence records, 48 patients (21.0%)
relapsed with new tumor events, while 181 patients
(79.0%) had recurrence-free tumors.

3.2. Differential Mutational Landscape in the Gastric Cancer
Recurrence Cohort vs. the Recurrence-Free Cohort. We per-
formed nine algorithms based on three theories, including
mutation frequency differences or background differences,
functional impacts, and pathway or network enrichment,
and selected 159 potential driver genes screened out by at
least three different algorithms. The 159 genes that we
selected were considered to be potential driver mutations
in gastric cancer. Next, we divided 229 patients with known
recurrence records into two cohorts based on the presence
(n = 181) vs. the absence of disease recurrence (n = 48) to
obtain the general recurrence rate. The recurrence of
patients harboring mutations in each potential driver gene
was also calculated. We found 21 potential driver genes
(KRAS, TSPOAP1, C6, CCDC169-SOHLH2, DNAH9,
MAP7D1, NCKAP5, NRXN1, PREX2, SMG1, TNKS1BP1,
TTN, ABCB4, ALK, ATXN1, ASTN2, C2ORF16, CARD6,
KNL1, CENPF, CLCNKA) using Fisher’s exact test, which
were significantly enriched in the recurrence-free group
and were negatively associated with gastric cancer recur-
rence (Table 3).

3.3. Development of the Five-Gene Diagnostic Panel for
Gastric Cancer. According to the principle of Fisher’s exact
test, we sorted the 21 genes by p value from minimum to
maximum and selected ten genes that had the lowest p
values. Next, multivariable logistic regression analysis was
performed to construct a diagnostic model based on patho-
logical and clinical information of the patients (n = 229).
Five genes were significantly associated with gastric cancer
recurrence or new tumor events by multivariable logistic

440 patients from
TCGA-PanCancer Atlas
project and 22 patients
from a manuscript by

Kai Wang et al.

443 patients from TCGA-STAD project

874 potential driver genes

21 potential driver genes

Five-gene optimized recurrence prediction model

Five-gene panelValidate

ROC analysis

Kaplan-Meier survival analysis

Kaplan-Meier survival analysis

Multivariable logistic regression analysis

Fisher’s exact test

9 driver gene discovery algorithms

ROC analysis

Figure 1: Workflow of our analysis. Flow chart showed the workflow of our present analysis.

Table 1: Driver gene discovery algorithms.

Algorithms Criteria

Active driver FDR < 0:05

MutSigCV FDR < 0:05

MutSig2CV FDR < 0:1

Oncodrive-FM FDR < 0:05
MSEA p value <0.05
OncodriveClust FDR < 0:05

Dendrix Genes in at least 10% of modules in any K

Netbox Genes included in all the modules

DriverNet p value <0.01

Mutsig2CV
MutsigCV

Oncodriver-FM

Candidate
driver genes

Oncodrive-FM
Dendrix
Netbox

MSEA (MetaboAnalyst)
OncodriverClust

Background
analysis

Function
analysis

Pathway
analysis

ActiveDriver

Figure 2: The Venn diagram of selecting driver genes. The Venn
diagram shows the process we used to screen out the driver genes
through three types of analysis tools.
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regression. Additionally, the patient’s age, gender, race,
tumor stage, tumor grade, and family history of cancer were
regarded as the independent variables, and the state of recur-
rence was the dependent variable. Finally, an optimized
recurrence prediction model was constructed using the
logistic regression equation:

logit Pð Þ = 31:641 − 16:884 × age 30 − 50ð Þ − 16:057
× age 50 − 70ð Þ – 15:828 × age 70 − 90ð Þ – 12:896
× grade1 − 13:936 × grade2 – 13:767 × grade3
+ 0:471 × stageI + 0:884 × stageII + 0:294 × stageIII
− 1:284 × no family history of stomach cancer − 0:659
×White + 0:821 × Asian − 19:562 × Black − 0:961
× male – 2:014 × KNL1 – 1:143 × TTN – 1:260
× NRXN1 − 0:517 × CCDC169 − SOHLH2 – 2:178 × C6

ð1Þ

The Exp (B) values for the four genes (KNL1, NRXN1,
C6, TTN) were all less than 0.5, indicating that these genes
might significantly decrease the probability of recurrence.
The B value of CCDC169-SOHLH2 is -0.517, and its Exp
(B) value is 0.596, indicating that the mutation of
CCDC169-SOHLH2 might decrease the recurrence of GC,
though this is less obvious than the other genes. However,
we chose to use it. It was reported that KNL1 was upregu-
lated in GC tissues and contributed to the proliferation of
cancer cells [30]. The Exp (B) of NRXN1 is 0.284, which
was also reported to be closely associated with gastric cancer
[31]. Supported by the research data, we obtained a 5-gene
(KNL1, NRXN1, C6, CCDC169-SOHLH2, TTN) prognostic
panel for further evaluation. Table 4 shows the multivariable
logistic regression analysis of variables for establishing the
recurrence prediction model.

3.4. Prognostic Value of the Five-Gene Recurrent Prediction
Model. Diagnostic tests are often evaluated by some parame-
ters, such as sensitivity and specificity. Such evaluation is an
essential step towards developing a test with desirable levels
of sensitivity and specificity. The area under the ROC curve
(AUC) is a global measure of a test to discriminate whether
a specific condition is present [32]. Here, we performed
ROC analysis to assess our recurrence prediction model.
ROC curves were established on the baseline model accord-
ing to the patients’ age at initial diagnosis, gender, tumor
stage, tumor grade, and race. The AUC of the baseline model
was 0.699 (Figure 3(a)). Since all the patients had at least one
mutation of the five genes, we added the five genes to the
baseline model and found that the AUC rose to 0.813 as
expected (p < 0:01). This result suggested that the five-gene
panel greatly improved the credibility of the prediction
model.

3.5. Survival Analysis of the Five-Gene Panel in Gastric
Cancer Cohorts. Furthermore, we performed Kaplan-Meier
survival analysis to evaluate the effects of mutations in five
genes on the prognosis of GC patients. As shown in
Figure 3(b), the overall survival time of the patients with
mutations in either of these five genes was significantly lon-
ger than that without any mutations in these five correlated
genes. This result indicated that mutations of these genes
were significantly related to better prognosis.

3.6. Validation of the Prognostic Panel in two databases. To
investigate the applicability of the five-gene panel in predict-
ing the recurrence of GC, we combined another two data
sets: TCGA gastric cancer cohort, which consists of 440
mutation data and clinical data collected in TCGA PanCan-
cer Atlas and 22 exome sequencing data from GC patients
[26]. According to the method we mentioned above, a base-
line model was also constructed with the patient’s age, tumor
stage, gender, and race. The ROC curve is shown in
Figure 4(a), and the AUC of baseline is 0.641. Then, we
added all five genes to the baseline model, and the AUC
was 0.703 (p < 0:05). This verified the five-gene panel reli-
ability. We also carried out Kaplan-Meier survival analysis.
As shown in Figure 4(b), patients with mutations in any of

Table 2: Demographics and tumor characteristics of patients with
gastric cancer in TCGA-STAD project.

Characteristics
Number of
patients

Percent
(%)

Gender

Male 175 67.2

Female 54 32.8

Race

Asian 69 30.1

White 135 58.9

Black or African American 10 4.4

Unknown 15 6.6

Family cancer history

Yes 14 7.0

No 185 93.0

New tumor event

Yes 48 21.0

No 181 79.0

Tumor grade

1 7 3.1

2 90 39.3

3 127 55.4

4 5 2.2

Pathological tumor stage

Stage I 30 13.5

Stage II 65 29.3

Stage III 107 48.2

Stage IV 20 9.0

Age at initial pathologic
diagnosis

30-50 (including 30) 16 8.8

50-70 (including 50) 94 51.6

70-90 (including70) 71 39.0

90+ (including 90) 1 0.6
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the five genes survived significantly better than those who
did not (p < 0:05).

4. Discussion

Gastric cancer currently ranks as the fifth most diagnosed
cancer and the third leading cause of cancer death [33].
Because of its insidious onset, it is very often diagnosed at
an advanced stage, and prognoses are still unsatisfactory
due to the high incidence of recurrence [34]. At present,
GC markers have been used for diagnosis, determination
of clinical stage, and evaluation of treatment responses.
CEA and CA199 are routinely recommended in clinical
practice. However, serum tumor biomarkers have limita-
tions due to insufficient specificity and sensitivity. In recent
years, next-generation sequencing (NGS) technology has
been widely used to screen out tumor biomarkers, which
contribute to the dynamic observation of tumorigenesis
and development, clinical efficacy, and prognosis evaluation.
The molecular features of gastric cancer are multifaceted and
heterogeneous, such as chromosomal instability, microsatel-
lite instability, microRNA deregulation, somatic gene muta-
tions, or functional single nucleotide polymorphisms [23].
Wang et al. performed whole-genome sequencing in 100
tumor-normal pairs for integrative genomic analysis and
identified previously known (TP53, ARID1A, and CDH1)
and new (MUC6, CTNNA2, GLI3, RNF43, and others) sig-
nificantly mutated driver genes [24]. Although some studies

reported that FGFR2 was overexpressed in 31.1% of GC
patients and might be associated with vascular invasion,
FGFR2 amplification enhanced the sensitivity of regorafenib
in gastric cancer and colorectal cancer [35, 36]. Patients with
somatic CDH1 epigenetic and structural alterations have
worse overall survival than those without alterations [37].
Although the frequency of mutated genes is relatively low,
they have a great impact on patients when considered
together. It is clear that the gene mutation signature
improves the diagnostic accuracy, therapeutic strategy, and
prognostic judgment.

GC has a relatively high relapse rate. A retrospective
study showed that recurrence occurred in 20.5% of patients
[38]. The development of a precise evaluation of recurrence
risk is important to reduce overtreatment and achieve satis-
factory outcomes. Genome-wide analysis has allowed char-
acterization on a genomics basis and found many potential
driver genes in GC [39–41]. In the present study, we ana-
lyzed the DNA sequencing data of 229 patients from the
TCGA-STAD project and identified five potential driver
genes (CCDC169-SOHLH2, TTN, KNL1, C6, NRXN1) whose
mutations were negatively associated with gastric cancer
recurrence (p < 0:01). These five genes are all related to can-
cer pathological processes according to previous reports.
Among them, Sohlh2 was demonstrated to be an important
inhibitor of ovarian cancer cell proliferation and metastasis
by repressing the MMP9 expression [42]. Sohlh2 also sup-
pressed breast cancer cell proliferation through Wnt

Table 3: Potential driver genes significantly associated with gastric cancer recurrence and verified by Fisher’s exact test.

Gene name
Cytogenetic

band
Description Ensembl ID p values

TTN 2q31.2 Titin ENSG00000155657 0.0001441

KNL1 15q15.1 Kinetochore scaffold 1 ENSG00000137812 0.005038

C6 5p13.1 Complement C6 ENSG00000039537 0.01131

NRXN1 2p16.3 Neurexin 1 ENSG00000179915 0.01192

CCDC169-
SOHLH2

13q13.3
Spermatogenesis and oogenesis specific basic helix-loop-helix 2 coiled-

coil domain containing 169
ENSG00000250709 0.01255

KRAS 12p12.1 KRAS protooncogene, GTPase ENSG00000133703 0.02746

TSPOAP1 17q22 TSPO-associated protein 1 ENSG00000005379 0.03608

DNAH9 17p12 Dynein axonemal heavy chain 9 ENSG00000007174 0.03468

MAP7D1 1p34.3 MAP7 domain containing 1 ENSG00000116871 0.03282

NCKAP5 2q21.2 NCK-associated protein 5 ENSG00000176771 0.02106

PREX2 8q13.2
Phosphatidylinositol-3,4,5-trisphosphate-dependent Rac exchange factor

2
ENSG00000046889 0.01929

SMG1 16p12.3 SMG1 nonsense mediated mRNA decay associated PI3K-related kinase ENSG00000157106 0.03282

TNKS1BP1 11q12.1 Tankyrase 1 binding protein 1 ENSG00000149115 0.01931

ABCB4 7q21.12 ATP binding cassette subfamily B member 4 ENSG00000005471 0.02506

ALK 2p23.2-p23.1 ALK receptor tyrosine kinase ENSG00000171094 0.02106

ATXN1 6p22.3 Ataxin 1 ENSG00000124788 0.0488

ASTN2 9q33.1 Astrotactin 2 ENSG00000148219 0.01718

C2ORF16 2p23.3 Chromosome 2 open reading frame 16 ENSG00000221843 0.02144

CARD6 5p13.1 Caspase recruitment domain family member 6 ENSG00000132357 0.0488

CLCNKA 1p36.13 Chloride voltage-gated channel Ka ENSG00000186510 0.03672

CENPF 1q41 Centromere protein F ENSG00000117724 0.01131
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Table 4: Multivariable logistic regression analysis of variables for establishing the recurrence prediction model.

B SE Wald Df Sig Exp (B)
95% CI for Exp (B)
Lower Upper

Genes

TTN -1.143 .484 5.579 1 .018 .319 .123 .823

KNL1 -2.014 .920 4.788 1 .029 .133 .022 .811

NRXN1 -1.260 .698 3.253 1 .071 .284 .072 1.115

CCDC169-SOHLH2 -.517 .913 .321 1 .571 .596 .100 3.569

C6 -2.178 .767 8.059 1 .005 .113 .025 .510

Clinical characteristics

Grade 1 -12.896 2383.604 .000 1 .996 2.508E-6 .000 .c

Grade 2 -13.936 2383.604 .000 1 .995 8.861E-7 .000 .c

Grade 3 -13.767 2383.604 .000 1 .995 1.050E-6 .000 .c

Stage I .471 1.088 .187 1 .665 1.601 .190 13.511

Stage II .884 1.003 .776 1 .378 2.420 .339 17.294

Stage III .294 .921 .102 1 .750 1.342 .221 8.160

Age 30-50 -16.884 .778 470.483 1 .000 4.647E-8 1.011E-8 2.137E-7

50-70 -16.057 .500 1029.232 1 .000 1.064E-7 3.988E-8 2.836E-7

70-90 -15.828 .000 . 1 . 1.336E-7 1.336E-7 1.336E-7

White -.659 1.063 .384 1 .535 .518 .064 4.154

ASINA .821 1.195 .472 1 .492 2.273 .218 23.646

Black or African American -19.562 6066.729 .000 1 .997 3.195E-9 .000 .c

Male -.961 .551 3.046 1 .081 .383 .130 1.125

History 1.284 .759 2.858 1 .091 3.610 .815 15.997

Baseline model AUC=0.699

0.2
0.0
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0.6
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vi

ty

0.8
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Figure 3: Recurrence prediction with ROC analysis and Kaplan-Meier survival analysis with the five-gene panel in the TCGA-STAD
project. (a) Recurrence prediction with ROC (receiver operating characteristic) analysis in the TCGA-STAD project. The baseline model
was established according to the patient’s age, tumor stage, grade, gender, and race, and ROC curve was generated accordingly. The
AUC (area under curve) was 0.699. After adding the five-gene prognostic panel to the baseline model, the AUC was 0.813, and the p
value was 0.007. (b) Kaplan-Meier survival analysis with the five-gene prognostic panel in the TCGA-STAD project. Survival of patients
with at least one mutation in the five genes (no less than one gene) showed significant longer survival time than those without mutations
in these five genes (no mutant genes), p value =0.198.
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signaling [43]. TTN is one of the most frequently mutated
genes in GC [44]. Nonsynonymous mutations in TTN were
found in its coding regions in different cancer types, half of
which might be considered driver mutations [45]. According
to a correlation analysis of lung cancer, missense mutation of
TTN may indicate good prognosis [46]. Evidence has shown
that KNL1 plays an effective role in decreasing apoptosis and
promoting the proliferation of colorectal cancer cells, and
downregulation of KNL1 by miR-193b-3p significantly
induces cell differentiation [47]. A recent report developed
a novel pathway and reach (PAR) method and identified
50 candidate driver genes, among which C6 ranked in the
top five [48]. A comprehensive survey of genomic alterations
in GC revealed that C6 was a recurrent neoantigen [49].
These findings confirm our findings. In GC, NRXN1 is one
of the altered genes significantly related to mutated TP53,
and NRXN1 mutation is significantly associated with differ-
ent drug responses [31].

In the present study, we constructed a recurrence predic-
tion model with five recurrence-associated genes through
multivariable logistic regression analysis. This allowed us
to determine the effect of each factor. The data showed that
any mutation in the five genes is negatively related to recur-
rence. The AUC was 0.699 in a baseline model based on age,
gender, tumor stage, tumor grade, family history of cancer,
and race as independent variables. The five-gene prognostic
panel increased the AUC to 0.813 (p < 0:01). Moreover, the
Kaplan-Meier survival analysis curve also revealed that
patients with any mutation of these five genes in this panel
had better survival time. Furthermore, we verified the panel

on a TCGA-PanCancer Atlas Project dataset and research
performed by Wang et al. [26] and obtained a consistent
conclusion. This indicates that this five-gene panel may have
potential application value.

Although performed on two cohorts, there are several
limitations of our analysis. Because of the lack of recurrence
information for some patients, it is difficult to validate this
five-gene panel in larger datasets. Additionally, the gene
panel generated from our analysis may vary considerably
among individual studies. Therefore, it is essential to detect
its accuracy before its development as a biomarker for GC
recurrence.

In conclusion, we constructed a five-gene panel as a
prognostic factor to predict the recurrence of patients with
gastric cancer based on data from TCGA. Further studies
are needed to evaluate the availability of the gene panel. This
panel is helpful for reducing treatment cost and facilitating
better cancer management.

Data Availability

Previously reported DNA sequencing data were used to sup-
port this study and are available at TCGA Data Portal
(https://portal.gdc.cancer.gov) and cbioportal (https://www
.cbioportal.org/).
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Figure 4: The verified ROC curve and Kaplan-Meier survival analysis. (a) Recurrence prediction with ROC (receiver operating
characteristic) analysis in the validation cohort. The baseline model was established according to the patient’s age, tumor stage, grade,
gender, and race. The AUC (area under curve) was 0.641. After adding the five-gene prognostic panel to the baseline model, the AUC
was 0.703, and the p value was less than 0.05. (b) Kaplan-Meier survival analysis with the five-gene prognostic panel in the validation
cohort. Survival of patients with at least one mutation in the five genes showed significant longer survival time than those without
mutations in these five genes (no mutant genes), p < 0:05.
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