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Current evidence suggests that autophagy is closely correlated with the pathogenesis and development of malignant tumors. This
study is aimed at assessing the potential prognostic significance of autophagy-related long noncoding RNA (ARlncRNA) in
colorectal cancer (CRC). 3145 ARlncRNAs were obtained from autophagy-related genes (ARGs) by Pearson correlation
analysis, and we established a competing endogenous RNA (ceRNA) network mediated by ARlncRNAs. A novel six-
ARlncRNA prognostic signature was constructed based on TCGA samples used as the training group. Kaplan–Meier survival
analysis and independent prognosis analysis were performed on the internal (training and test groups) and external validations
(GEO datasets) to assess the accuracy and clinical practicability. Moreover, the nomogram combining the two independent
prognostic factors (age and ARlncRNA-risk score (ARlncRNA-RS)) intuitively displayed overall survival. Gene set enrichment
analysis (GSEA) conducted on the prognostic signature revealed that the gene set of the high-risk group was significantly
enriched in the hallmark gene set “hypoxia” and the gene set of the low-risk group was enriched in KEGG pathways, including
“peroxisome,” “the citrate cycle (TCA cycle),” and “other glycan degradation.” Assessment of antineoplastic therapy
susceptibility and microsatellite instability (MSI) analysis were performed on CRC samples based on the prognostic signature.
Moreover, Spearman correlation analysis was conducted on the expression of six ARlncRNAs of the prognostic signature and
cancer stem cell (CSC) index as well as the tumor microenvironment (TME). In conclusion, this study established a six-
ARlncRNA prognostic signature, which yielded favorable prognostic significance and demonstrated the correlation between
ARlncRNAs and CRC progression.

1. Introduction

CRC is a common malignant tumor, and its morbidity and
mortality show an increasing trend globally over the past
30 years [1]. Colonoscopy [2, 3] is available currently, and
such early screening means can effectively prevent the occur-
rence of CRC, but its hidden onset, long evolution time, and
high malignancy grade [4, 5] have frequently led to poor
prognosis. At present, early surgical intervention and post-
operative chemotherapy [6, 7] remain the major radical
treatments for CRC. With the development of molecular
mechanism research, the mechanism by which the option
of therapeutic regimens is restricted by various gene levels
becomes increasingly clear; for instance, fluorouracil treat-
ment is not recommended at the time of DYPB homozygous
mutation [8] and cetuximab has poorer therapeutic effect on

KRAS mutation patients than on KRAS wild-type patients
[9]. Therefore, the importance of individualized treatment
has become increasingly prominent. Nonetheless, the CRC
prognosis assessment remains the urgent hotspot to be
investigated due to its complicated molecular mechanism.

Autophagy is defined as a process in which all intracellu-
lar substances are degraded in lysosomes, while the macro-
molecular components are recycled to maintain the
dynamic balance of cellular function [10, 11]. For malignant
tumors, autophagy is a double-edged sword, which can not
only prevent malignant transformation of normal cells [12]
but also promote tumor cell survival to indirectly boost
tumor cell growth and metastasis [13]. Recently, with the
deepening of research on the regulation of autophagy-
targeting individualized treatment at the gene level [14],
research on the role of lncRNA in autophagy in the context
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of tumor has been conducted gradually. lncRNA plays an
important role in human physiological processes, including
epigenetics [15], cell growth, and apoptosis [16], and cell
differentiation [17]. Among them, the effect of lncRNA on
autophagy is mainly achieved through directly or indirectly
regulating genes to affect autophagic function. Chen et al.
discovered that HULC might suppress ARG7 and regulate
ITGB1 to promote the genesis of ovarian cancer [18]. Some
research also indicates that the overexpressed PTENP1 in
hepatocellular carcinoma (HCC) competitively binds with
miR-17, miR-19b, and miR-20a to promote the ULK1,
ARG7, and p62 autophagic genes to complete the autophagy
process and to suppress HCC progression [19].

With the bioinformatic method, this study constructed
the coexpression network of lncRNAs and established the
prognostic signature based on the six ARlncRNAs to further
explore the role of ARlncRNA in prognosis of CRC patients.
Meanwhile, the regulatory correlation between ARlncRNA
and other factors in CRC progression was further revealed
through constructing the ARlncRNA-mediated ceRNA
network. Moreover, GSEA hierarchically manifested the bio-
logical functions related to the genesis and progression of
CRC. Antineoplastic therapy susceptibility analysis centering
for the prognostic signature illustrated that ARlncRNA-RS
was an ideal prognostic indicator for CRC patients accepting
immunotherapy or traditional chemotherapy. Moreover,
Spearman correlation analysis conducted for the six-
ARlncRNA expression and CSC index as well as six-
ARlncRNA expression and TME provided fresh perspectives
of molecular regulatory relationships in CRC patients.

2. Methods

2.1. Data Acquisition. The original profiles of mRNAs,
lncRNAs, and clinical data of CRC were obtained from
TCGA database, and the Wilcoxon test with “edgeR pack-
age” of R software was used for differential analysis of
mRNAs and lncRNAs ð∣log2fold change ∣ ð∣logFC ∣ Þ > 1,
false discovery rate ðFDRÞ < 0:05) to obtain the differentially
expressed mRNAs (DEmRNAs) and differentially expressed
lncRNAs (DElncRNAs). The ARGs were obtained from the
Human Autophagy Database (HADb), and then, ARGs were
intersected with the mRNA profiles (all mRNA data were
corrected by log2 (count + 1)) to obtain the ARGs of CRC.
Later, ARGs were conducted by Pearson correlation analysis
with lncRNAs of CRC (Cor > 0:4, P < 0:001) to obtain the
ARlncRNAs in CRC.

2.2. The ceRNA Network Mediated by ARlncRNAs. To fur-
ther explore the regulatory mechanisms of ARlncRNAs with
other factors, we constructed the ARlncRNA-mediated
ceRNA network. Obtained ARlncRNAs and DElncRNAs
were intersected to acquire the target ARlncRNAs. After-
ward, miRNA profiles were obtained from the TCGA data-
base and the Wilcoxon test with the “egdeR package” of R
software was adopted for differential analysis (∣logFC ∣ >1,
FDR < 0:05) to obtain the DEmiRNAs. Furthermore, the
miRcode (http://www.mircode.org/) [20] was used to
acquire target ARlncRNAs corresponding to DEmiRNAs.

Later, the target mRNAs of DEmiRNAs were obtained using
the Perl language from the miRDB [21], miRTarBase [22],
and TargetScan database [23], which were then intersected
with DEmRNAs to acquire the target DEmRNAs of CRC
to determine the relationships between DEmiRNAs and
DEmRNAs. Moreover, the Cytoscape 3.7.2 [24] was used
for visualization to construct the target ARlncRNA-
DEmiRNA-DEmRNA network. Meanwhile, we used The
Database for Annotation, Visualization and Integrated Dis-
covery (DAVID) to conduct Gene Ontology (GO) functional
annotation and KOBAS 3.0 (http://kobas.cbi.pku.edu.cn/) to
perform Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway functional enrichment analysis for the
downstream DEmRNAs of the ceRNA network to clarify
the downstream DEmRNAs of ceRNA network-related bio-
logical functions in CRC. The “GO plot package” of R soft-
ware and Cytoscape 3.7.2 were used to the visualization of
the relationships of GO terms and downstream DEmRNAs
and the correlations between the KEGG pathways and
downstream DEmRNAs.

2.3. The Construction of the Prognostic Signature Based on
ARlncRNAs. We excluded patients with a survival time of
less than or equal to 30 days, since they might die of acute
disease such as cardiovascular and cerebrovascular disease
rather than CRC. Then, the expression of ARlncRNAs in
various clinical samples which were retrieved from TCGA
and GEO was integrated with the corresponding patients’
survival time and survival status. Meanwhile, the clinical
samples retrieved from TCGA were randomly divided into
the training group (n = 248) and test group (n = 248) at a
ratio of 1 : 1. And clinical samples retrieved from the GEO
were defined as the validation group (n = 294). The files of
the training group were conducted with univariate Cox
regression analysis (P < 0:05) and corrected by LASSO
regression analysis to obtain the prognosis-associated
ARlncRNAs. Later, the prognosis-associated ARlncRNAs
went through performed multivariate Cox regression analy-
sis to acquire the ARlncRNAs for the prognostic signature
and the ARlncRNA-RS. ARlncRNA-RS was calculated as
follows: ARlncRNA − RS = Coef gene1 × expgene1 + Coef gene2
× expgene2 + , ⋯ ,+Coef genen × exprgenen. In addition, it was
intuitively observed that ARlncRNAs with HR < 1 were
defined as low-risk ARlncRNAs, while those with HR ≥ 1
were defined as the high-risk ARlncRNAs. In addition,
patients were classified as the high-risk group and low-risk
group according to the median ARlncRNA-RS. Namely,
patients with ARlncRNA-RS greater than or equal to the
median ARlncRNA-RS were categorized into the high-risk
group and patients with ARlncRNA-RS less than the median
ARlncRNA-RS were categorized into the low-risk group.
Moreover, to assess the prognostic significance for the prog-
nostic signature, we performed Kaplan–Meier survival anal-
ysis on both the high- and low-risk groups to judge whether
the prognostic signature was statistically significant to the
patients’ survival. Meanwhile, the results of Kaplan–Meier
survival analysis on the training group were examined by
the test group and validation group retrieved from GEO
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datasets (GSE17536 and GSE103479). Moreover, we used
independent prognosis analysis to determine whether vari-
ous clinical features and the prognostic signature could be
considered the independent prognostic factors to indepen-
dently predict patients’ prognosis. Moreover, we used the
eight-autophagy-mRNA prognostic model [25], four-
lncRNA prognostic model [26], and four-mRNA prognostic
model [27] to further validate prognostic superiority of the
prognostic signature based on ARlncRNAs.

2.4. Nomogram Based on the Independent Prognostic Factors.
On the basis of the outcome of the independent prognosis
analysis, we used the independent prognostic factors to plot
the nomogram [28]. The Harrell’ concordance index (C-
index) and the calibration curve about the patients’ long-
term survival probability (3- and 5-year probability) exam-
ined the accuracy and divergence of the nomogram. The
decision curve analysis (DCA) was utilized to explore the
clinical benefit with clinical intervention in the patients’
corresponding survival.

2.5. Clinical Correlation Analysis for the Six-ARlncRNA
Prognostic Signature. To figure out the correlation between
the six-ARlncRNA prognostic signature and clinical factors,

we conducted clinical correlation analysis to evaluate the dif-
ference comparison between ARlncRNA-RS of the six-
ARlncRNA prognostic signature and clinical factors,
namely, age, gender, stage, pathological-T (pT),
pathological-N (pN), and pathological-M (pM). The chi-
square test was used for comparison of distributional differ-
ences for clinical factors in high- and low-risk groups. The
Wilcoxon test was used to compare intragroup differences
for ARlncRNA-RS of the six-ARlncRNA prognostic signa-
ture in clinical factors. P < 0:05, P < 0:01, and P < 0:001 were
severally considered statistically different, highly statistically
different, and markedly statistically different.

2.6. Gene Set Enrichment Analysis for the Prognostic
Signature. GSEA was used to detect the biological functional
enrichment of gene sets in various tumor samples [29]. In
this study, the status and expression of the gene set in vari-
ous clinical samples of the high- and low-risk groups in
the prognostic signature were analyzed with GSEA based
on the KEGG and hallmark gene sets to identify the biolog-
ical pathways and functions in the high- and low-risk
groups. NOM P < 0:01 and FDR q < 0:25 were deemed as
the filter criteria.
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Figure 1: The flow chart of this study.
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2.7. Antineoplastic Therapy Susceptibility and MSI. The anti-
neoplastic therapy susceptibility analyses containing
immune checkpoint inhibitor (ICI) therapy susceptibility
analysis and conventional chemotherapy susceptibility anal-
ysis based on the six-ARlncRNA prognostic signature was
illustrated with Tumor Immune Dysfunction and Exclusion
(TIDE) algorithm [30] and pRRophetic package” of R soft-
ware [31], respectively. TIDE algorithm was utilized to pre-
dict the anti-PD-1 and anti-CTLA4 immunotherapeutic
response of CRC patients. With the increase of the TIDE
score, the probability of immune escape escalated and the
immunotherapeutic response worsened. Integrated with the
gene expression of TCGA CRC samples and the gene expres-
sion of CRC cell lines of the Cancer Genome Project (CGP),
the algorithm driven by “pRRophetic package” of R software
based on ridge regression analysis [32] was applied on the
examination of conventional chemotherapy susceptibility
for the high- and low-risk groups based on the six-
ARlncRNA prognostic signature. A total of 138 kinds of
antineoplastic drugs were presented with the susceptibility
differences in the high- and low-risk groups. IC50 (50%
inhibitory concentration) was used to assess the conven-
tional chemotherapy susceptibility, and patients with lower
IC50 were more sensitive to antineoplastic therapy. MSI sta-
tuses (MSI-L, MSI-H, and MSS) of CRC, searched from the
Cancer Immunome Atlas (TCIA) (the database providing
the results of immune genomic analysis based on the next
generation sequence (NGS) data of 20 kinds of carcinomas
in TCGA) [33], were employed to compare differences in
the high- and low-risk groups.

2.8. Further Exploration for the Six ARlncRNAs of the
Prognostic Signature. lnCAR (https://lncar.renlab.org/
explorer), database-aggregated microarray data of approxi-
mately 60000 samples and clinical data of 13000 samples
for survival analysis from 10 cancer types based on GEO
database [34], was used to compare and validate the expres-
sion difference of six ARlncRNAs in CRC and normal
tissues. Expression of six ARlncRNAs and the CSC index
because of RNA-seq (RNAss) acquired from UCSC Xena
database were conducted with Spearman correlation analysis
to explore the regulatory correlation existing in ARlncRNA
expression and the CSC index. Stromal score and immune
score represented the relative contents of stromal compo-
nents and immune cells and tumor cells in the TME [35].
The ESTIMATE score, the sum of the stromal score and
immune score, indirectly signified the infiltration of tumor
cells [35]. The “estimate package” of R software was used
to calculate the stromal score, immune score, and ESTI-
MATE score based on TCGA gene expression files. Spear-
man correlation analysis was performed for the correlation
between the expression of six ARlncRNAs and the TME
score (stromal score, immune score, and ESTIMATE score).
Moreover, to further uncover the innate regulatory relation-
ship between ARlncRNAs and immune components of
TME, we conducted the ANOVA for immune subtype data
(C1: wound healing, C2: IFN-γ dominant, C3: inflamma-
tory, C4: lymphocyte depleted, C5: immunologically quiet,
and C6: TGF-β dominant) retrieved from UCSC Xena data-

base and six-ARlncRNA expression and Spearman correla-
tion analysis for the relative contents of 22 immunocytes
calculated from CIBERSORT deconvolution algorithm and
six-ARlncRNA expression.

3. Results

3.1. Data Acquisition. Figure 1 showed the research proce-
dure about this study. Table 1 showed the clinical features
of CRC patients retrieved from TCGA. In this study, we
obtained 2079 DEmRNAs and 1063 DElncRNAs from 562
tumor tissues and 43 normal or paratumor tissues in TCGA
database with the “edgeR package” of R software, including
1084 upregulated DEmRNAs and 995 downregulated
DEmRNAs (Figures 2(a) and 2(d) and Table S1) and 823
upregulated DElncRNAs and 240 downregulated
DElncRNAs (Figures 2(b) and 2(e) and Table S2),
respectively. Moreover, 232 ARGs were acquired from
HADb (http://www.autophagy.lu/index.html), which were
integrated with the mRNAs in CRC to obtain 210 ARGs in
CRC. These ARGs in CRC were conducted with Pearson
correlation analysis with lncRNA (Cor > 0:4, P < 0:001) to
finally obtain 3145 ARlncRNAs.

3.2. The Construction of the ceRNA Network. To better illus-
trate the regulatory mechanism of ARlncRNAs in CRC, we
constructed the ARlncRNA-DEmiRNA-DEmRNA ceRNA
network. We acquired 202 upregulated and 76 downregu-
lated DEmiRNAs (Figures 2(c) and 2(f) and Table S3) with
“edgeR package” of R software. Then, 3145 ARlncRNAs

Table 1: Clinical statistics of TCGA CRC patients.

Characteristics Variables Amounts (percentage)

Age
≤65 236 (43.54%)

>65 306 (56.46%)

Gender
Female 253 (46.68%)

Male 289 (53.32%)

AJCC-T staging

T1 14 (2.58%)

T2 95 (17.53%)

T3 370 (68.27%)

T4 62 (11.44%)

Tis 1 (0.18%)

AJCC-N staging

N0 319 (58.86%)

N1 129 (23.80%)

N2 93 (17.16%)

Nx 1 (0.18%)

AJCC-M staging

M0 404 (74.54%)

M1 75 (13.84%)

MX 55 (10.15%)

NA 8 (1.47%)

AJCC stage

Stage I 94 (17.34%)

Stage II 208 (38.38%)

Stage III 149 (27.49%)

Stage IV 76 (14.02%)

NA 15 (2.77%)
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were intersected with 1063 DElncRNAs to acquire 418 target
ARlncRNAs (Figure S1A). Then, 278 DEmiRNAs were
integrated with miRcode via Perl language for miRNA
target prediction, and 339 ARlncRNA-DEmiRNA relation
pairs were obtained, including 51 ARlncRNAs and 32
DEmiRNAs. Afterward, the Perl language was used to
identify 1990 DEmiRNA-target mRNA relation pairs and
1407 target mRNAs based on the miRTarBase, miRDB, and
TargetScan database. Then, 1407 target mRNAs were
intersected with 2079 DEmRNAs to eventually determine 56
target DEmRNAs (Figure S1B) for constructing the ceRNA
network. Finally, we obtained 38 DEmiRNA-DEmRNA
relation pairs and 81 ARlncRNA-DEmiRNA relation pairs
for constructing the ceRNA network according to the
regulatory mechanisms of the ceRNA network, which was
visualized with the Cytoscape 3.7.2 (Figures 3(a) and 3(b)),
including 30 ARlncRNAs, 18 DEmiRNAs, and 29
downstream DEmRNAs (Table 2). Then, with DAVID, we
identified that 13 downstream DEmRNAs of 29 downstream
DEmRNAs were enriched in three GO terms:
GO:0045892—negative regulation of transcription; DNA
templated (P = 0:001), GO:0007507—heart development
(P = 0:037); and GO:0005615—extracellular space (P = 0:045)
(Figure 3(c) and Table 3). The GO circle (Figure 3(d)) and
GO chord (Figure 3(e)) visualized the results of the amounts
of up- and downregulated downstream DEmRNAs enriched
in three GO terms, in which GO:0045892—negative
regulation of transcription, DNA-templated enriched most
downregulated target DEmRNAs (TCEAL7, FOXF2,
HAND1, and PDCD4, KLF4) and GO:0005615—extracellular
space enriched the most upregulated target DEmRNAs
(PLAU, STC2, FJX1, and EREG). Using KOBAS 3.0 for the
KEGG pathway enrichment analysis, we ascertained five
KEGG pathways enriching nine downstream DEmRNAs
with statistical significance (P < 0:05), namely, hsa04978:
mineral absorption (P = 0:005); hsa04550: signaling pathways
regulating pluripotency of stem cells (P = 0:025); hsa04261:
adrenergic signaling in cardiomyocytes (P = 0:027); hsa04360:
axon guidance (P = 0:038); and hsa05205: proteoglycans in
cancer (P = 0:048) (Table 3). Figures 3(f) and 3(g) showed

the enrichment and interaction of nine downstream
DEmRNAs in five KEGG pathways visually.

3.3. The Prognostic Signature Based on Autophagy-Related
lncRNAs. Firstly, we used the “caret package” of R software
to randomly divide the patients into the training group
(n = 248) and test group (n = 248) at a ratio of 1 : 1
(Table S4). Integrating the clinical samples’ survival
statistics and the corresponding ARlncRNA expression
quantities, we used the “survival package” of R software for
univariate cox regression analysis to screen eight
prognosis-associated ARlncRNAs based on the training
group (P < 0:05) (Figure 4(a)). Then, rectification for the
eight prognosis-associated ARlncRNAs was accomplished
through LASSO regression analysis with “glmnet package”
of R software (Figures 4(b) and 4(c)). Subsequently, we
conducted the multivariate Cox regression analysis
(“survival package” and “survimer package” of R software)
on eight prognosis-associated ARlncRNAs with a
minimum AIC value (412.23) and the prognostic signature
based on six ARlncRNAs (ALMS1-IT1, FGD5-AS1, FLG-
AS1, MIR210HG, MIR31HG, and PINK1-AS), including
four high-risk ARlncRNAs (ALMS1-IT1, FLG-AS1,
MIR210HG, and MIR31HG) and two low-risk ARlncRNAs
(FGD5-AS1 and PINK1-AS) (Figure 4(d)), was obtained.
The ARlncRNA − RS = 0:473 × expALMS1−IT1 + ð−0:470Þ ×
expFGD5−AS1 + 0:352 × expFLG−AS1 + 0:395 × expMIR210HG +
0:183 × expMIR31HG + ð−0:485Þ × expPINK1−AS. Patients with
the ARlncRNA-RS greater than or equal to the median
ARlncRNA-RS (1.067) were categorized into the high-risk
group; otherwise, they were categorized into the low-risk
group. As shown in Figures 5(a) and 5(e), the Kaplan–
Meier survival curves for the training and test group
demonstrated that the six-ARlncRNA prognostic signature
was statistically correlated with the survival probability in
high- and low-risk groups (P = 6:662e − 06 and P = 7:076e
− 04). Moreover, to determine whether this prognostic
signature could independently predict the prognosis of
CRC patients, we combined the clinical features (age,
gender, and American Joint Committee on Cancer (AJCC)
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Figure 2: The DEmRNAs and DElncRNAs and DEmiRNAs. (a–c) The heat maps about expression quantities of DEmRNAs and
DElncRNAs and DEmiRNAs. (d–f) The volcano plots about expression quantities of DEmRNAs and DElncRNAs and DEmiRNAs.

6 BioMed Research International



(a)

STC2

PLAU

hsa-mir-206

hsa-mir-193b

MIR31HG

(b)

GO:0005615~extracellular space

GO:0007507~heart development

GO:0045892~negative regulation of transcription, DNA−templated

0 1 2 3 4 5 6

−log10 (PValue)

1.5

2.0

2.5

(c)

GO:0045892

GO:0007507

G
O

:00
05

61
5

logFC

downregulated
upregulated

decreasing increasing

z−score

(d)

BM
P3

C
FL2EREG

FJX1
FOXF2

HAND1

KLF4

OSR1

PDCD4

PLAU

RB
M

20

ST
C

2

TC
EA

L7

GO Terms
negative regulation of transcription, DNA−templated
heart development
extracellular space

−3 3

logFC

(e)

Count

pvalue

2

0.04

0.03

0.02

0.01

Gene ratio
2/14

Mineral absorption

Signaling pathways regulating pluripotency of stem cells

Adrenergic signaling in cardiomyocytes

Axon guidance

Proteoglycans in cancer

Te
rm

(f)

Figure 3: Continued.

7BioMed Research International



stage) with ARlncRNA-RS of the six-ARlncRNA prognostic
signature to perform univariate and multivariate
independent prognosis analyses. As shown in Figures 5(b)
and 5(c), the age, AJCC-stage, and ARlncRNA-RS in the
training group showed significant statistical differences,
whose results were consistent with that in the test group
(Figures 5(f) and 5(g)). As shown in Figures 5(d) and 5(h),
the area under curves (AUC) of multi-indicator receiver
operating characteristic (ROC) curves including
ARlncRNA-RS, age, gender, and AJCC stage in the
training and test group were 0.711, 0.619, 0.496, 0.700,
0.776, 0.565, 0.377, and 0.799, demonstrating the favorable
feasibility of the six-ARlncRNA prognostic signature in
predicting CRC patients’ prognosis. These results suggested
that ARlncRNA-RS of the six-ARlncRNA prognostic
signature could serve as the independent prognostic factors
to predict the prognosis of CRC patients.

3.4. External Verification and Prognostic Superiority of the
Prognostic Signature. The strength of the prognostic signa-
ture in predicting the survival probability of patients was
further verified by GEO datasets, GSE17536 and
GSE103479 (batch effect has been eliminated with “sva
package” of R software) (Table S4). As shown in
Figure 5(i), the survival probability between the high- and
low-risk groups was proved to be statistically different
(P = 0:025), which is consistent with the training and test
groups. Figures 5(j) and 5(k) showed the results of the

univariate and multivariate independent prognosis analyses
for the validation group, in which the age and ARlncRNA-
RS were identified as the independent prognostic factors.
The AUCs of multi-indicator ROC curves including
ARlncRNA-RS, age, gender, and AJCC-stage (Figure 5(l))
were 0.693, 0.590, 0.460, and 0.621, respectively, which
proved that the prognostic signature verified by the
validation group had relatively robust accuracy. In
addition, to further demonstrate the prognostic superiority
of the six-ARlncRNA prognostic signature, we plotted the
time-dependent ROC curves among the six-ARlncRNA
prognostic signature and other three prognostic models. As
shown in Figures 5(m)–5(o), the 1-year, 3-year, and 5-year
AUCs of ROC curves for the six-ARlncRNA prognostic
signature (0.711, 0.788, and 0.718) were all higher than
those for the XuSig (eight-autophagy-gene prognostic
model) (0.671, 0.666, and 0.700), YangSig (four-lncRNA
prognostic model) (0.616, 0.612, and 0.667), and ZhangSig
(four-mRNA prognostic model) (0.620, 0.683, and 0.715),
indicating that the accuracy of the six-ARlncRNA
prognostic signature in the prediction of survival was
superior to the other three prognostic models.

3.5. Establishment and Validation of a Nomogram Based on
Independent Prognostic Factors. After performing univariate
and multivariate independent prognosis analyses using the
training, test, and validation group datasets, we then con-
structed a nomogram including two independent prognostic

TPM2 ATP2B4 CYBRD1

hsa04261 hsa04978

PDCD4 CFL2 KLF4

HAND1EPHA7PLAU

hsa05205 hsa04360 hsa04550

(g)

Figure 3: The ceRNA network mediated by ARlncRNAs. (a) The target ARlncRNA-DEmiRNA-DEmRNA ceRNA network. (b) MIR31HG/
has-mir-206/STC2 axis and MIR31HG/has-mir-193b/PLAU axis. (c) GO bar plot for the three GO terms enriching the downstream
DEmRNAs of the ceRNA network with statistical significance (P < 0:05). (d) GO circle for the distribution of the downstream
DEmRNAs of the ceRNA network. The red dots represented upregulated downstream DEmRNAs and the blue dots represented
downregulated downstream DEmRNAs. (e) GO chord for the distribution of official gene symbols of upregulated and downregulated
downstream DEmRNAs. (f) KEGG bar plot representing the five KEGG pathways enriching the downstream DEmRNAs of the ceRNA
network with statistical significance (P < 0:05). (g) The interaction between KEGG pathways and corresponding enriched downstream
DEmRNAs. The blue round rectangles represented KEGG pathways, the red circle represented upregulated downstream DEmRNAs, and
the purple rhombuses represented downregulated downstream DEmRNAs.
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factors (age and ARlncRNA-RS of the six-ARlncRNA prog-
nostic signature) based on the training group (Figure 6(a)),
while the test group (Figure S2A) and validation group
(Figure S2B) were used for verifying the accuracy and
feasibility of the nomogram. To be specific, for the
currently eligible patients, the corresponding scores of the
“age” and “ARlncRNA-RS” were found on the nomogram;
then, the corresponding scores were added to obtain the
corresponding 3- and 5-year survival probability of
patients. The C-indexes of the nomogram based on the
training, test, and validation groups were 0.706 (95% CI:
0.637-0.774), 0.710 (95% CI: 0.624-0.796), and 0.641 (95%
CI: 0.574-0.708), respectively. The calibration curves of the

nomogram predicting 3- and 5-year survival based on the
training (Figures 6(b) and 6(c)), test (Figure S2C and S2D),
and validation groups (Figure S2G and S2H) showed good
agreement. The decision curve analysis (DCA) based on
the training (Figures 6(d) and 6(e)), test (Figure S2E and
S2F), and validation groups (Figure S2I and S2J)
demonstrated that CRC patients with relatively long-time
survival (including 3- and 5-year survival) could benefit
from clinical intervention.

3.6. Clinical Correlation Analysis. On the basis of TCGA
CRC patients’ data, clinical correlation analysis was per-
formed to elaborately explore the underlying relationship

Table 2: The DEmiRNA-DEmRNA and ARlncRNA-DEmiRNA interaction pairs in the ceRNA network.

(a)

lncRNA miRNA lncRNA miRNA

AC009093.1 hsa-mir-150 LATS2-AS1 hsa-mir-150

AC020704.1 hsa-mir-150 C15orf54 hsa-mir-150, hsa-mir-206

ST7-OT4 hsa-mir-150
HECW1-

IT1
hsa-mir-150

SPATA13-
AS1

hsa-mir-193b AL020995.1 hsa-mir-192

PCA3 hsa-mir-150, hsa-mir-206 RMRP hsa-mir-206

KCNQ1OT1 hsa-mir-150, hsa-mir-193b, hsa-mir-206 ST7-AS2 hsa-mir-206

FRMD6-
AS2

hsa-mir-143, hsa-mir-182, hsa-mir-338 CHL1-AS2 hsa-mir-183

AL139147.1 hsa-mir-150, hsa-mir-206 USP12-AS1 hsa-mir-206

ADAMTS9-
AS1

hsa-mir-143, hsa-mir-21, hsa-mir-31 MIR31HG hsa-mir-193b, hsa-mir-206

MALAT1 hsa-mir-150, hsa-mir-193b, hsa-mir-206
BTBD9-
AS1

hsa-mir-150

SFTA1P hsa-mir-143, hsa-mir-182, hsa-mir-424 PVT1 hsa-mir-150

SMCR5 hsa-mir-150, hsa-mir-193b, hsa-mir-206
RBMS3-
AS3

hsa-mir-182

LIFR-AS1
hsa-mir-106a, hsa-mir-182, has-mir-31, hsa-mir-

32, hsa-mir-372
JAZF1-AS1

hsa-mir-106a, hsa-mir-143, hsa-mir-17, hsa-mir-21, hsa-
mir-32, hsa-mir-372, hsa-mir-98

AC110491.1
hsa-mir-141, hsa-mir-143, hsa-mir-429, hsa-mir-

182, hsa-mir-338, hsa-mir-98
ADAMTS9-

AS2
hsa-mir-182, hsa-mir-106a, hsa-mir-141, hsa-mir-143,

hsa-mir-183, hsa-mir-223

DIRC3
hsa-mir-183, hsa-mir-31, hsa-mir-338, hsa-mir-

424, hsa-mir-429, hsa-mir-98
hsa-mir-31, hsa-mir-32, hsa-mir-338, hsa-mir-372, hsa-

mir-98

(b)

miRNA mRNA miRNA mRNA

hsa-mir-106a CADM2, CFL2 hsa-mir-206 STC2

hsa-mir-21 ATP2B4, ELAVL4, OSR1 hsa-mir-223 TCEAL7

hsa-mir-141 CHL1, EDIL3, ELAVL4, EPHA7 hsa-mir-143 BMP3

hsa-mir-150 EREG, FJX1 hsa-mir-17 CYBRD1, HAND1, RBM20, UGP2

hsa-mir-182 FOXF2, PHLPP2, TMEM100 hsa-mir-183 NOVA1

hsa-mir-193b PLAU hsa-mir-31 NPTX1

hsa-mir-32 GRIK3, PDCD4 hsa-mir-338 PBLD

hsa-mir-372 EPB41L3, TMEM100, ATP2B4 hsa-mir-98 CADM2, CFL2, NPTX1

hsa-mir-424 CFL2, PDCD4, PHLPP2, TPM2 hsa-mir-429 KLF4
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between the six-ARlncRNA prognostic signature and clinical
factors (age, gender, stage, pT, pN, and pM). We first inves-
tigated which clinical factors were statistically significant
between the high- and low-risk groups in the macrolevel.
As shown in Figure 7(a), the statistically significant differ-
ence in stage and pN was found between the high- and
low-risk groups (P < 0:001). In addition, there was a highly
statistical difference between the high- and low-risk groups
for pT (P < 0:01). Moreover, we further analyzed whether
there were statistical differences between ARlncRNA-RS of
the six-ARlncRNA prognostic signature among clinical fea-
tures. As shown in Figures 7(b)–7(e), statistical differences
for ARlncRNA-RS within the stage, pT, pN, and pM were
found, specially between stage I and stage III (P = 1e − 08),
pT2 and pT4 (P = 0:00015), pN0 and pN2 (P = 1:2e − 06),
and pM0 and pM1 (P = 0:024).

3.7. Gene Set Enrichment Analysis. Gene set enrichment
analysis (GSEA) was also conducted to further reveal the
relationships between gene biological functions and tumor
pathogenesis. Table 4 showed the results of GSEA for the
high- and low-risk groups. In this study, it was discovered
that the gene set reannotated based on the hallmark gene
sets, namely, hypoxia (NOM P < 0:01, FDR q = 0:215), was
mainly enriched in the high-risk group (Figure 8(a)). In
addition, there were no gene sets based on the hallmark gene
sets enriched in the low-risk group. Further, the
metabolism-related pathways based on the KEGG path-
ways were mainly enriched in the low-risk group, such
as peroxisome (NOM P < 0:01, FDR q = 0:011)
(Figure 8(b)), the citrate cycle (TCA cycle) (NOM P =
0:002, FDR q = 0:064) (Figure 8(c)), and other glycan deg-
radation (NOM P = 0:002, FDR q = 0:115) (Figure 8(d)).
In contrast, the high-risk group was not involved in path-
ways based on the KEGG pathways.

3.8. Overview for the Antineoplastic Therapy Susceptibilities
and MSI. The expression differences of tumor immune

checkpoints (PDCD1, CTLA4, and HAVCR2) in the high-
and low-risk groups were shown in Figures 9(a)–9(c). It
was noted that the expression of HAVCR2, PDCD1, and
CTLA4 was all higher in the high-risk group than in the
low-risk group. TIDE algorithm characterizing anti-PD1
and anti-CTLA4 response demonstrated that CRC patients
in the low-risk group were more amenable to developing
immune escape capacities (Figure 9(d)). Meanwhile, we ana-
lyzed the differences of conventional chemotherapy suscep-
tibility of the CRC patients in the high- and low-risk
groups based on the six-ARlncRNA prognostic signature.
As shown in Figures 9(e)–9(i), after comprehensive conven-
tional chemotherapy susceptibility analysis for the 138 kinds
of chemotherapy drug, it was noted that gefitinib
(P = 6:8e − 06), PLX4720 (P = 0:00046), AZD.2281
(P = 0:024), cisplatin (P=0.025), and JNK.inhibitor.VIII
(P = 0:037) were more susceptible to the CRC patients in the
high-risk group than in the low-risk group. Furthermore,
differences of the MSI statuses between the high- and low-
risk groups were also observed. As shown in Figure 9(j), the
CRC patients with MSS status and MSI-L status took larger
proportions in the high-risk group compared with the low-
risk group (60% vs 70% and 13% vs 21%) and CRC patients
MSI-H status in the high-risk group and low-risk group occu-
pied 27% and 9%, respectively. MLH1 exhibited a higher
expression level in the low-risk group compared with the
high-risk group with statistical difference (P < 0:05)
(Figure 9(k)). In addition, the expression of MLH1 was posi-
tively correlated with the expression of the low-risk
ARlncRNA, FGD5-AS1, and negatively correlated with the
expression of the high-risk ARlncRNA, MIR210HG
(Figure 9(l)).

3.9. Validation for Expression of Six ARlncRNAs. As shown
in Figures 10(a)–10(f), the expression differences among
ALMS1-IT1, FGD5-AS1, FLG-AS1, and MIR31HG were
considered statistically significant (P < 0:001) based on
expression data retrieved from TCGA. It was noted that

Table 3: GO and KEGG enrichment analysis for downstream DEmRNAs of the ceRNA network.

(a)

GO functional annotations
GO terms Count Genes P value

GO:0045892—negative regulation of transcription, DNA-templated 6 TCEAL7, FOXF2, HAND1, PDCD4, KLF4, EREG 0.001

GO:0007507—heart development 3 OSR1, HAND1, RBM20 0.037

GO:0005615—extracellular space 6 BMP3, PLAU, CFL2, STC2, FJX1, EREG 0.045

(b)

KEGG pathway enrichment analysis
KEGG terms Count Genes P value

hsa04978: mineral absorption 2 ATP2B4, CYBRD1 0.005

hsa04550: signaling pathways regulating pluripotency of stem cells 2 KLF4, HAND1 0.025

hsa04261: adrenergic signaling in cardiomyocytes 2 ATP2B4, TPM2 0.027

hsa04360: axon guidance 2 CFL2, EPHA7 0.038

hsa05205: proteoglycans in cancer 2 PLAU, PDCD4 0.048
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the expression of ALMS1-IT1 and MIR31HG in tumor tis-
sues was higher than that in the normal tissues and the
expression of FGD5-AS1 and FLG-AS1 in tumor tissues
was lower than that in the normal tissues. However, there
was no statistical significance between the expression of
MIR210HG and PINK1-AS in both tumor and normal
tissues based on TCGA. Figures 10(g)–10(l) showed the val-
idation results for the expression of the six ARlncRNAs
(ALMS1-IT1, FGD5-AS1, FLG-AS1, MIR31HG,
MIR210HG, and PINK1-AS) in the tumor and normal tis-
sues based on lnCAR database. Results of the study revealed
that the expression of ALMS1-IT1 and MIR31HG in CR_
S107 (GSE21510), CR_S128 (GSE18105), CR_S188
(GSE37364), CR_S36 (GSE71187), CR_S177 (GSE31905),
and CR_S198 (GSE50421) was upregulated in the tumor tis-

sues compared with normal tissues with statistical signifi-
cance (P < 0:05) and the expression of FGD5-AS1 and
FLG-AS1 in CR_S107 (GSE21510), CR_S188 (GSE37364),
CR_S222 (GSE9348), CR_S107 (GSE21510), CR_S128
(GSE18105), and CR_S157 (GSE22598) was downregulated
in tumor tissues compared with normal tissues with statisti-
cal significance (P < 0:05), both of which were consistent
with the results based on TCGA. Moreover, lnCAR was used
to evidently expound the expression differences between
MIR210HG and PINK1-AS in CR_S82 (GSE39582), CR_
S107 (GSE21510), CR_S128 (GSE18105), CR_S128
(GSE18105), CR_S177 (GSE31905), and CR_S183
(GSE35279), where the expression of MIR210HG and
PINK1-AS was both downregulated in the tumor tissues
with statistical significance (P < 0:05).
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Figure 4: The screening of six ARlncRNAs of the prognostic signature. (a) The forest plot about the eight prognosis-associated ARlncRNAs
on the basis of univariate Cox regression analysis. (b, c) The LASSO regression analysis and partial likelihood deviance on the eight
prognosis-associated ARlncRNAs. (d) The forest plot about the six ARlncRNAs for the prognostic signature, in which ARlncRNAs with
HR ≥ 1 were defined as high-risk ARlncRNAs and ARlncRNAs with HR < 1 were defined as low-risk ARlncRNAs.
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Figure 5: Continued.
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3.10. CSC Index and TME Correlation Analysis. CSCs have
been proved to be associated with the progression of malig-
nancies and TME was mainly comprised of the stroma
microenvironment and immune microenvironment. In this
research, the expression of six ARlncRNAs and CSC index
as well as the TME score was synthesized to delineate the
potential correlation between the ARlncRNAs and CSCs as
well as TME in CRC. Figures 11(a)–11(d) manifested the
results of the linear correlation between the expression of
six ARlncRNAs and the CSC index as well as the TME score
(stromal score, immune score, and ESTIMATE score). It was
concluded that the expression of ALMS1-IT1 was positively
correlated with the CSC index (R = 0:14, P = 0:0063),
indicating that CRC cells with higher expression of

ALMS1-IT1 had more distinct stem cell properties and
lower degree of cell differentiation. In addition, the expres-
sion of FGD5-AS1, FLG-AS1, and MIR31HG was negatively
correlated with the CSC index (R = −0:14, P = 0:0074 and
R=−0.43, P = 2:2e − 16 and R = −0:25, P = 4:8e − 07). More-
over, there was no statistical correlation between the expres-
sion of MIR210HG and PINK1-AS and the CSC index. For
the TME score, higher stromal score, and immune score
represented higher relative contents of stromal cells or
immunocytes in the tumor microenvironment, and the
ESTIMATE score indicated the aggregation of the stromal
score and immune score in TME. The expression of FLG-
AS1 andMIR31HGwas positively correlated with the stromal
score (R = 0:52, P < 2:2e − 16 and R = 0:19, P = 0:00021),
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Figure 5: Internal and external verification for the six-ARlncRNA prognostic signature. (a, e, i) The Kaplan-Meier survival curves for the
high- and low-risk groups in the training, test, and validation groups. (b, f, j) Univariate independent prognosis analysis for the training, test,
and validation groups. (c, g, k) Multivariate independent prognosis analysis for the training, test, and validation groups. (d, h, l) The multi-
indicator ROC curves for the training, test, and validation groups. (m–o) The 1-year, 3-year, and 5-year time-dependent ROC curves for the
six-ARlncRNA prognostic signature, Xu prognostic model, Yang prognostic model, and Zhang prognostic model, in which red curves
represented the six-ARlncRNA prognostic signature, green curves represented the Xu prognostic model, blue curves represented the
Yang prognostic model, and purple curves represented the Zhang prognostic model.
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immune score (R = 0:28, P = 3:5e − 08 and R = 0:2, P = 7:1e
− 05), and ESTIMATE score (R = 0:43, P < 2:2e − 16 and R
= 0:21, P = 3:3e − 05). The expression of ALMS1-IT1 was
negatively correlated with the immune score (R = −0:16, P =
0:0013) andESTIMATE score (R = −0:11,P = 0:029). In addi-
tion, the expression of FGD5-AS1 was positively correlated
with the stromal score. However, there was no statistical cor-
relation between the expression of MIR210HG and PINK-

AS1 and the stromal score, immune score, or ESTIMATE
score. Moreover, we further investigated the correlation
between the expression of six ARlncRNAs and the immune
environment of CRC to uncover the innate regulatory rela-
tionship between ARlncRNA and immune heterogeneity. As
shown in Figure 12(a), the expression of ALMS1-IT1 was
highest in immune subtype C2 and lowest in the immune
subtype C3 with statistical significance (P = 0:003). In
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Figure 6: The construction of the nomogram containing two independent prognostic factors. (a) The nomogram based on independent
prognostic factors (age and ARlncRNA-RS of the six-ARlncRNA prognostic signature) for the training group. (b, c) The 3- and 5-year
calibration curves for the nomogram in the training group. (d, e) The 3- and 5-year DCA curves for the nomogram in the training group.

14 BioMed Research International



Risk

age

gender
stage⁎⁎⁎

T⁎⁎

N⁎⁎⁎

M

MN⁎⁎⁎T⁎⁎stage⁎⁎⁎genderageRisk
M0

M

M1
unknow

N0
N1
N2
unknow

T1
T2
T3
T4
unknow

Stage I
Stage II
Stage III
Stage IV
unknow

FEMALE
MALE

<=65
>65

high
low

(a)

Stage I Stage II Stage III Stage IV
stage

0

20

40

60

Ri
sk

 sc
or

e

0.00033
1e-08

2.5e-05
0.0013

0.037
0.85

Stage I
stage

Stage II
Stage III
Stage IV

(b)

T 1 T 2 T 3 T 4

0.63
0.044

0.0074
0.0004

0.0015
0.036

T
T 1
T 2

T 3
T 4

T

0

20

40

60

Ri
sk

 sc
or

e

(c)

N0 N1 N2
N

N0
N1
N2

N

0.031
1.2e-06

0.0015

0

10

20

30

40

50

Ri
sk

 sc
or

e

(d)

M0 M1
M

M0
M1

M

0.024

0

10

20

30

40

Ri
sk

 sc
or

e

(e)

Figure 7: Clinical correlation analysis for the six-ARlncRNA prognostic signature. (a) The heat map showing the distributional differences
of clinical factors (age, gender, stage, pT, pN, and pM) in high- and low-risk groups. ∗ Represented the distribution of the clinical factor in
the high- and low-risk groups with statistical significance (P < 0:05). ∗∗ Represented the distribution of the clinical factor in the high- and
low-risk groups with highly statistical significance (P < 0:01). ∗∗∗ Represented the distribution of the clinical factor in the high- and low-risk
groups with markedly statistical significance (P < 0:001). (b–e) The intragroup comparison for the distribution of ARlncRNA-RS among
various clinical factors. P < 0:05 was considered statistically significant.
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addition, it was found that the expression of MIR31HG was
highest in immune subtype C6 and negligible in the immune
subtype C3 with statistical significance (P = 0:005). Mean-
while, it was revealed that C5 did not exist in TCGA CRC
samples and there were no statistical differences in the expres-
sion of FGD5-AS1, FLG-AS1, MIR210HG, and PINK1-AS
amongC1, C2, C3, C4, andC6.Moreover, results of Spearman
correlation analysis for immunocytes obtained from CIBER-
SORT deconvolution algorithm and six-ARlncRNA expres-
sion also showed the relationship between the relative
contents of 22 immunocytes and six-ARlncRNA expression,
in which “P < 0:001” was considered the statistical filtering
criteria. The relationships between the expression of
ALMS1-IT1, FGD5-AS1, FLG-AS1, MIR210HG, MIR31G,
and PINK1-AS with the immunocytes was shown in
Figures 12(b)–12(g), respectively.

4. Discussion

CRC is a malignant tumor with poor prognosis. Research on
the prediction of the prognosis of CRC has always attracted
a lot of interest. The currently emerging protein markers,
such as CEA and CA199 levels [36, 37] and procalcitonin
level [38], could also be used to predict the prognosis for
CRC. Moreover, some molecular signatures are also used
to predict the CRC prognosis by detecting changes in gene
expression of miRNA [39] and TGF-β target gene [40] or
by gene mutations such as KRAS and BRAF mutations
[41]. However, research on using lncRNAs to predict CRC
prognosis is on the rise. This study is aimed at exploring
the prognostic value of ARlncRNAs on CRC. First, we com-
bined the ARlncRNA expression profiles obtained through
coexpression of ARGs with the survival status and survival
time of patients retrieved from TCGA, based on which
TCGA CRC patients were randomly divided into the train-
ing and test groups. Later, the training group was conducted
using univariate Cox regression analysis to preliminarily
obtain the prognosis-associated ARlncRNAs. Finally, multi-
variate Cox regression analysis was performed on the
prognosis-associated ARlncRNAs after LASSO regression
analysis to obtain the six-ARlncRNA (ALMS1-IT1, FGD5-
AS1, FLG-AS1, MIR210HG, MIR31HG, and PINK1-AS)
prognostic signature. Gao et al. found that downregulation
of mir-153-3p or upregulation of CITED2 could reverse
the suppressive effects of FGD5-AS1 on the tumor progres-
sion and 5-FU chemoresistance [42]. In addition, Li et al.
revealed that MIR210HG accelerated the development of
breast cancer via the downregulation of the miR-1226-3p/

MUC1-C axis [43]. A previous study has illustrated that
the high-level expression of MIR31HG was associated with
poor prognosis of CRC patients [44], which was indirectly
verified by risk stratification in the prognostic signature.
The research on the role of ALMS1-IT1, FLG-AS1, and
PINK1-AS in the genesis and development of CRC is still
in exploration. Moreover, we combined this prognostic
signature with the patient clinical feature (age) to further
synthetically predict the patients’ overall survival with a
nomogram. Meanwhile, the biological function of genes in
the high- and low-risk groups was hierarchically analyzed
based on the six-ARlncRNA prognostic signature with
GSEA. The results of GSEA indicated that hypoxia was
mostly active in the patients in the high-risk group through
a hallmark gene set. Meanwhile, it was found that the
metabolism-related pathways, such as peroxisome, the cit-
rate cycle (TCA cycle), and other glycan degradation, were
mainly enriched in the CRC patients in the low-risk group.
Hypoxia, whose biological functions were mainly mediated
by hypoxia-inducible factor-1 (HIF-1) and hypoxia-
inducible factor-2 (HIF-2) and their subgroup [45], has
expounded the mechanisms in the regulation of tumor
vascularization, invasion, and metastasis [46]. For CRC
patients, Yu et al. illustrated that the expression level of
SIRT1 decreased under hypoxia conditions. This could
increase the acetylation of NF-κB, which activated the down-
stream targets MMP-2/−9 and mediated CRC migration as
well as invasion [46]. According to Garzon et al., colon
tumor cells with knockdown of HIF-1α produced smaller
and less hypoxic tumors, as well as increased the functional
vascular perfusion system and reduced angiogenic factors
[47]. To date, it has been revealed that peroxisome was
related to malignant transformation of prostate cancer [48]
and progression of hepatic carcinoma [49]. The TCA cycle,
the main source of biosynthesis in CRC cells, has demon-
strated the central role in the metabolism of CRC cells
[50]. Moreover, recent studies have shown that the defi-
ciency of autophagy could exhaust the metabolites of the
TCA cycle under the activation of Ras, which was related
to the poor prognosis of malignancies [51]. In conclusion,
we systemically explored the potential biological processes
in CRC genesis and development through stratification for
patients in the high- and low-risk groups based on the prog-
nostic signature, which would provide possible evidence for
the autophagy-targeted therapy.

Besides, we also constructed the ARlncRNA-DEmiRNA-
DEmRNA ceRNA network. At first, Salmena et al. proposed
the ceRNA hypothesis, in other words, ceRNA bound with

Table 4: GSEA for the high- and low-risk groups.

Names Size ES NES NOM P FDR q

High-risk group

Hypoxia 197 0.48 1.90 <0.01 0.215

Low-risk group

Peroxisome 77 −0.58 −2.24 <0.01 0.011

The citrate cycle (TCA cycle) 29 −0.64 −1.97 0.002 0.064

Other glycan degradation 40 −0.66 −1.87 0.002 0.115
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miRNA through the response element to affect the miRNA-
induced gene silencing [52]. An increasing number of stud-
ies have indicated that lncRNA as a ceRNA played an
important regulatory role in the progression of various
malignant tumors, including CRC [53]. Notably, we revealed
that, the MIR31HG, which was a crucial ARlncRNA in the
prognostic signature, mediated two main ceRNA networks,
namely, MIR31HG/hsa-mir−193b/PLAU and MIR31HG/
hsa-mir−206/STC2. In the ceRNA network MIR31HG/hsa-

mir−193b/PLAU, we found that the expression of
MIR31HG and PLAU was upregulated, whereas the expres-
sion of hsa-mir-193b was downregulated. In the ceRNA
network MIR31HG/hsa-mir−206/STC2, the expression
trends of MIR31HG and hsa-mir-206 and STC2 were found
to be constant with those in the ceRNA network MIR31HG/
hsa-mir−193b/PLAU. In the ceRNA network MIR31HG/
hsa-mir−193b/PLAU and MIR31HG/hsa-mir−206/STC2, it
was hypothesized that the upregulated MIR31HG
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Figure 8: GSEA for the six-ARlncRNA prognostic signature. (a) GSEA based on hallmark gene sets for the high-risk group. (b–d) GSEA
based on KEGG database for the low-risk group.
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Figure 9: Antineoplastic therapy susceptibility and MSI analysis. (a–c) The boxplots showing the statistical differences of the expression of
tumor immune check points (PDCD1, CTLA4, and HAVCR2) in the high- and low-risk groups. (d) The violin plot illustrating the TIDE
score of the low-risk group was higher than that in the high-risk group with statistical significance (P < 0:05). (e–i) The boxplots
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Figure 10: Continued.

20 BioMed Research International



competitively combined with mir-193b and mir-206, respec-
tively, and inhibited their activation, thus stimulating PLAU
and STC2 expression levels to promote the proliferation of
CRC cells. In addition, GO and KEGG functional enrich-
ment analysis was also performed on the downstream
DEmRNAs to explore potential biological functions. The
GO terms, negative regulation of transcription, DNA-tem-

plated, heart development, and extracellular space, were
deemed statistically significant, in which the negative regula-
tion of transcription, DNA templated, and extracellular space
enriched most downstream DEmRNAs. Further, a total of five
KEGG pathways, namely, hsa04978: mineral absorption;
hsa04550: signaling pathways regulating pluripotency of stem
cells; hsa04261: adrenergic signaling in cardiomyocytes;
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Figure 10: External expression validation for the six ARlncRNAs of the prognostic signature. (a–f) Expression differences of ALMS1-IT1,
FGD5-AS1, FLG-AS1, MIR31HG, MIR210HG, and PINK1-AS based on TCGA CRC samples. (g–l) External validation for expression of
ALMS1-IT1, FGD5-AS1, FLG-AS1, MIR31HG, MIR210HG, and PINK1-AS based on lnCAR database.
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Figure 12: Continued.
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hsa04360: axon guidance; and hsa05205: proteoglycans in can-
cer, enriched nine downstream DEmRNAs, in which we
noticed that ATP2B4 activated both in KEGG pathways,
hsa04978: mineral absorption and hsa04261: adrenergic
signaling in cardiomyocytes. Zhao et al. have discovered that
the downregulated transcription of MDM2 was influenced
by oroxylin A to inhibit the degradation of p53 [54]. It was
evident that the regulating linkage of the ceRNA network
including the downstream DEmRNAs might suggest a clue
referring to the correlation between the level of transcription
and autophagy. Previous studies have also conducted in-
depth exploration on the secretion or transportation of
proteins related to the process of autophagy [55, 56] in the
extracellular space. It was obvious that the studies for the
ceRNA network mediated by ARlncRNAs developed pros-
pects of biological functions in the process of autophagy.
Moreover, the absorption of Ca2+ was a critical part of the
mineral absorption. ATP2B4, as a gene participating the trans-
portation of Ca2+, has been confirmed that its overexpression
could inhibit the progress and migration of melanoma cells
with BRAF mutation [57]. Hence, our studies have presented
theoretical significance for the KEGG pathways involved in
the downstream DEmRNAs of the ceRNA network in the
process of autophagy in CRC.

In this research, we systematically explored the antineo-
plastic therapy susceptibilities from the aspects of ICI
therapy and conventional chemotherapy hierarchically. In
the ICI therapy analysis, we noticed that the expression of
PDCD1, CTLA4, and HAVCR2 was higher in the high-risk
group. Recently, the studies of ICI therapy targeting PD-1
(PDCD1), CTLA-4 (CTLA4), and TIM-3 (HAVCR2) were
blooming. The immunotherapies aiming at PD-1 and
CTLA-4 have been applied for CRC [56], prostate cancer
[57], lung cancer [58], gastric cancer [59], etc. TIM-3
(HAVCR2), which inhibited tumor immunity with deple-
tion of T cells, was a negative regulation immune check
point. The ICI therapy for the HAVCR2 has encouraged effi-
cacy in treating advanced non-small cell lung cancer [60],
hepatocellular carcinoma [61], etc. TIDE algorithm also
revealed that CRC patients in the high-risk group were more
sensitive to anti-PD-1 and anti-CTLA4 ICI therapy. Mean-
while, CRC patients with MSI-H statuses were more distrib-
uted in the high-risk group. Hu et al. discovered that
neoadjuvant toripalimab (the anti-PD-1 monoclonal anti-
body) could be a potential therapeutic option for CRC

patients with the MSI-H status [58]. Therefore, it could be
speculated that CRC patients with the MSI-H status in the
high-risk group might be more sensitive to the anti-PD-1
ICI therapy. In examining conventional chemotherapy sus-
ceptibility based on the prognostic signature, Gefitinib,
PLX4720, AZD.2281, cisplatin, and JNK.inhibitor.VIII were
all more efficient for CRC patients in the high-risk group
compared to CRC patients in the low-risk group. The
synergy of gefitinib (inhibitor of EGFR-TK) and inhibition
of menin has proven the effect of obstruction of CRC
progression [59]. PLX4720 has identified an inhibitor of
BRAFV600E kinase to prevent CRC progression [60].
AZD.2281 was initially found hypersensitive on BRCA1-
deficient breast and hepatocellular carcinoma cell lines
[61]. Furthermore, the latest phase II study suggested that
microsatellite-stable CRC cells could not respond to a single
application of AZD.2281. Meanwhile, it has been reported
that the combination of AZD.2281 and radiation therapy
would promote the fatality of CRC cells [62]. Previous studies
on the cisplatin have reported that the first generation of plat-
inum anticancer drug was previously widely used in CRC,
ovarian cancer, and head and neck cancers, and now, it was
more adopted in the intraperitoneal hyperthermic perfusion
chemotherapy [63, 64]. Recent studies have suggested that cis-
platin presented temperature-dependent efficacy (>41°C) on
the apoptosis of CRC cells when using intraperitoneal hyper-
thermic perfusion chemotherapy [63]. Generally, recent stud-
ies on the roles of JNK.inhibitor.VIII in CRC were rare.
Obviously, the examination for antineoplastic therapy sensi-
tivity in the high- and low-risk groups provided the propitious
indications for applying single or multiple antineoplastic
therapies in the fields of individualized treatment.

Cancer stem cells (CSCs) are a cluster of cells that can
self-renew and increase heterogeneous tumor cells [65, 66].
Increasing evidence suggested that CSCs were affected by
autophagy in the self-renew ability [67, 68]. In this study,
we performed Spearman correlation analysis for the CSC
index based on RNA-seq and expression of six ARlncRNAs
of the prognostic signature to investigate the characteristics
of tumor dedifferentiation associated with ARlncRNAs.
The expression of ALMS1-IT1 demonstrated its positive
correlation with the CSC index with statistical significance,
which indicated that high expression of ALMS1-IT1 exhib-
ited the connection with the invasion and chemotherapy
resistance of CRC. In contrast with ALMS1-IT1, the
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Figure 12: External exploration for expression of six ARlncRNAs and immune components of TME. (a) The statistical differences of the
expression of six ARlncRNAs (ALMS1-IT1, FGD5-AS1, FLG-AS1, MIR210HG, MIR31HG, and PINK1-AS) in five immune subtypes
(C1, C2, C3, C4, and C6). (b–g) The linear correlation between expression of six ARlncRNAs (ALMS1-IT1, FGD5-AS1, FLG-AS1,
MIR210HG, MIR31HG, and PINK1-AS) and relative contents of immunocytes.
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expression of FGD5-AS1, FLG-AS1, and MIR31HG was
negatively correlated with the CSC index. This might suggest
that CRC patients with low expression of FGD5-AS1, FLG-
AS1, and MIR31HG were related to the increase of sensitiv-
ity of the chemotherapy and weaker proliferation of tumor
cells. Moreover, we further explored the correlation between
six-ARlncRNA expression and TME. Expression of FLG-
AS1 and MIR31HG showed positive relations with the stro-
mal score, immune score, and ESTIMATE score, which pro-
posed that expression of FLG-AS1 and MIR31HG might be
involved in the tumor development from the levels of stro-
mal components and immunocytes. In addition, the expres-
sion of ALMS1-IT1 was just negatively correlated with the
immune score and the ESTIMATE score might indicate that
high expression of ALMS1-IT1 inhibits immunoreaction to
promote the progression of CRC cells. In the examination
of immune subtypes, it was observed that C5 (immunologi-
cally quiet) was missing in CRC. Thorsson et al. identified
characteristics of tumor immunity, based on which tumors
were grouped into six immune subtypes. And C2 (IFN-γ
dominant) possessed the highest polarities of M1/M2 mac-
rophages, and C6 (TGF-β dominant), the smallest immune
subtype among six immune subtypes, displayed a significant
TGF-β-like signature [69]. Referring to the results that the
expression of ALMS1-IT1 presented the highest level in C2
(IFN-γ dominant) with a statistical difference and the
expression of ALMS1-IT1 was positively correlated with
the relative contents of M1 macrophages, we could conclude
that ALMS1-IT1 affected positively (regulating) the polari-
ties of M1 macrophages of C2 (IFN-γ dominant). This also
expanded the research scope about the relationships between
IFN-γ and progression of CRC. The expression of MIR31HG
was also in positive regulation with the relative contents of
dendritic cells activated. Dendritic cell was an essential kind
of antigen-presenting cell, and Hanks et al. have elaborated
that TGF-β upregulated IDO in dendritic cells to mediate
immune escape in tumor models [70]. Therefore, it could be
hypothesized that MIR31HG might be involved in the regula-
tion of dendritic cells by TGF-β.

In conclusion, this study determined a novel prognostic
signature based on six ARlncRNAs (ALMS1-IT1, FGD5-
AS1, FLG-AS1, MIR210HG, MIR31HG, and PINK1-AS),
which annunciated an encouraging predictive value. The
ARlncRNA-mediated ceRNA network further revealed the
potential regulatory relationship among various molecules
in CRC. GSEA was hierarchically conducted with the
hallmark gene set and KEGG pathways to explore specific
biological functions for CRC patients in the high- and low-
risk groups, which might be of certain guiding significance
to individualized treatment for CRC patients in different risk
stratification. Furthermore, the antineoplastic therapy sus-
ceptibility analysis based on the six-ARlncRNA prognostic
signature uncovered a novel perspective for individualized
antineoplastic immunotherapy.
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