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Objective. To elucidate the main mechanism of Xijiao Dihuang decoction (XJDHT) for the treatment of systemic lupus
erythematosus (SLE). Methods. TCMSP, BATMAN-TCM, ETCM, and TCMID databases and literature search were used to
screen the potential active compounds of XJDHT, and TCMSP and SwissProt databases were searched to predict the targets of
the compounds. The targets of SLE were obtained from Genegards, OMIM, and DisGeNET databases, and Venn online
platform was used to obtain the intersection targets of XJDHT and SLE. Afterwards, the PPI network was constructed by using
the STRING database, and the core targets were identified by network topology analysis. GO and KEGG enrichment analyses
were performed through R software, and molecular docking of the top three core targets and their corresponding compounds
were accomplished by Autodock Vina and Pymol softwares. Results. There were 30 potential active ingredients, 289 potential
targets, and 129 intersection targets screened from the above databases. Network topology analysis identified 23 core targets,
such as AKT1, TNF, IL6, IL1B, and INS. GO enrichment analysis obtained 2555 terms and mainly clustering on the react to
lipopolysaccharide, membrane raft, and ubiquitin-like protein ligase binding. KEGG enrichment analysis obtained 187
signaling pathways, mainly concentrating on the lipid and atherosclerosis, AGE-RAGE signaling pathway in diabetic
complications, fluid shear stress, and atherosclerosis. Molecular docking verified that the active compounds of XJDHT have the
strong binding activity to the core targets. Conclusion. This study preliminarily uncovers the mechanism of XJDHT acting on
SLE through a “multicompound, multitarget, and multipathway” manner. XJDHT may achieve the treatment of SLE by
inhibiting the proinflammatory factors, inflammatory signal cvtokines, proliferation, injury, and apoptosis processes. In
summary, the present study would provide a promising theoretical basis for further clinical and experimental studies.

1. Introduction

SLE is a chronic autoimmune disease that involves multiple
organs and tissues [1]. The incidence and prevalence of SLE
are different around the world. The incidence in China is
about 1/1000. In recent years, the prevalence of SLE has
shown an upward trend [2]. The etiology and pathogenesis
of SLE are not yet clear, which may be related to multiple
factors such as genetic factors, environmental factors, and
estrogen levels [3–5]. The treatment of SLE is still a difficult
problem in the medical field, and modern medicine mostly
uses glucocorticoids and immunosuppressive drugs [6],

which may produce some side effects [7]. Traditional Chi-
nese medicine (TCM) has rich experience in treating SLE
with a wide variety of therapies. TCM not only improves
the symptoms and the quality of survival of SLE patients
but also reduces the side effects of glucocorticoid drugs
and is cost-effective, thus it is a common treatment for SLE
in Chinese clinics [8–10].

Xijiao Dihuang decoction (XJDHT) is from Wai Tai Mi
Yao, compiled by Wang Tao in the Tang Dynasty. The for-
mula consists of Bubali Cornu (Shuiniujiao, SNJ, 30 g),
Paeoniae Radix Rubra (Chishao, CS, 10 g), Dried Rehman-
niae Radix (Shengdihuang, SDH, 20 g), and Moutan Cortex
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(Mudanpi, MDP, 15 g), which exert the effects of clearing
away heat and removing toxicity, cooling blood, and dispers-
ing blood stasis. It is a basic prescription commonly used in
TCM for the treatment of the syndrome of heat entering
nutrient-blood. The clinical manifestations of SLE in the
active stage mostly belong to the syndrome of exuberant
heat and toxin, which coincides with the main therapeutic
efficacy of XJDHT. However, the potential pharmacological
mechanism of XJDHT against SLE is still unclear. The
research model of “one drug-one target-one disease” cannot
reflect the characteristics of TCM (multitarget and multi-
pathway) [11].

Network pharmacology and molecular docking provide
a more complete understanding of network theory and sys-
tems biology, which also help to explain the mechanism of
drugs [12]. In this study, we intend to use network pharma-
cology to screen the active ingredients and the intersection
targets of XJDHT and SLE through data analysis and bioin-
formatics theory. The molecular docking technique was used
to fit the binding activity between the active ingredients and
the core targets to provide a theoretical basis for the key
mechanism of XJDHT acting on SLE. The simplified flow-
chart of our study is shown in Figure 1.

2. Materials and Methods

2.1. Collection of Potential Active Ingredients and Related
Targets of XJDHT. Before conducting the screening, we
found that the main ingredients of the same Chinese
medicine differed in different TCM databases, and the tar-
gets of the same compounds were inconsistent in different
TCM databases. Each TCM database has its advantage and
disadvantage. For instance, Traditional Chinese Medicine
Database and Analysis Platform (TCMSP) database [13]
(https://www.tcmsp-e.com/) is the only one that provides
pharmacokinetic properties, such as oral bioavailability
(OB) and drug likeness (DL), whereas it only collects 499
Chinese medicines. Bioinformatics Analysis Tool for
Molecular mechANism of Traditional Chinese Medicine
(BATMAN-TCM) database [14] (http://bionet.ncpsb.org
.cn/batman-tcm/) is an online bioinformatics analysis tool
that contains multiple functions, but it only offers relatively
few Chinese medicine ingredients. The Encyclopedia of
Traditional Chinese Medicine (ETCM) database [15]
(http://www.tcmip.cn/ETCM/index.php/) includes standard-
ized information for the commonly Chinese medicines and
formulas of TCM; nonetheless, only 402 herbs have been

Figure 1: The flowchart of the analysis procedures of the study.
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Table 1: All the potential pharmacologically active ingredients of XJDHT.

Herb name Molecule ID Molecule name OB(%) DL

Bubali Cornu (Shuiniujiao, SNJ)

MOL000987 Cholesterol 37.87 0.68

MOL000054 Arginine 47.64 0.03

MOL000065 Aspartic acid 79.74 0.02

MOL000042 Alanine 87.69 0.01

MOL001443 4-Guanidino-1-butanol 26.23 0.01

MOL006394 Guanidine 24 0

Paeoniae Radix Rubra (Chishao, CS)

MOL001921 Lactiflorin 49.12 0.80

MOL001924 Paeoniflorin 53.87 0.79

MOL007004 Albiflorin 30.25 0.77

MOL000449 Stigmasterol 43.83 0.76

MOL004355 Spinasterol 42.98 0.76

MOL002776 Baicalin 40.12 0.75

MOL000358 Beta-sitosterol 36.91 0.75

MOL000359 Sitosterol 36.91 0.75

MOL006999 Stigmast-7-en-3-ol 37.42 0.75

MOL005043 Campest-5-en-3beta-ol 37.58 0.71

MOL007025 Isobenzoylpaeoniflorin 31.14 0.54

MOL007003 Benzoyl paeoniflorin 31.14 0.54

MOL007014 8-Debenzoylpaeonidanin 31.74 0.45

MOL007008 4-Ethyl-paeoniflorin_qt 56.87 0.44

MOL001002 Ellagic acid 43.06 0.43

MOL007012 4-O-methyl-paeoniflorin_qt 56.70 0.43

MOL001925 Paeoniflorin_qt 68.18 0.40

MOL007016 Paeoniflorigenone 65.33 0.37

MOL001918 Paeoniflorgenone 87.59 0.37

MOL006996 1-O-beta-d-glucopyranosylpaeonisuffrone_qt 65.08 0.35

MOL007005 Albiflorin_qt 48.70 0.33

MOL006992 (2R,3R)-4-methoxyl-distylin 59.98 0.30

MOL006994 1-O-beta-d-glucopyranosyl-8-o-benzoylpaeonisuffrone_qt 36.01 0.30

MOL007018 9-Ethyl-neo-paeoniaflorin A_qt 64.42 0.30

MOL006990
(1S,2S,4R)-trans-2-hydroxy-1,8-cineole-B-D-

glucopyranoside
30.25 0.27

MOL000492 (+)-catechin 54.83 0.24

MOL007022 EvofolinB 64.74 0.22

MOL002714 Baicalein 33.52 0.21

MOL002883 Ethyl oleate (NF) 32.40 0.19

MOL000131 EIC 41.9 0.14

MOL000675 Oleic acid 33.13 0.14

MOL001746 ELD 31.20 0.14

Moutan Cortex (Mudanpi, MDP)

MOL000211 Mairin 55.38 0.78

MOL000359 Sitosterol 36.91 0.75

MOL007003 Benzoyl paeoniflorin 31.14 0.54

MOL007369 4-O-methylpaeoniflorin_qt 67.24 0.43

MOL001925 Paeoniflorin_qt 68.18 0.40

MOL007382 Mudanpioside-h_qt 2 42.36 0.37

MOL007384 Paeonidanin_qt 65.31 0.35

MOL007374 5-[[5-(4-methoxyphenyl)-2-furyl]methylene]barbituric acid 43.44 0.30

MOL000098 Quercetin 46.43 0.28
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collected. Traditional Chinese Medicines Integrated Database
(TCMID) database (http://www.megabionet.org/tcmid/) con-
tains 8159 kinds of Chinese medicines, which has the largest
number of Chinese medicines in all databases, and each
Chinesemedicine ingredient retrieved is supported by relevant
literature. However, it contains too little information on the
targets of Chinese medicine ingredients. Therefore, we opti-
mized the retrieval strategy. First of all, the ingredients of each
Chinese medicine were retrieved from each of the four TCM
databases mentioned above to obtain the main ingredients of
XJDHT. Then, all the ingredients were initially screened in
the TCMSP database according to OB ≥ 30% and DL ≥ 0:18.
For the compounds that cannot be available in the TCMSP
database, the compounds with high gastrointestinal absorp-
tion and good DL were further screened out by the
SwissADME database (http://www.swissadme.ch/) [15]. In
addition, we found that certain compounds, although with
OB < 30% orDL < 0:18, have a wide range of pharmacological
activities (such as oleic acid [16] and gamma-aminobutyric
acid [17]) or are major ingredients of a certain Chinese medi-
cine (such as jioglutin [18] and aspartic acid [19]), which had
also been added as potential active ingredients of XJDHT.
TCMSP database was used to forecast the relevant targets for
potential active ingredients of XJDHT, and the names of the
relevant targets were normalized through the UniProt
database [20] (https://www.uniprot.org/). If TCMSP database
cannot search for the compounds, the targets of the com-
pounds would be predicted by Swiss Target Prediction
(http://swisstargetprediction.ch/) to obtain all the potential
targets of XJDHT, and the probability ≥ 0:12 was used as the
screening condition.

2.2. Acquisition of Known Targets for SLE and Construction
of Venn Diagrams. “Systemic lupus erythematosus” was used
as a keyword to screen in GeneCards database (http://www
.genecards.org/), OMIM database (https://omim.org/), and
DisGeNET database (https://www.disgenet.org/). Mean-
while, Genecards database and DisGeNET database selected
scores greater than 4 and 0.1, respectively, and all known
targets were merged and removed duplicate values to obtain

the union targets of SLE. Furthermore, we used Venn 2.1.0
online platform (http://bioinfogp.cnb.csic.es/tools/venny) to
obtain the intersection targets of XJDHT against SLE.

2.3. Construction and Analysis of the Network of “Chinese
Medicines-Active Ingredients-Intersection Targets.” Cytos-
cape 3.8.2 is a visualization software that can show the inter-
actions and connections between things [21]. The active
ingredients of XJDHT against SLE were obtained by
searching the compounds corresponding to the intersection
targets. Then, we imported Chinese medicines, active ingre-
dients, and intersection targets into Cytoscape 3.8.2 software
to construct the network diagram of “Chinese medicines-
active ingredients-intersection targets.” The nodes of the
network diagram represent Chinese medicines, active ingre-
dients, and intersection targets, and the edges represent their
interactions. The core active ingredients in the network were
analyzed according to the degree values of the ingredients.

2.4. Construction and Analysis of PPI Network and Core
Network. STRING (http://string-db.org/) is a database con-
taining the known and predicted protein-protein interac-
tions (PPIs) [22]. The intersection targets of XJDHT and
SLE were uploaded to the STRING online database platform
to obtain the PPI network diagram of the intersection targets
by setting the organism as “Homo sapiens” and the
minimum required interaction scores ≥ 0:4. Afterwards, the
PPI network diagram and tsv format file were exported.
The network topology analysis of the parameters in the
PPI network was performed with the help of R 4.0.5 software
and CytoNCA plug-in [23] of Cytoscape 3.8.2 software to
finally obtain the core targets of XJDHT against SLE.

2.5. GO and KEGG Pathway Enrichment Analysis. Firstly, we
installed the relevant R packages such as “BiocManager,”
“cluster Profiler,” and “pathview” [24] to perform Gene
Ontology (GO) and Kyoto Encyclopedia of Genes and
Genomes (KEGG) pathway enrichment analysis, and the
results were visually displayed through R 4.0.5 software.
Meanwhile, GO analysis includes three aspects of molecular

Table 1: Continued.

Herb name Molecule ID Molecule name OB(%) DL

MOL000492 (+)-catechin 54.83 0.24

MOL000422 Kaempferol 41.88 0.24

MOL000675 Oleic acid 33.13 0.14

Dried Rehmanniae Radix (Shengdihuang, DH)

MOL000449 Stigmasterol 43.83 0.76

MOL000359 Sitosterol 36.91 0.75

MOL012254 Campesterol 37.58 0.71

MOL002819 Catalpol 5.07 0.44

MOL003735 Aucubin 4.17 0.33

MOL000842 Sucrose 7.17 0.23

MOL000131 EIC 41.9 0.14

MOL003708 Jioglutin D 39.02 0.14

MOL003706 Jioglutin B 90.71 0.13

MOL000388 Gamma-aminobutyric acid 24.09 0.01
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function (MF), biological process (BP), and cellular compo-
nent (CC). Besides, the statistical significance of enrichment
analysis was P ≤ 0:05. Finally, the “Pathview” package was
used to map the signaling pathway containing the most
intersection targets.

2.6. Molecular Docking Prediction. The top three core targets
in the PPI network and their corresponding compounds
were selected as the receptors and the ligands for molecular

docking, respectively. The crystal structure of the receptor
proteins was retrieved from the RCSB PDB database
(https://www.rcsb.org/), and the water molecules of the
receptor proteins were removed by PyMOL 2.4.1 software.
Then, the optimized receptors were imported into Auto
Dock tools1.5.6 software for hydrogenation and calculation
of charge, and the output results were saved as pdbqt format.
The ligand 2D structures were downloaded from the Pub-
Chem database (https://pubchem.ncbi.nlm.nih.gov/) and
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imported into the ChemBio3D Ultra 17.0 software for 3D
structure conversion and optimization of the mechanical
structure. The 3D structures of the ligands were saved as
mol2 format files and imported into AutoDock Tools 1.5.6
software to save as pdbqt format. Molecular docking was
performed by AutoDock vina 1.1.2 software [25], and the
results were analyzed and visualized by PyMOL 2.4.1 soft-
ware [26].

3. Results

3.1. Screening of Potential Active Ingredients and Targets of
XJDHT. Through retrieving TCMSP, BATMAN-TCM,
ETCM, and TCMID databases and related literature, we
finally obtained 60 potential active ingredients. Although 13
of these ingredients fail to meet the screening criteria of OB
≥ 30% or DL ≥ 0:18, they either had a broad pharmacological
activity or widely existed in multiple drugs of XJDHT, which
were also considered as potential pharmacological active
ingredients. The potential active ingredients of SNJ, CS,
SDH, and MDP were 6, 32, 10, and 12, respectively, and the
basic information of the potential active ingredients of XJDHT
is shown in Table 1. The TCMSP and Swiss Target Prediction
databases were searched to acquire 693 targets for the poten-
tial active ingredients, but only 625 targets were available to
exclude some targets, which were without corresponding gene
names or not acting on humans. The numbers of potential tar-
gets for SNJ, CS, SDH, and MDP were 98, 199, 244 and 84,

respectively. Eventually, 289 valid targets were identified after
removing duplicate values.

3.2. Acquisition of XJDHT and SLE Intersection Targets. By
retrieving the disease database, we obtained 133, 2079, and
416 known targets from the OMIM database, Genecards
database, and DisGeNET database, respectively. A total of
2251 known targets of SLE targets were obtained after taking
union and removing duplicate values. The potential targets
of XJDHT were mapped to the union targets of SLE, and
129 intersection targets were available (Figure 2).

3.3. Construction and Analysis of the Network of “Chinese
Medicines-Active Ingredients-Intersection Targets.” A total
of 30 active ingredients of XJDHT for the treatment of SLE
were obtained by precisely matching the compounds
corresponding to the intersection targets. “Chinese
medicines-active ingredients-intersection targets” network
was constructed by Cytoscape 3.8.2 software (Figure 3),
which included 164 nodes and 339 edges. The degree value
of a node indicates the number of nodes in the network that
interact directly with the node, and the higher the degree
value of a compound, the more important it is in the net-
work. According to the results of a topological analysis, the
top 6 core compounds were MDP1 (quercetin), MDP3
(kaempferol), CS6 (beta-sitosterol), CS1 (baicalein), B2
(Stigmasterol), and A2 (oleic acid) in the network, which
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Figure 4: (a) PPI network of the intersection targets of XJDHT against SLE. (b) The top 20 significant genes in PPI network.
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indicated that the above core active compounds play an
important role in the treatment of SLE.

3.4. Construction and Analysis of PPI and Core Targets
Network. The intersection targets were used to construct the
PPI network by STRING online database platform
(Figure 4(a)). A total of 127 nodes (with 2 disconnected nodes
removed) and 2324 edges were obtained, and the top 20 tar-
gets of the degree value in the PPI network were plotted as bars
by R 4.0.5 software (Figure 4(b)). The core targets were
screened by the CytoNCA plugin of Cytoscape 3.8.2, and the
subnetwork of 23 core targets was obtained by twice filtering
with scores of betweenness centrality (BC), closeness centrality
(CC), degree centrality (DC), eigenvector centrality (EC), local
average connectivity-based method centrality (LAC) and net-

work centrality (NC) higher than the median value (Figure 5).
Comparing the core targets of Figures 3 and 4, we discovered
that the core targets in both figures were basically consistent.
The top 10 targets in both figures were RAC-alpha serine/thre-
onine-protein kinase (AKT1), tumor necrosis factor (TNF),
interleukin-6 (IL6), interleukin-1 beta (IL1B), insulin (INS),
cellular tumor antigen p53 (TP53), transcription factor
AP-1(JUN), matrix metalloproteinase-9 (MMP9), caspase-3
(CASP3), and prostaglandin G/H synthase 2 (PTGS2),
which suggested that these targets were the core targets of
XJDHT for the treatment of SLE.

3.5. GO and KEGG Enrichment Analysis. GO and KEGG
enrichment analysis were performed through R 4.0.5 soft-
ware, and 2535 GO terms were identified by GO enrichment
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Figure 7: KEGG pathway enrichment of 129 intersection targets. The top 30 pathways were identified. Color represented P value, and size
of the spot represented count of genes.
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analysis. The top 10 representative clusters of BP, CC, and
MF were screened according to LogP values (Figure 6).
Through the pictures, we can find that the top three BP were

the respond to lipopolysaccharide, respond to molecule of
bacterial origin, and respond to cellular response to chemical
stress, and the top three CC were the membrane raft,

Figure 8: Lipid and atherosclerosis signaling pathway. Red represents the intersection targets of XJDHT against SLE in the
signaling pathway.
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membrane microdomain, and membrane region, and the
top three MF were the ubiquitin-like protein ligase binding,
cytokine receptor binding, and cytokine activity. KEGG
enrichment analysis screened out 178 signaling pathways,
which were mainly enriched in the lipid and atherosclerosis,
AGE-RAGE signaling pathway in diabetic complications,
fluid shear stress and atherosclerosis, hepatitis B, prostate
cancer, TNF signaling pathway, and IL-17 signaling path-
way. Afterwards, we selected the top 30 signaling pathways
with the highest significance for the visual presentation
(Figure 7). Finally, the signaling pathway with the most
intersection targets was plotted (Figure 8), which contained
a total of 38 intersection targets.

3.6. Validation of Molecular Docking. The lower the inter-
molecular binding energy, the better the docking effect.
The binding energy ≤ −5 kcal/mol generally indicates that
the receptors and ligands have relatively good binding prop-
erties [27]. To further investigate the binding activity of the
main active compounds of XJDHT and the top 3 core targets
in the PPI network and their corresponding compounds was
performed as molecular dockings, respectively (Table 2 and
Figure 9). The binding energies of the core targets and the
corresponding compounds were almost ≤-5 kcal/mol, which
indicated that the affinity of the core targets and their corre-
sponding compounds were generally high. From Table 2, we
found that Paeoniflorin and TNF had the best binding abil-
ity, with the lowest binding energy = −13 kcal/mol. Through
molecular docking verification, we can conclude that the
core targets of XJDHT acting on SLE and the corresponding
active ingredients have certain or even strong binding
ability, which verifies the credibility of the network pharma-
cological results.

4. Discussion

SLE is a classic autoimmune disease that severely affects the
quality of life of patients. If not treated adequately, it can
accelerate multiorgan and multitissue damage. The clinical
efficacy of TCM against SLE is effective, not only can it

improve the symptoms of SLE patients but also is affordable
for the average patients. XJDHT is a fundamental formula
for the treatment of SLE with the syndrome of exuberant heat
and toxin, which can alleviate the clinical symptoms of SLE
patients such as butterfly-shaped erythema of the face, purple
spots on the skin, high fever, irritability, and joint and muscle
pain, but the molecular mechanism of action is still unclear.
Related studies have proved that XJDHT can regulate inflam-
mation, protect nerves, and inhibit apoptosis, which may treat
SLE through these effects [28, 29].

By analyzing the “Chinese medicines-active ingredients-
intersection targets” network, we found that the core active
compounds in XJDHT were quercetin, kaempferol, beta-
sitosterol, baicalein, and stigmasterol. Quercetin is a natural
flavonoid with anti-inflammatory, antioxidant, immuno-
modulatory, and neuroprotective properties [30], which
can inhibit CD4 T cell activation and anti-inflammatory
effects of macrophages to improve the symptoms in lupus
nephritis (LN) mice [31]. Dos Santos et al. [32] observed
that quercetin produced nephroprotective effects in LN mice
through decreasing proteinuria levels and tissue expression
of IL-6 and TNF-α. Liu et al. [33] identified that quercetin
inhibited mesangial cell overproliferation in LN mice by
suppressing the activation of NF-κB signaling pathway and
decreasing PTX3 expression. Kaempferol can enhance the
suppressive function of regulatory T cells (Tregs) by reduc-
ing PIM1-mediated FOXP3 phosphorylation at S422,
thereby preventing and treating SLE [34]. Macrophages are
closely related to the pathogenesis of SLE [35–37]. Beta-
sitosterol can regulate macrophage function [38]; therefore it
may treat SLE by regulating macrophage function. Baicalin
can adjust the balance of Nrf2/HO-1 signaling and NLRP3
expression in myeloid-derived suppressor cells (MDSCs) and
reduce proteinuria and renal impairment in LN mice [39].

PPI network analysis identified AKT1, TNF, IL6, IL1B,
INS, and TP53 as the core targets of XJDHT for the treat-
ment of SLE. AKT1 is a serine-threonine protein kinase,
which participates in various biological processes such as
metabolism, cell survival, insulin signaling, and angiogenesis
[40]. Increased AKT1 gene expression is associated with T-
helper-transcription factors in SLE patients [41]. The patho-
genesis of SLE is related to the activation of AKT/mTOR
pathway by AKT1 downregulation of miR-633 [42]. TNF
is a cytokine secreted by macrophages and an immunomod-
ulatory molecule that can alter the balance of T-regulatory
cells and participate in the pathogenesis of SLE [43]. Several
studies have shown that TNF-α gene polymorphisms are
closely related to the susceptibility to SLE [44–46]. IL6 is a
cytokine with multiple biological functions in immunity
and tissue regeneration, which is associated with the patho-
genesis of SLE [47]. Ruchakorn et al. [48] suggested that IL-6
is related to the risk of active nonrenal SLE. Shaltout et al.
[49] verified that IL6 may play a role in SLE pathogenesis
through effecting on double negative T cells and anti-ds-
DNA. IL1B is a potent proinflammatory cytokine that pro-
motes Th17 differentiation of T cells, and its ratio in SLE
patients with disease activity is less than in SLE patients with
moderate disease [50]. TP53 is a central regulator of apopto-
sis [51], and its rs1042522G/C polymorphism is significantly

Table 2: The optimum model for molecular docking.

Small molecule ligand Receptor protein
Binding energy/

kcal.Mol

Baicalein AKT1 −6:8
Kaempferol AKT1 −6:1
Quercetin AKT1 −6
Gamma-aminobutyric acid IL6 −4:5
Acubin IL6 −6:8
Paeoniflorin IL6 −7:8
Quercetin IL6 −7:8
Aucubin TNF −11:8
Kaempferol TNF −12:7
Paeoniflorin TNF −13
Quercetin TNF −9
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associated with SLE in Chinese Han population [52]. Teng
et al. [53] revealed that the high expression of miR-564 in
patients with SLE promoted differentiation of dendritic cells
by negatively regulating TP53 expression.

Conducting GO analysis on the intersection genes, we
found that XJDHT exerted its effects on SLE through the
response to lipopolysaccharide, response to oxidative stress,
cytokine receptor binding, and cytokine activity. KEGG
enrichment analysis demonstrated that the main pathways
involve in the lipid and atherosclerosis, AGE-RAGE signal-
ing pathway in diabetic complications, and fluid shear stress
and atherosclerosis, and each of the each pathway contains
multiple targets. The number of intersection targets of the
pathway indicates the importance of the pathway. The
pathway with the highest number of genes was the lipid
and atherosclerosis, which contains 38 targets. It mainly
involves phosphoinositide 3-kinase- (PI3K-) AKT, TNF,
c-Jun N-terminal kinase (JNK), and mitogen-activated pro-
tein kinase 1/3 (ERK) pathway, and their functions are
mainly focused on the proinflammatory, inflammatory signal
cvtokines, proliferation, injury, and apoptosis processes.
PI3K-AKT signaling pathway plays an important role in cel-
lular proliferation, and AKT expression is increased in SLE
patients [54]. Dysregulation of the PI3K-AKT pathway in
the MRL/lpr lupus mice was particularly prominent [55].
Furthermore, upregulation of FoxO3a expression by PI3K-
AKT pathway attenuated the progression of nephritis in LN
mice [56]. JNK and ERK often interact with each other and
are both associated with apoptosis [57], and their activity is
positively correlated with SLE activity [58]. The reduction
of ERK/JNK ratio can predict the severity of organ damage
in SLE patients [59].

Molecular docking results demonstrated that the dock-
ing energies of the core targets and their corresponding

active ingredients were almost all less than -5 kcal/mol,
which indicates that the active ingredients of XJDHT have
the good binding activity to the core targets.

In this study, the molecular mechanism of XJDHT for the
treatment of SLE was elucidated through the screening of the
active ingredients and the enrichment analysis of the intersec-
tion targets. The active ingredients of XJDHT (such as querce-
tin and kaempferol) act on the core targets (like AKT1 and
TNF), which affect multiple signaling pathways to treat SLE.
Molecular docking initially validated the interaction patterns
of the major active ingredients with the core targets. However,
there are still some limitations. The present study lacks the
consideration of the interactions between the ingredients and
the content of each ingredient. In addition, the results should
be undertaken by further experiments.

5. Conclusions

In conclusion, this study preliminarily revealed the pharmaco-
logical effects of XJDHT against SLE through network
pharmacology and molecular docking methods. A total of 30
active ingredients from XJDHT were discovered to be associ-
ated with SLE, and 23 corresponding genes were identified
as core targets. The molecular mechanism of XJDHT acting
on SLE is intimately related to the key GO terms and KEGG
signaling pathways, such as the react to lipopolysaccharide,
membrane raft, ubiquitin-like protein ligase binding, lipid,
and atherosclerosis, AGE-RAGE signaling pathway in diabetic
complications, fluid shear stress, and atherosclerosis. XJDHT
may achieve the treatment for SLE by inhibiting the proin-
flammatory factors, inflammatory signal cvtokines, prolifera-
tion, injury, and apoptosis processes. This study provides the
foundation for further research on the mechanism of XJDHT
in the treatment of SLE.

ARG-31

GLN-27

ARG-31

TYR-32
GLN-25

(k)

Figure 9: Molecular dockings of the top 3 core targets and their corresponding compounds. (a) AKT1 and baicalein. (b) AKT1 and
kaempferol. (c) AKT1 and quercetin. (d) IL6 and gamma-aminobutyric acid. (e) IL6 and acubin. (f) IL6 and paeoniflorin. (g) IL6 and
quercetin. (h) TNF and aucubin. (i) TNF and kaempferol. (j) TNF and paeoniflorin. (k) TNF and quercetin.
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