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numerous diseases such as intervertebral disc degenerative
diseases [7]. Acupuncture and Chinese herbal medicine are
frequently used to successfully treat pain-related disorders
such as neck pain and low back pain. Due to its low risk of
side effects, safety, and effective results, Drynariae Rhizoma
(DR), a type of Chinese herbal medicine (gusuibu), is fre-
quently used in the treatment of osteoporosis and fracture
[8, 9]. The clinical outcomes have confirmed that naringin,
a main active component of the DR, can alleviate the symp-
toms of low back pain (LBP). What is more, basic studies
have shown that naringin enhanced cell proliferation by
inhibiting TNF-α and MMP-3 and raising the expression
of collagen II and aggrecan. This substance may also reduce
local inflammation, which would slow intervertebral disc
degeneration. The research also indicated that naringin
may become an alternative therapeutic agent for pain associ-
ated with disc degeneration such as NP and LBP [10]. With
the development of network pharmacology, we believe that
multiple targets of diseases can be regulated by various
ingredients contained in an herb [11]. Nonetheless, no
research on the mechanisms of DR in the management of
LBP has been published.

Network pharmacology has played a significant role in
modern TCM research, which has provided powerful theo-
retical evidence for the discovery of new therapeutic targets
of TCM [12]. Our study will research the new therapeutic
targets of DR for LBP and provide new theoretical support
for DR in the treatment of LBP.

2. Method

2.1. Screening for Active Ingredients of Drynariae Rhizoma. We
screened for the active ingredients of Drynariae Rhizoma by
searching for the database of traditional Chinese medicine sys-
tem and analyzing platforms (TCMSP) [13] on the basis of
ADME (absorption, distribution, metabolism, and excretion)
criterion, which includes chemicals, targets and drug-target net-
works, associated drug-target-disease networks, etc. According
to TCMSP, oral bioavailability ðOBÞ ≥ 30% and druglikeness
ðDLÞ ≥ 0:18 are used to assess the potential active ingredi-
ents of DR in the treatment of LBP.

2.2. Searching the Chemical Structure and Gene Target of
Active Ingredients. We downloaded the chemical structures
of the active ingredients of DR from TCMSP or PubChem
[14] and stored them in mol2 format. The PubChem data-
base is the largest collection of freely accessible chemical
information in the world. The related SMILES of these
potential active ingredients obtained from TCMSP and Pub-
Chem were imported into the SwissTargetPrediction data-
base [15] to gain gene target.

2.3. Gene Target Prediction between Drynariae Rhizoma and
Low Back Pain. There were several databases being used to
search for the gene targets associated with LBP, including Gen-
ecards database [16], DisGeNET database [17], and OMIM
database [18]. Whereafter, we would delete the duplicate and
wrong gene targets. Last but not least, we used the Venny tool

(http://bioinfogp.cnb.csic.es/tools/venny/index.html) to obtain
the common gene targets of LBP and DR.

2.4. Building the Ingredient-Target Network of Drynariae
Rhizoma. The Cytoscape software (version 3.7.1) was used to
construct the ingredient-target network of DR with the utiliza-
tion of the obtained common gene targets. The Cytoscape
software is an open source software platform for visualizing
molecular interaction networks and biological pathways and
integrating these networks with annotations, gene expression
profiles, and other state data [19].

2.5. Constructing Protein-Protein Interaction (PPI) of Drynariae
Rhizoma. We used the STRING database to construct protein-
protein interaction of the common gene targets of LBP and DR.
The STRING database (http://string-db.org/, version 11.0) is
based on completing a comprehensive and objective global net-
work. Many available sources of protein-protein interaction
information have been collected and integrated into the
STRING database. The latest version (11.0) of the STRING
database covers more than 5000 organisms [20]. The specific
procedure was followed. Firstly, the common protein targets
of LBP and DR were imported into the STRING database.
Homo sapiens was selected, and the highest confidence was
set 0.9 in the minimum required interaction score. Then, the
TSV format of the results was exported. Meanwhile, these
results were imported into the Cytoscape software (version
3.7.1) to analyze the protein-protein interaction. Finally, the
network results of protein-protein interaction were exported.

2.6. Gene Ontology (GO) Functional Analysis and Kyoto
Encyclopedia of Genes and Genomes (KEGG) Pathway
Enrichment Analysis. To analyze the common gene targets
of LBP and DR, we made use of Gene Ontology (GO) func-
tional analysis and identified the important signaling path-
way through Kyoto Encyclopedia of Genes and Genomes
(KEGG) pathway enrichment analysis. The processes above
were performed with the help of the Metascape database
(http://metascape.org). Metascape is a database providing a
comprehensive gene list annotation and analysis resource.
The database contains functional enrichment, interactome
analysis, and gene annotation [21]. The processes of analysis
were followed. First, the common gene targets of NP and DR
were imported into the Metascape database. Homo sapiens
was chosen, and we clicked on the custom analysis. Second,
the P value was set to 0.01, and the min enrichment was set
to 5. In particular, we selected GO biological processes (BP),
GO cellular components (CC), GO molecular functions
(MF), and KEGG pathway. Finally, we clicked the enrich-
ment analysis and downloaded the data of GO and KEGG
pathways. The GraphPad Prism 7.0 software was used to
process the data for GO analysis, and an online analysis tool
(http://www.aipufu.com/index.html) was used to process the
data for KEGG pathways into bubble charts.

2.7. Verification of the Effect of DR. We obtained nucleus
pulposus (NP) tissues from two patients with low back pain.
According to the Pfirrmann classification score of magnetic
resonance imaging, relatively healthy NP tissue was grades
I~II, and degenerated NP tissue was grades III~V [22, 23].
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Table 1: Active ingredients of Drynariae Rhizoma.

Molecule ID Molecule name Structure OB (%) DL

MOL001040 (2R)-5,7-Dihydroxy-2-(4-hydroxyphenyl) chroman-4-one 42.36 0.21

MOL001978 Aureusidin 53.42 0.24

MOL002914 Eriodyctiol (flavanone) 41.35 0.24

MOL000449 Stigmasterol 43.83 0.76

MOL000358 Beta-sitosterol 36.91 0.75

MOL000422 Kaempferol 41.88 0.24

MOL004328 Naringenin 59.29 0.21

MOL005190 Eriodictyol 71.79 0.24

MOL000006 Luteolin 36.16 0.25

MOL009061 22-Stigmasten-3-one 39.25 0.76

MOL009063 Cyclolaudenol acetate 41.66 0.79
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The Pfirrmann grades for these two NP tissues were grade II
and grade IV, respectively. NP tissues were harvested under
sterile conditions and immediately sent to the laboratory.
Written informed consent was obtained from each patient.
The study was approved by the Ethics Committee of Hubei
Provincial Hospital of Traditional Chinese Medicine. The
ethics number was HBZY2022-C03-02.

2.8. Quantitative Real-Time Polymerase Chain Reaction
(qRT-PCR) Analysis. We extracted RNA from nucleus pul-
posus tissue as well as cells using TRIzol reagent (Ambion,
Foster City, CA, USA) following the manufacturer’s instruc-

tions. We apply PrimeScript RT Master Mix (Takara Bio,
Shiga, Japan) to obtain first-strand cDNA of whole RNA,
and for qPCR detection, we used One-Step SYBR Prime-
Script RT-PCR Kit (Takara Bio). The primer sequences were
designed as follows: AKT1: forward: 5′-TGGACTACCTG
CACTCGGAGAA-3′, reverse: 5′-GTGCCGCAAAAGGT
CTTCATGG-3′; VEGFA: forward: 5′-TTGCCTTGCTG
CTCTACCTCCA-3′, reverse: 5′-GATGGCAGTAGCTG
CGCTGATA-3′; H1F1A: forward: 5′-TATGAGCCAGA
AGAACTTTTAGGC-3′, reverse: 5′-CACCTCTTTTGGCA
AGCATCCTG-3′; and GAPDH: forward: 5′-TCCACT

Table 1: Continued.

Molecule ID Molecule name Structure OB (%) DL

MOL009075 Cycloartenone 40.57 0.79

MOL000492 (+)-Catechin 54.83 0.24

MOL000569 Digallate 61.85 0.26

MOL009078 Davallioside A_qt 62.65 0.51

MOL009087 marioside_qt 70.79 0.19

MOL009076 Cyclolaudenol 39.05 0.79

MOL009091 Xanthogalenol 41.08 0.32
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GGCGTCTTCACC-3′, reverse: 5′-GGCAGAGATGATGA
CCCTTTT-3′. We used 2−ΔΔCt way to count these relative
expression standards.

2.9. Statistical Analysis. Data are presented as mean ±
standard deviation (SD). Statistical analysis was performed
by the SPSS 26.0 (SPSS, Inc., Chicago, IL, USA) and GraphPad
Prism 7.0 software. Each experiment was performed at least
three times. Multiple group outcomes were tested by one-
way analysis of variance (ANOVA) test followed by Tukey’s
post hoc test. The Student’s t-test was applied to analyze the
two sets of parameters. Statistical significance was P < 0:05.

3. Results

3.1. Active Ingredients of Drynariae Rhizoma. We obtained 71
ingredients of DR and 18 active ingredients from TCMSP.
After excluding the invalid ingredients including (+)-catechin,
(2R)-5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one,22-
stigmasten-3-one, and beta-sitosterol_qt, we finally selected 18
active ingredients of DR including (2R)-5,7-dihydroxy-2-(4-
hydroxyphenyl)chroman-4-one, aureusidin, eriodyctiol (fla-
vanone), stigmasterol, beta-sitosterol, kaempferol, naringenin,
(+)-catechin, eriodictyol, digallate, luteolin, 22-stigmasten-3-
one, Cyclolaudenol acetate, cycloartenone, cyclolaudenol,
davallioside A_qt, marioside_qt, and xanthogalenol. The basic
information of 18 active ingredients is shown in Table 1.

3.2. Gene Target Prediction. We obtained 264 gene targets
associated with DR and 8409 gene targets associated with
LBP after excluding invalid and duplicate gene targets. A
total of 233 common gene targets are shown in Figure 1.

3.3. Ingredient-Target Network of Drynariae Rhizoma. The
Cytoscape software was used to construct the ingredient-
target network as shown in Figure 2. The orange oval nodes
are 15 selected active ingredients of DR, and the light blue
rectangle nodes are the common gene targets of LBP and
DR. The network contains 264 nodes. According to the net-

work, DR has multicomponent and multitarget characteris-
tics due to the presence of multiple relationships between
the active ingredient and the gene target.

3.4. Protein-Protein Interaction of Drynariae Rhizoma String.
The network of PPI analyzed 231 common protein targets as
shown in Figure 3. These nodes represent different proteins,
and the size and color of these nodes represent different values
of degree. The greater the value of degree, the larger these
nodes and brighter the color. According to degree values, the
three significant protein targets were AKT1, VEGFA, and
HIF1A as shown in Table 2.

3.5. GO Functional Analysis and KEGG Pathway Enrichment
Analysis. After GO functional analysis of the common gene
targets of DR and LBP through the Metascape database
(P < 0:05), we obtained a total of 2947 enriched results, includ-
ing 2478 results of biological processes (BP), 111 results of cel-
lular components (CC), and 221 results of molecular functions
(MF). We selected the top several enrichment results as shown
in Figure 4. In the enrichment results of BP (Figure 4), we
found that steroid metabolic process involved 42 (18.10%)
potential therapeutic LBP targets, organic anion transport
involved 39 (16.81%) potential therapeutic LBP targets, regula-
tion of small molecule metabolic processes and regulation of
lipid metabolic process involved 38 (16.38%) potential thera-
peutic LBP targets, and so on. In the enrichment results of
CC (Figure 5), we found that neuronal cell body involved 24
(10.30%) potential therapeutic LBP targets, nuclear envelope
and vesicle lumen involved 17 (7.30%) potential therapeutic
LBP targets, cytoplasmic vesicle lumen involved 16 (6.87%)
potential therapeutic LBP targets, and so on. In the enrichment
results of MF (Figure 6), protein serine/threonine kinase activ-
ity involved 28 (12.02%) potential therapeutic LBP targets,
protein tyrosine kinase activity involved 21 (9.01%) potential
therapeutic LBP targets, steroid hormone receptor activity
involved 19 (8.15%) potential therapeutic LBP targets, nuclear
receptor activity and transcription factor activity, direct ligand
regulated sequence-specific DNA binding and endopeptidase

Drynariae rhizoma Low back pain

31 233 8176

Figure 1: Venn diagram of common gene targets of LBP and DR.
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activity involved 18 (7.72%) potential therapeutic LBP targets
and so on.

After KEGG pathway enrichment analysis of the common
gene targets of DR and LBP through the Metascape database
(P < 0:05), we obtained a total of 136 enriched results. We
selected the top 10 enrichment results as shown in Figure 7.
According to the results of bubble chart, PI3K-Akt signaling
pathway involved 34 (15.89%) potential therapeutic LBP tar-
gets, microRNAs in cancer and proteoglycans in cancer; Ras
signaling pathway involved 23 (10.75%) potential therapeutic
LBP targets; neuroactive ligand-receptor interaction involved
22 (10.28%) potential therapeutic LBP targets; prostate cancer,

Rap1 signaling pathway, Alzheimer disease, and MAPK sig-
naling pathway involved 20 (9.35%) potential therapeutic
LBP targets and so on.

3.6. Validation of the Significant Protein Targets. PCR analy-
sis was used to verify the mRNA expression levels of these 3
significant protein targets. The mRNA expression levels of
AKT1 and HIF1A were upregulated in healthy NP tissue
than in degenerative NP tissue. On the contrary, the mRNA
expression level of VEGFA was downregulated in healthy
NP tissue than in degenerative NP tissue. These results are
shown in Figure 8.
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Figure 2: Ingredient-target network of Drynariae Rhizoma. Note: the orange oval nodes represent active ingredients of DR, and the light
blue rectangle nodes are the common gene targets of LBP and DR.
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4. Discussion

Low back pain has been a public problem, which seriously
affecting people’s daily life. Low back pain is mainly secondary
to the diseases of cervical disc degeneration, cervical spondylo-
sis, trauma, and so on. It is indicated that low back pain is the
fourth most common reason for disability in the US, and
women are more likely than men to experience low back pain
[24]. We constructed a biological network between active
ingredients of DR and common gene targets to reveal the
mechanism of DR in the treatment of LBP. In the biological
network, we selected 18 active ingredients, including (2R)-
5,7-dihydroxy-2-(4-hydroxyphenyl)chroman-4-one, aureusi-

din, eriodyctiol (flavanone), stigmasterol, beta-sitosterol,
kaempferol, naringenin, (+)-catechin, eriodictyol, digallate,
luteolin, 22-stigmasten-3-one, cyclolaudenol acetate, cycloarte-
none, cyclolaudenol, davallioside A_qt, marioside_qt, and
xanthogalenol, most of which are flavonoid compounds. As a
main active ingredient, it has been reported that naringenin
plays an important role in treating degenerative human
nucleus pulposus cells through inhibiting the expression of
inflammatory factors such as TNF-α [10]. Clinical evidence
has revealed that non-steroidal anti-inflammatory drugs are
effective for low back pain [23, 24]. Similarly, the extraction
method with 70% ethanol of DR results in higher antioxidant
activity [25]. Based on the strong relationship between these
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Figure 3: Protein-protein interaction network of Drynariae Rhizoma. Note: the size and color represent different degree values.

Table 2: Basic information of three significant protein targets.

No. Gene targets Degree Betweenness centrality Closeness centrality

1 AKT1 78 54.833 0.976

2 VEGFA 78 46.911 0.976

3 HIF1A 72 33.905 0.909
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active ingredients and common gene targets in the network,
we predict that DR will have an effect in the treatment of
LBP via anti-inflammatory and antioxidant functions.

A total of 8176 gene targets of LBP were found, and a
total of 264 common gene targets were selected in the net-
work, some of which have played a significant role in the
progress or cure of LBP secondary to cervical disc herniation
and so on. These common gene targets have effects of anti-
inflammatory, angiogenesis, proliferation, and inhibition of
disc herniation, which has the similar modern drug theory
of “multi-ingredients, multitarget” [26].

We constructed a PPI network to analyze the interactions
of these common proteins. In this network, a total of 234 pro-
tein targets were selected. These protein targets have different
effects, such as anti-inflammatory, antiapoptosis, and prolifer-
ation, some of which have been confirmed by some cell exper-
iments. AKT1, VEGFA, and HIF1A were identified as three
significant protein targets according to the degree values.
Studies have shown that VEGFA plays an important role in
spare nerve injury- (SNI-) induced neuropathic pain, which
is mediated by enhancing the expression and colocalization
of VEGFA, p-AKT, and TRPV1 in a SNI-induced neuropathic
pain model, which also improves expression of VEGFA,
VEGFR2, p-AKT and TRPV1 in the spinal cord [27–29].
Pasku et al and Chen et al. indicated that AKT1 was associated
with disc herniation and pain. The study found that when
AKT1 transcription was activated, disc herniation was deteri-
orated and AKT1 mRNA was related to AKT3 only in herni-
ated discs. They also confirmed that neovascularization was
associated with disc degeneration and herniation, and AKT1

was associated with angiogenesis [30, 31]. According to much
evidence shown above, we predict that the 18 active ingredi-
ents of DR have the potential ability to combine with the pro-
tein targets of LBP. As a major nuclear transcription factor
regulated by hypoxia, HIF-1a has a broad target gene spec-
trum and can regulate about 1% of all genes in human, includ-
ing the following: genes related to angiogenesis, including the
coding genes of VEGF and its vascular endothelial growth fac-
tor receptor (VEGFR); genes related to cell proliferation and
apoptosis, including insulin-like growth factor-2 (IGF-2) and
transforming growth factor-A (TGF-a) p42/p44 mitogen acti-
vated protein kinase, P13K, p53, MDM2, and other coding
genes; glucose metabolism, including glucose transporters
GLUT 1 and GLUT 3 and transmembrane hydrogenase; and
genes related to iron metabolism, including transfer receptor
and ceruloplasmin.

We performed GO functional analysis to analyze the com-
mon genes of LBP and DR. According to analysis results, we
found that these common genes have multiple functions in
BP, CC, and MF. In the BP, the steroid metabolic process
involved 42 (18.10%) gene targets, while organic anion trans-
port involved 39 (16.81%) gene targets, promoting cell prolif-
eration in the treatment of LBP. A study has proposed that
epidural steroid injections are one of the most common non-
surgical treatments for low back pain. In general, corticoste-
roid treatment often results in bone loss and osteoporosis.
Neuronal cell body involved 24 (10.30%) gene targets, nuclear
envelope and vesicle lumen involved 17 (7.30%) gene targets,
and cytoplasmic vesicle lumen involved 16 (6.87%) gene tar-
gets in the CC, which reveals that these gene targets may make
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Figure 4: The Gene Ontology functional analysis of common gene targets.
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effects through plasma membrane. Protein serine/threonine
kinase activity involved 28 (12.02%) gene targets, protein tyro-
sine kinase activity involved 21 (9.01%) gene targets, and steroid
hormone receptor activity involved 19 (8.15%) gene targets in
the MF, which reveals that ribonucleotide binding may play a
significant role in the regulation of gene targets for DR.

We summarized the pathway enrichment analysis through
the KEGG database to clarify the mechanism between DR and
LBP. PI3K-Akt signaling pathway involved 34 (15.89%) gene
targets, microRNAs in cancer and proteoglycans in cancer;
Ras signaling pathway involved 23 (10.75%) gene targets; neu-

roactive ligand-receptor interaction involved 22 (10.28%) gene
targets; prostate cancer, Rap1 signaling pathway, Alzheimer
disease, and MAPK signaling pathway involved 20 (9.35%)
gene targets and so on. In these pathways, PI3K-Akt signaling
pathway and Ras signaling pathway play a significant part in
the development of LBP. Xu et al. found that the activation
of PI3K-Akt signaling pathway is associated with high expres-
sion of inflammatory-related factors in intervertebral disc her-
niation [32]. Radicular pain was contributed via the activation
of p38 MAPK signaling pathway [33]. According to the net-
work pharmacology, we provide PI3K-Akt and Ras signaling
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Figure 7: The KEGG pathway enrichment analysis of common gene targets.

⁎

1.5

1.0

0.5

0.0

C
on

tro
lRe

lat
iv

e g
en

e e
xp

re
ss

io
n 

of
 A

KT
1

ID
D

⁎

1.5

1.0

0.5

0.0

C
on

tro
lRe

lat
iv

e g
en

e e
xp

re
ss

io
n 

of
 H

IF
1A

ID
D

⁎
12

9

6

3

0

C
on

tro
lRe

lat
iv

e g
en

e e
xp

re
ss

io
n 

of
 V

EG
FA

ID
D

Figure 8: The mRNA expression levels of three significant targets.

10 BioMed Research International



pathways as references to reveal the mechanism of DR in the
treatment of LBP.

In conclusion, we used network pharmacology to indicate
the potential association between DR and LBP and synergistic
mechanism of DR in the treatment of LBP through prediction
of gene and protein targets, which provides a reference for
future study in vivo and in vitro.
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