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Pulse signal is one of the most important physiological features of human body, which is caused by the cyclical contraction and
diastole. It has great research value and broad application prospect in the detection of physiological parameters, the development
of medical equipment, and the study of cardiovascular diseases and pulse diagnosis objective. In recent years, with the
development of the sensor, measuring and saving of pulse signal has become very convenient. Now the pulse signal feature
analysis is a hotspot and difficulty in the signal processing field. Therefore, to realize pulse signal automatic analysis and
recognition is vital significance in the aspects of the noninvasive diagnosis and remote monitoring, etc. In this article, we
combined the pulse signal feature extraction in time and frequency domain and convolution neural network to analyze the
pulse signal. Firstly, a theory of wavelet transform and the ensemble empirical mode decomposition (EEMD) which is
gradually developed in recent years have been used to remove the noises in the pulse signal. Moreover, a method of feature
point detection based on differential threshold method is proposed which realized the accurate positioning and extraction
time-domain values. Finally, a deep learning method based on one-dimensional CNN has been utilized to make the
classification of multiple pulse signals in the article. In conclusion, a deep learning method is proposed for the pulse signal
classification combined with the feature extraction in time and frequency domain in this article.

1. Introduction

In the past two thousand years, pulse diagnosis, as one of the
most important methods of disease diagnosis, has taken a
significant part in traditional Chinese medicine. Traditional
Chinese medicine believes that changes in the state of inter-
nal organs such as the internal organs of the human body or
the limbs and facial features will produce a fixed pulse. By
touching the pulse of the patient, the internal changes of
various organs of the body can be judged, thereby diagnos-
ing the physical condition and the location of the disease.
Studies have shown that the pulse signal mainly comes from
the heart. Under the periodic pulsation of the heart and the
elastic expansion and contraction of the vascular system,
blood will flow through various organs of the body [1],
and eventually, this blood will be collected on the human
wrist. Fingertips, ear tips, and other parts form a pulse sig-
nal; therefore, the human pulse signal contains not only
heart health disease information but also blood viscosity,
blood vessel wall elasticity, blood flow velocity, and other
physiological and pathological information related to other

human organs [2, 3]. Therefore, whether based on the tradi-
tional Chinese medicine perspective or the modern scientific
perspective, the study of pulse signals has great theoretical
value and practical significance. Figure 1 shows some typical
pulse waves in traditional Chinese medicine.

By studying the mechanism of pulse signal generation,
pressure pulses and volume pulse signals reflecting the blood
pressure or volume information of human blood vessels can
be successfully extracted. Compared with the volume pulse
signal detection process, the pressure pulse signal detection
has many advantages such as easy operation, reliable perfor-
mance, safety, noninvasiveness, and strong adaptability.
Therefore, it has been widely concerned by domestic and for-
eign researchers and engineers [4, 5]. As shown in Figure 2,
the pressure sensor is placed at the superficial artery (such as
the radial artery) to detect changes in the blood vessel pressure
at the artery to obtain the pulse wave signal. Since the pulsa-
tion change curve of blood vessel diameter with time is
approximately similar to the pulsation change curve of intra-
vascular pressure, the curve of the change of blood vessel
diameter with time detected by various pressure sensors
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clinically reflects the pulsation change of intravascular pres-
sure, thus achieving noninvasive. The pressure sensors that
are widely used in piezoelectric, piezoresistive, piezomagnetic
(inductive), etc. [6, 7]. The pressure sensor has become the
most widely used sensor in the current pulse wave signal
acquisition application due to its advantages such as easyman-
ufacture, high power-electricity conversion efficiency, high
accuracy, and similar use form to clinical pulse diagnosis [8].

The pulse signal is a nonlinear, nonstationary signal with
an approximate period. Initially, it was mainly time-domain
analysis, such as analysis through intuitive parameters of the
shape, peak value, angle, and area of ascending and descend-
ing branches of the pulse waveform, but a lot of practice
shows that the information contained in the pulse signal is
multifaceted. It is difficult to find the rich information that
has involved in the pulse signal by the intuitive analysis
method alone, thus promoting the development of the pulse
signal analysis method in a more comprehensive and diver-
sified direction. In recent years, the methods that have been
commonly used in pulse signal analysis are time domain
analysis and time-frequency joint analysis method.

Figure 3 shows the structure diagram of the article. It
summarizes the pulse signal analysis in four aspects. This
dissertation starts from the collected 10 types of pulse signals
and is aimed at analyzing the pulse signal through the
EEMD, stationary wavelet transform, and HHT signal
denoising methods, deeply excavate a large number of
parameters. After the pulse signal analysis process, the pre-
processed signal can be gained. Finally, through the CNN,
the preprocessed pulse signal can be processed to realize
the classification and recognition of various pulse signals.

The purpose of this study is to classify the collected pulse
signals through a self-made pulse sensor and to cooperate
with traditional Chinese medicine to extract the correspond-

ing characteristics of the pulse through the pulse and to pre-
dict and analyze some basic diseases. The novelty of this
research is that a set of standard database with 30 kinds of
human pulses is established by using the touch training
machine of the Faculty of Chinese Medicine of the Univer-
sity of Hong Kong, which can be used for classification
and disease prediction.

2. Preprocessing Methods

2.1. Related Work. In 2021, the article in [9] mentioned a
method about a multiscale CNN-CRF framework for
environmental microorganism image segmentation. This
method requires 420 scenes of EM images; however, it is dif-
ficult to gain a huge number of EM images. In order to
increase the number of the dataset, 105 training images with
the revolution of 256 × 256 pixels have been rotated by 0, 90,
180, and 270 degrees and mirroring and then divided into
patches with 8 × 8 pixels. After this procedure, the 107520
patches have been obtained.

The paper [10] comes up with a state-of-the-art review
for gastric histopathology image analysis approaches and
future development. This work pointed out that machine
learning needs a large number of datasets. The augmentation
approaches include rotation, reverse, and scale transform,
such as the degree rotation, colour vibrance, adding noise,
and the reverse transformation.

2.2. Pulse Signal Data Preprocessing. The collected pulse sig-
nal usually contains all kinds of noise interference, which
will cause different degrees of signal distortion and affect
the quality of pulse signal under test. Therefore, before per-
forming pulse signal analysis and processing, it needs to be
preprocessed to obtain a high-quality pulse signal.

The noise interference that affects the quality of pulse
signal acquisition mainly includes baseline drift and high-
frequency noise, which can usually be filtered by software.
The respiration of the human body and the movement of
the hands on the period of signal acquisition will lead the
baseline drift of the pulse signal, causing the lowest point
of the pulse waveform of each cycle to deviate from the same
horizontal line. It is a low-frequency signal that changes
slowly and is easily mixed in the useful pulse signal [11,
12]; high-frequency noise mainly comes from random noise
and environmental interference, such as electromagnetic
interference of electronic equipment and thermal noise of
electronic devices. These high-frequency or low-frequency
noises will affect the accuracy of pulse signal measurement,
so it is of great significance to take the necessary measures
to filter out noise interference.

2.2.1. Denoising Based on Wavelet Transform.Wavelet trans-
form is a time-frequency localized analysis method based on
multiresolution theory. It can study any details of the signal
and is an important method for signal time-frequency analy-
sis. The specific decomposition process can be seen in
Figure 4. The number of decomposition layers is determined
by the analyzed data and the needs of the user [13].
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Figure 1: Traditional Chinese medicine pulse diagnosis diagram.

Figure 2: Mechanism of pressure sensor.
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The initial signal is decomposed into N layers, and the
signal can be expressed as the superposition of the high
frequency part and the low frequency part, which can be
expressed by the following formula:

S = cA1 + cD1 = cA2 + cD2 + cD1 =⋯ = cAn + cDn−1+⋯+cD1:

ð1Þ

Among them, the low-frequency coefficient and the
high-frequency coefficient indicate that the frequency
range of the signal is different, the wavelet details repre-
senting high-frequency noise are mainly distributed in
the high-frequency range, and the wavelet details repre-
senting baseline drift are mainly distributed in the low-
frequency range. By filtering out the wavelet details in
the frequency range where the high-frequency noise and
baseline drift are located, the filtered pulse signal can be
obtained by wavelet reconstruction.

The wavelet details between the maximum decomposi-
tion level of a single cycle of a periodic signal and the
maximum decomposition level of the entire multicycle
signal represent the baseline of the periodic signal [14].
Use db7 as the wavelet basis function and the maximum res-
olution scale that can be selected for wavelet decomposition
of pulse signal is

N = floor log2 Lð Þj j = floor log2 1000ð Þj j = 9, ð2Þ

where L stands for the length of the pulse wave signal and
floor represents the rounding down operation.

To calculate the maximum number of decomposition
layers of a pulse signal in a single period, it is vitally
important to calculate the number M of pulse waves in a

piece of pulse data, which can be obtained by the differential
threshold method or the Fourier transform method. The
maximum decomposition level of a single-cycle signal is

N1 = Ceil log2
L
M

� �����
���� = Ceil log2

1000
7

� �����
���� = 8: ð3Þ

Among them, ceil means rounding up. After calculating
N and N1, the number of decomposition layers where the
baseline drift is located can be determined. At the same time,
the pulse signal is mainly distributed within 20Hz. There-
fore, by filtering out high-frequency noise greater than
20Hz and low-frequency baseline drift noise, you can get a
more ideal pulse signal.

From Table 1, we can know that the noise greater than
20Hz is mainly distributed in the wavelet details of layer 1
and layer 2. Setting the high-frequency wavelet coefficients
and low-frequency wavelet details to zero, that is cD1, cD2,
cD8, cD9 and cA9 in Table 1. Then, reconstruct the signal
to gain the denoised signal. The original signal, recon-
structed signal, and error curve are shown in Figure 5.

2.2.2. Denoising Using HHT Algorithm Based on EEMD. Hil-
bert-Huang transform (HHT) is another important time-
frequency analysis way, which mainly includes two aspects,
EEMD decomposition and Hilbert spectrum analysis. By
performing the Hilbert transform on the IMF component
gained by EMD decomposition, the instantaneous frequency
and instantaneous amplitude of the signal will be gained [15].

The decomposition process of EEMD method [16]: add
the mean value to M times (M > 1) in the initial signal xðtÞ,
and the standard deviation of the amplitude is constant Gauss-
ian white noise niðtÞði = 1 ~MÞ, namely,

xi tð Þ = x tð Þ + ni tð Þ: ð4Þ

EMD decomposition is performed on xiðtÞ to obtain K
IMF components denoted as ciðtÞðj = 1 ~ KKÞ and remainder
f iðtÞ, where ciðtÞ represents the j-th IMF component gained
when the Gaussian white noise is added for the i times. Utiliz-
ing the theory that the statistical mean value of the uncorre-
lated random sequence is zero, the IMF component ciðtÞ
which related to the above step is averaged to offset the
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Figure 3: A framework for pulse signal analysis.
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Figure 4: Three-layer wavelet decomposition tree.
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influence of adding Gaussian white noise in the real IMF mul-
tiple times. The IMF is

cj tð Þ =
1
M

〠
N

i=1
cij tð Þ, ð5Þ

where ciðtÞ stands for the j-th IMF gained by EEMD decom-
position of the initial signal [17] and M refers to the number
of added white noise sequences.

Hilbert transform of the time domain signalxðtÞis
defined as

x̂ tð Þ =H x tð Þj j = 1
π
〠
+∞

−∞
x τð Þ 1

t − τ
dτ: ð6Þ

As we all know from the formula above that the Hilbert
transform of xðtÞ can also be expressed as a convolution
form of xðtÞ and (πτ)−1, namely,

x̂ tð Þ = 1
πτ

× x tð Þ: ð7Þ

Fourier transform of the two sides of the formula is
as follows:

F x̂ tð Þj j = 1
π
F
1
τ

����
����f x tð Þj j = jsgh fð Þ ⋅ F x xð Þj j: ð8Þ

The Hilbert transform of the signal xðtÞ will be
gained by inverse Fourier transform of the formula.

Hilbert transform of the IMF component is as follows:

bci tð Þ =H ci tð Þj j = 1
π
〠
+∞

−∞
ci τð Þ 1

t − τ
dτ: ð9Þ

According to the characteristics of the Hilbert transform,
ciðtÞ can be regarded as the real part, and cıðtÞ can be
regarded as the imaginary part, and the two parts can com-
bine as the analytical signal ziðtÞ:

zi tð Þ = ci tð Þ + jbci tð Þ = a tð Þejθ ið Þ: ð10Þ

Filter the IMF component which instantaneous
frequency < 0:5Hz and >20Hz, and combine the other
IMF component to get the denoising signal. The whole
debaseline drift process is shown in Figure 6.

3. Feature Extraction Methods of Pulse Signal

Due to the superficial position of the radial artery, the detec-
tion is the most convenient. It is the same as the clinical
pulse diagnosis position of traditional Chinese medicine,
and the radial artery is closest to the peripheral blood vessel.
At present, the pulse wave is mainly measured from the
radial artery. According to the mechanism of pulse wave for-
mation, it can be divided into different heartbeat stages. The
complete pulse wave waveform under normal physiological
conditions is shown in Figure 7.

A complete pulse wave waveform consists of ascending
branches and descending branches [18], which mainly
includes 5 feature points. The meaning of each feature point
is as follows.

Point b, the opening point of the aorta, which is the start-
ing point of a pulse wave period, is the valley point of the
pulse wave pattern, which marks the left ventricle contrac-
tion. Point c is the main wave, which is the maximum point
in the pulse wave waveform. Point e, the tidal wave, also
known as the front wave of the weighting wave, is located
on the descending branch of the waveform, generally after
the main wave. Point f, the through valley, is the dividing
point between systole and diastole, located before the dicrotic
wave and after the tidal wave. Point g is the striking wave
crest, and it is a protruding wavelet, located after point f.

3.1. Pulse Wave Feature Point Recognition. For the sake of
recognizing a total of three feature points from the aortic
opening point (point b), the main wave peak (point b), the
tidal wave (point e), and the trough valley (point f) in the
pulse wave waveform, this paper uses a pulse wave feature
point automatic recognition algorithm.

The characteristics of the pulse waveform are mainly
represented by the extreme points and inflection points
of the waveform. Therefore, the use of the differential

Table 1: Band range of wavelet coefficients of each layer decomposed by 9-level wavelets.

Wavelet coefficients cD1 cD2 cD3 cD4 cD5 cD6 cD7 cD8 cD9 cA1

Hz 50-100 25-50 12.5-25 6.3-12.5 3.1-6.3 1.6-3.1 0.8-1.6 0.4-0.8 0.2-0.4 0-0.2

Original
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Figure 5: Denoising result based on wavelet transform.
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threshold method can easily extract the pulse characteristic
parameters.

The first-order and second-order differential processing
of the pulse signal can obtain the maximum point of the sig-
nal. Since the height of the main wave of the pulse signal is
the maximum point in a cycle, set the maximum value of
the signal greater than m times by adjusting the value of
parameter m which can get better recognition effect. In the
same way, when the height of the dicrotic wave is set to be
greater than n times and less than m times the maximum
value, a better recognition effect can also be obtained.

Through the transformation law of the first-order and
second-order differential signals, the minimum point of the
signal is found. When the maximum figure of the signal with
the height of the lowering gorge is greater than k times, a better
feature parameter extraction effect can be obtained. At the
same time, by observing the collected pulse signal, we can
know that the pulse signal is distributed around the minimum
point of the starting point. When the differential threshold
method is used to extract the position information of the
point, it is easy to introduce confusion and cannot accurately
distinguish the pulse signal feature points. When the first-
order differential value at this point is required to be greater
than a certain value a, better results can be obtained. The result
diagram for discovering feature points based on differential
threshold method is shown in Figure 8.

3.2. Characteristic Parameters in Time and Frequency
Domain. Through wavelet transform, not only the denoising
of the pulse signal can be achieved but also the characteristic
parameters of the waveform in the time or frequency
domain can be extracted. As a result, it has been commonly
concerned by researchers. Shi et al. pointed out a signal fea-
ture detection way through wavelet transform [19], and sim-
ulation proved that the method has a higher detection
accuracy and a more accurate positioning effect. Hongbiao
proposed a feature extraction method suitable for nonsta-
tionary pulse signals [20]. Use wavelet decomposition to
realize the classification and identification of healthy people
and patients with atherosclerosis.

Perform 5-layer decomposition on samples 1, 2, and 3 to
obtain decomposition coefficients cA5cD5, cD4 , cD3, cD2,
and cD1. According to the law of wavelet decomposition,
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Figure 6: The debaseline drift of pulse signal: (a) original pulse wave; (b) denoised pulse wave; (c) each IMF component.
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the frequency ranges corresponding to cA5cD5, cD4, cD3, cD2
, and cD1 are 0-3.13, 3.13-6.25, 6.25-12.5, 12.5-25, 25-50, and
50-100Hz. Since information greater than 20Hz is filtered
out during preprocessing, the amplitudes of cD2 and cD1
are close to zero. At the same time, we can know from the
wavelet decomposition diagram that the amplitude of the
wavelet coefficients of low-frequency information is large,
and the amplitude of the wavelet coefficients of high-
frequency information is small.

Then, according to the relationship between the wavelet
coefficients and the signal energy distribution, the square
sum of the wavelet coefficients of each layer is calculated.
We can get the feature vector T :

T = EcA5, EcD5, EcD4, EcD3, EcD2, EcD1½ �: ð11Þ

Furthermore, the normalized feature vector TT0 can
be obtained:

T0 =
EcA5, EcD5, EcD4, EcD3, EcD2, EcD1½ �

E0
: ð12Þ

We can see from Table 2 that the energy ratios of data 1-6
at 0-6.25Hz are all higher than 99%, indicating that the col-
lected pulse signals are all from healthy people. At the same
time, using statistical methods to analyze the wavelet coeffi-
cients in each layer in detail, we can study their relationship
with specific diseases and promote the objective development
of pulse diagnosis.

4. Experiments and Results

4.1. Experiment Setting

4.1.1. Pulse Signal Dataset. The dataset consists of the raw
pulse data collected by the homemade pulse sensing device of
Lee Ultrasound Lab from the palpation training machine in
Traditional Chinese Medicine School of The University of
Hong Kong. There are 10 types of pulse waves (or Mais) which
contain in the dataset. The names of those Mais are as follows:
Changmai, Chimai, Dongmai, Huamai, Huanmai, Jimai, Ping-
mai, Shimai, Weimai, and Xuanmai. Every type of Mais was
collected in 3 different applied pressures. There is no quantita-
tive standard for the applied pressure of the palpation training
machine, nor the quantitative math model for the applied pres-
sure and the pulse signal. Therefore, the 3 applied pressures
were not unified cross different Mais. When no extra pressure
forced on the sensor, there is still an initial pressure of the sen-
sor. The initial pressure was recalled as the baseline. It was
caused by the produce process that needs to be subtracted from
the collected signal. Each data signal contains two types of var-
iables. The x axis (the horizontal axis) represents the pressure
sample points which units is “Pa.” The y axis (the vertical axis)
represents the time points when collecting the corresponding
pressure points.

4.1.2. Experimental Environment. The preprocessing part of
the experiment in this paper is implemented on MATLAB
R2019a, and the deep learning part is implemented with
Python 3.7. The deep learning uses CNN network. The
CNN model is built and trained on TensorFlow on an
8GB memory computer.

The experiment runs on macOS 10.15.

4.2. Training and Test Data Setting. Preprocess the collected
signals in the above process to denoise and solve the problem

Huamai Dongmai
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Figure 8: Result diagram for discovering feature points based on differential threshold method.

Table 2: Normalized eigenvector T0 of the wavelet energy.

EcA5 EcD5 EcD4 EcD3 EcD2 EcD1

Sample 1 0.9584 0.0386 0.0028 0.0002 0.0000 0.0000

Sample 2 0.9273 0.0641 0.0084 0.0002 0.0000 0.0000

Sample 3 0.9832 0.0134 0.0034 0.0000 0.0000 0.0000

Sample 4 0.9752 0.0201 0.0046 0.0001 0.0000 0.0000

Sample 5 0.9943 0.0048 0.0008 0.0001 0.0000 0.0000

Sample 6 0.9813 0.0162 0.0024 0.0001 0.0000 0.0000

6 BioMed Research International



of baseline drift. Here, the wavelet transform method which
has beenmentioned in Chapter 2.2.1 is used for preprocessing.

4.2.1. Pulse Data Dimension Adjustment. During signal
acquisition, the saved data variables are time and pressure,
because the hardware reading is not absolutely uniform,
resulting in different time intervals. When performing deep
learning on data, it is necessary to ensure that each input
data has the same length, so cubic spline interpolation is per-
formed on the original data to expand the original data vol-
ume tenfold. After that, resampled the interpolated data;
that is, 50 time slices (50 points per second) are intercepted
every second, thereby ensuring that the time interval of the
sampling points is uniform.

4.2.2. Pulse Segmentation and Augmentation. Because the
collected signals have different lengths, the signals must
be segmented. Use the feature points of the pulse signal
which has been mentioned in Chapter 2.2.1 to find the
lowest point of the pulse signal (that is, point b, the open-
ing point of the aorta), use it as the starting point of the
signal, and cut the resampled data. Intercept the pulse sig-
nal with a length of 6 seconds (that is, 300 time slices). At
the same time, due to insufficient data volume and in
order to not waste data, prevent the overfitting phenome-
non, and better describe each type of pulse type, we cross-
intercept the pulse signal by intercepting a segmentation
of pulse signal in every other feature point (point b) to
expand the dataset.

Through the operations above, 677 sets of pulse data
have been obtained in the experiment: Changmai (59), Chi-
mai (49), Dongmai (79), Huamai (63), Huanmai (63), Jimai
(130), Pingmai (54), Shimai (60), Weimai (50), and Xuan-
mai (70). As we can see from Figure 9, it is the database of
the pulse signal for each pulse wave.

4.2.3. Arrangement of Datasets. The collected 10 types of
pulse signals have been divided into 677 sets of data. And
then, the dataset is randomly allocated into training set
and test set by the ratio of 7 : 3. As a result, the training set

contains 473 sets of data, and the test set involves 204 sets
of data. The arrangement of the training and test datasets
can be seen in Table 3.

4.3. Related Work. In [19], the authors mentioned a multi-
scale CNN-CRF framework for environmental. In this work,
a novel method called mU-Net-BXs is utilized to optimize
the adaptability of U-Net convolution neural network. The
original inception using different size convolution filters of
1 × 1, 3 × 3, and 5 × 5 (called BOLCK-I) is the direct way
to optimize the adaptability of U-Net. Inspired by Inception
V2 and Inception V3, a 5 × 5 convolution filter can be
replaced by a sequence of two 3 × 3 convolution filter, and
a 7 × 7 convolution filter actually resembles a sequence of
three 3 × 3 convolution filters (called BLOCK-II). In the
same way, a 3 × 3 convolution filter can also be replaced by
a sequence of 1 × 3 and 3 × 1 convolution filters as
BLOCK-III. And then, deploy the BLOCK-III in mU-Net
architecture. The whole architecture of the network U-Net
convolution neural network is shown in Figure 10.

In [21], the authors proposed an approach of the identi-
fication of COVID-19 samples from X-ray images using
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Figure 9: Database of the pulse wave: (a) Changmai; (b) Chimai; (c) Dongmai; (d) Huamai; (e) Huanmai; (f) Jimai; (g) Pingmai; (h) Shimai;
(i) Weimai; (j) Xuanmai.

Table 3: The arrangement of training and test datasets.

Dataset/class Train Test Total

Changmai 43 16 59

Chimai 31 18 49

Dongmai 55 24 79

Huamai 47 16 63

Huanmai 42 21 63

Jimai 88 42 130

Pingmai 38 16 54

Shimai 45 15 60

Weimai 34 16 50

Xuanmai 50 20 70

Total 473 204 677
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deep learning in which collected COVID CXR images from
the GitHub repository with various sizes of pixels and kept
target size to the same pixel. Then, apply VGG series, Xcep-
tion, ResNet V1 and ResNet V2 series, Inception series,
DenseNet series, and MobileNet networks in the transfer
learning process, where the weights are pretrained on
ImageNet dataset.

4.4. Construction of the Classification of the Pulse Signal
Algorithm Based on the CNN Model. The constructed
convolutional neural network consists of two parts, the
convolutional layer and the fully connected layer. The con-
volutional layer includes four convolutional layers and two
pooling layers. In the connection layer, the selected activa-
tion function is the softmax function. The loss function
selects the categorical_crossentropy function suitable for
multiclassification, and the metric selects the commonly
used accuracy.

The whole model framework is shown in Figure 11; it
contains 2 parts. For input data, the data has been prepro-
cessed, and each data record contains 300 time slices (the
pulse wave data has been divided into 6 seconds pulse wave;
each second includes 50 time slices). In each time slices,
three values for the left horizontal axis, right horizontal axis,
and vertical axis will be saved. This will produce a 300 × 1
matrix. The data should be put into the model with a size
of 300. The first layer of the network should be embedding
the data to its initial size, that is, 300 × 1.

The first convolutional layer: the first layer can be seen
as a filter (or feature detector) with a size of 10 (also
named the kernel size). However, only one filter is not
enough for the model to learn all the features in the first
convolution layer, so we select 100 feature detectors. This
makes us to train 100 different functions at the first layer
of the model. The result of this CNN layer is a 291 × 100
matrix. Each column of the output matrix contains a filter
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Block 7
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Block 5

Input
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Figure 10: The architecture of mU-Net.
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Figure 11: CNN model framework based on pulse classification.
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weight. Using the defined kernel size and considering the
length of the input matrix, each feature detector involves
291 weights.

Second convolutional layer: results from the last layer
should put into the second convolution layer. We can select
100 different feature vectors to train at this layer as well.
Having the same steps as the last layer, the size of the result
will be 282 × 100.

Maximum pool layer: for the sake of reducing the intri-
cacy of the result and avoiding the data of overfitting, the
pool layer is usually used after the CNN layer. In this study,
we select 3 sizes. As a result, the input matrix’s size is 3 times
larger than the output matrix.

Third and fourth convolution layers: for the sake of the
model to have higher level of functions, the next is another
sequence of 2 convolution layers. However, the length of
the feature detector is still 10; we select 160 feature detectors.
As a result, the output matrix after these two layers is a 76
× 160 matrix.

Average pooling layer: the reason for this layer is make
one more layer of pooling to further avoid overfitting. Mean-
while, instead of taking the max value, the average of the two
weights in the CNN model is taken. The size of the output
matrix is 1 × 160 neuron matrix. Each feature detector has
only one weight left in this layer of neural network.

Dropout layer: the dropout layer will randomly assign 0
weights to the neurons in the network. When the ratio we
select is 0.5, the weight of 50% of neurons is zero. After this
step, the CNN model will become less sensitive to small
changes of data. Therefore, it should further improve the
accuracy of our invisible data. The result of this layer is still
a 1 × 160 neuron matrix.

Fully connected layer: the model has to predict 10 cate-
gories (“Changmai,” “Chimai,” “Dongmai,” “Huamai,”
“Huanmai,” “Jimai,” “Pingmai,” “Shimai,” “Weimai,”
“Xuanmai”). The activation function we select is softmax.

It makes the sum of the total 10 results of the CNN model
to be 1. Therefore, the result will stand for the probability
of each of the ten types.

4.5. Analysis of the Experimental Results. Input the processed
data into the built CNN model for training and testing. The
training times for the training set are set to 50 times
(epoch = 50). Figure 12 shows the accuracy and loss rate of
the training set during the training process. As the informa-
tion shown in Figure 12, when the training time is more than
40 times, the accuracy rate gradually stabilizes at around
90%. The final accuracy rate stabilizes at around 94%, and
the loss rate decreases to within 0.2 with the increase of
the training times.

Then, put the test set data into the trained CNN model,
and the accuracy rate of the test set is 94.12%. For the train-
ing result, we select precision, recall, and F1 score those
three evaluation parameters to evaluate the classifier perfor-
mance. The equation of the three parameters is shown in
Table 4.

Figure 13 shows that the evaluation parameters of the
test set. From Figure 13, we know that the accuracy value,
recall rate, and F1 score of each group are all above 80%,
the individual pulse wave accuracy rate can reach 100%,
and the average recall rate and F1 score are above 95%; the
average precision rate is above 94%. The average of the three
evaluation parameters is not much different. In conclusion,
the model has good performance in accuracy and stability.

The test set contains a total of 204 sets of data, which are
allocated to the training set according to 7 : 3. For the sake of
enhancing the universality of the results and reducing the
chance, in the process of assigning the training set and the
validation set, we did not choose to distribute each pulse in
equal proportion according to the 10 types of pulses but
chose to do all the data randomly assigned. However, due
to the small sample size, it may result in less pulse wave data
of a certain type in the test set, which may lead to a lower
performance in the evaluation parameters of the results,
but they are all stable at more than 80%. If you can expand
the data capacity or increase the number of training times,
this phenomenon can also be greatly improved.
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Figure 12: Result of the test set of the training model: (a) accuracy
of the model in 50 times; (b) loss rate of the model in 50 times.

Table 4: The evaluation metrics for pulse signal classification.

Metric Definition Metric Definition

Precision Precision =
TP
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Recall Re call =
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F1 =
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Figure 13: Classification result of different pulse wave based on the
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Compared with the evaluation parameters, the confusion
matrix can more intuitively see the classification results of
each type of pulse wave.

The confusion matrix is an indicator for judging the
results of the model and is part of the model evaluation indi-
cators. The confusion matrix is mostly used to indicate the
quality of the classifier. The confusion matrix is also called
the error matrix [22]. In the error matrix, each row of the
matrix stands for the class prediction of the data by the clas-
sifier, and each column of the matrix represents the true cat-
egory to which the version belongs [23]. The reason why it is
called the confusion matrix is that it can intuitively see
whether the results of the samples are confused in the results
of the machine learning output.

From the diagonal of the confusion matrix in Figure 14,
it can intuitively see the number of pulse prediction pairs of
each type and the result of erroneous prediction. It can
adjust the deep learning model or adjust the feature extrac-
tion according to the part of the result set that is wrongly
predicted. Evaluation parameters can also be calculated
based on the confusion matrix.

5. Conclusions

This research collects pulse signals through self-made sen-
sors. Then, the pulse signal is subjected to wavelet transform
to denoise. Analyze the pulse signal in time frequencies and
perform feature extraction. The time frequencies include the
extraction of pulse signal feature points, the energy extrac-
tion of pulse wavelet coefficients, and the energy extraction
of the HHT transform. Hope to use statistical methods to
analyze the wavelet coefficients in each layer in detail, we
can study their relationship with specific diseases and pro-
mote the objective development of pulse diagnosis. In the
signal acquisition, a total of ten different pulse signals are
collected, and this data is used to classify the pulse signals
based on deep learning. The classification model selects the
CNN model. The initial signal is classified by signal segmen-
tation and labeling. Build a one-dimensional CNN model,
utilize the model to train the data, and then get a pulse signal
classifier with an accuracy of about 95%.

In the future, we consider combining a CNN module
and a VT module proposed in [24] for local and global
feature extraction, respectively, to improve the model per-
formance. Meanwhile, the strategy used in LCU-net [25] is

considered to optimize the model, where the dense CRF is
applied to reduce the memory cost. Besides, we can use
MRF and CRF methods in [26] to mask the annotations of
the various groups of imaging functions and regions of inter-
est with the data augmentation. Furthermore, we can also
apply the GasHisTransformer [27] to capture long-range
correlation considering the global and local associations of
the pulse signal in a unified context.
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