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The microenvironment in the stomach is different from other digestive tracts, mainly because of the secretion of gastric acid and
digestive enzymes, bile reflux, special mucus barrier, gastric peristalsis, and so on, which all contribute to the formation of
antibacterial environment. Microecological disorders can lead to gastric immune disorders or lead to the decrease of dominant
bacteria and the increase of the abundance and virulence of pathogenic microorganisms and then promote the occurrence of
diseases. The body performs its immune function through innate and adaptive immunity and maintains microbial balance
through the mechanism of immune homeostasis. Microecological imbalance can lead to the invasion of pathogenic
microorganisms and damage mucosal barrier and immune system. The coexistence of gastric microorganisms (including
viruses and fungi) may play a synergistic or antagonistic role in the pathogenesis of gastric diseases. Probiotics have the ability
to compete with intestinal pathogens, increase the secretion of immunoglobulin A (IgA), stimulate the production of mucin,
bacteriocin, and lactic acid, regulate the expression and secretion of cytokines, and regulate the growth of microbiota, which all
have beneficial effects on the host microbial environment. At present, most studies focused on Helicobacter pylori, ignoring
other stomach microbes and the overall stomach microecology. So, in this article, we reviewed advances in human gastric
microecology, the relationship between gastric microecology and immunity or gastric diseases, and the treatment of probiotics
in gastric diseases, in order to explore new area for further study of gastric microorganisms and treatment of gastric diseases.

1. Introduction

The gastrointestinal tract contains the largest microbiome in
the human body, accounting for 80% of the total microbial
biomass. For a long time, people believed that the stomach
was sterile. By the early 1980s, Marshall and Warren isolated
Helicobacter pylori (H. pylori) from gastric biopsies obtained
from patients with chronic gastritis and peptic ulceration, for
which they won the 2005 Nobel Prize in Physiology or Medi-
cine for their discovery, after that the researchers were inter-
ested in the bacterial cause for ulcer disease [1]. With the
advent of 16sRNA gene sequencing, next-generation sequenc-
ing technology, metagenomics, and other research methods, it
is possible to identify gastric microbes and to explore the func-
tional activities and interrelationship of gastric microbial com-
munities. It has been found that in addition to H. pylori, there

are other microorganisms in the stomach, which jointly form
the microbial environment in the stomach and may be related
to the occurrence of many gastrointestinal diseases. The total
number of bacteria carried in the intestines of a healthy person
is estimated to be 1014, which is constituting a microbiome
and an ecosystem in dynamic balance as a whole [2]. In gen-
eral, the number of bacteria from the stomach to the large
intestine is different, and the bacterial concentration presents
an increasing state successively. The count of bacteria in oral
cavities is higher. There is the least count of bacteria in the
stomach. The small intestine has more bacteria, while the
colon has the most bacteria, which is nearly 1010 times more
than the count of bacteria in the stomach [3, 4] (shown in
Figure 1).

At present, there are few studies on microbes living in
the stomach and duodenum, mainly due to its special
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physiological processes such as gastric acid secretion, bile
secretion, and gastrointestinal motility. However, little is
known about the relationship between microorganisms
and these physiological processes and how they affect
health and disease throughout the digestive tract. In this
article, we reviewed advances in human gastric microecol-
ogy, the relationship between gastric microecology and
immunity or gastric diseases, and the treatment of probio-
tics in gastric diseases, in order to explore new area for
further study of gastric microorganisms and treatment of
gastric diseases.

2. Anatomy and Physiological Mechanism of
the Stomach

The stomach accommodates food, secretes gastric juice,
digests food, and has a secretory function. Due to its special
anatomical structure, the secretion of gastric acid and diges-
tive enzymes, bile reflux, special mucus barrier, and gastric
peristalsis all contribute to the formation of an antibacterial
environment. This is also different from other digestive
tracts. Normal gastric juice has a pH of 0.9-1.5 and its secre-
tion is 1.5-2.5 L/d. During or after eating, the movement of
the stomach is enhanced, and the secretion of gastric juice
is increased. The stomach can also secrete other mucus,
which covers the surface of the gastric mucosa, forming a
protective gel-like layer. The mucous layer on the mucosal
surface is divided into inner and outer layers, the pH of
which gradually increases from the outer layer to the inner
layer (shown in Figure 2).

When microecological imbalance in the stomach or
other reasons cause damage to the first line of gastric muco-
sal immunity, which is composed of gastric mucosal epithe-
lial cells and the mucous layer on the surface, the
permeability between gastric epithelial cells increases, and

pathogens and their metabolites enter the mucosa through
the gap, which causes the macrophages to accumulate. Rec-
ognition of pattern recognition receptors (PPR) in dendritic
cells and other immune cells can lead to direct macrophage
phagocytosis and the production of cytokines by the cells
mentioned above, which can stimulate T cells and B cells
to produce cellular immunity and humoral immunity, and
finally, further eliminate microorganisms through the innate
immunity and adaptive immunity of the gastric mucosa.
However, some microorganisms can achieve immune escape
by targeting gene expression. Microecological imbalance can
also lead to a decrease in dominant bacteria and an increase
in the abundance and virulence of pathogenic microorgan-
isms, thereby leading to the occurrence of diseases. Normal
digestive motility is also essential to maintain the balance
of microorganisms in the digestive tract. Impaired gastroin-
testinal motility can hinder the absorption of drugs and
nutrients, resulting in immune function and intestinal
mucosal integrity impairing, bacterial overgrowth and trans-
location, and the release of endotoxins into the circulation
and activation of immune responses. On the other hand,
bacterial overgrowth may also cause gastrointestinal dys-
function, such as gastroparesis and other gastro motility dis-
orders. Due to the special structure and function of the
stomach mentioned above, the growth of microorganisms
in the stomach is restricted to physiological levels. If the
pH, the mucosal barrier, or gastric physiological movement
of the stomach are altered, the microecological balance in
the stomach may be disturbed, which will affect its normal
function and promote the occurrence of gastric diseases
[5]. For example, histamine 2 receptor antagonist therapy
or atrophic gastritis increases the growth of nitrosating bac-
teria, which can convert nitrite and other nitrogen com-
pounds in gastric juice to carcinogenic N-nitroso
compounds [6]. In healthy conditions, gut flora is involved
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Figure 1: Bacteria count in different regions of the human digestive tract. The darker the color, the higher the density of bacteria. The unit is
cfu/ml.
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in maintaining the integrity and function of the epithelial
mucosal barrier, and gastrointestinal immune cells
strengthen the epithelial barrier function by maintaining a
healthy microbial community. Once the gastrointestinal
immunity is unbalanced, it may lead to gastrointestinal dys-
function and diseases, including inflammatory bowel disease
[7], irritable bowel syndrome [8], small intestinal bacterial
overgrowth [9], B cell lymphoproliferative diseases [10],
and allergic intolerances to foods [11]. Proper gastrointesti-
nal motility allows for a constant flow of luminal materials
through the gastrointestinal tract, which prevents bacterial
overgrowth in the small intestine. However, patients with
gastrointestinal dysmotility have a stagnant flow of luminal
materials, leading to the development of small intestinal bac-
terial overgrowth (SIBO) [12].

3. Relationship between Gastric Microbe and
Gastric Immune Regulation

The human immune system contains PPRs that distinguish
harmful pathogenic microorganisms from harmless symbi-
otic ones. Toll-like receptors (TLRs) are kind of important
PRR expressed in the macrophage and dendritic cell mem-
brane, and the other PRR group is the nodal receptors
(NLRs). NLRs are associated with a family of innate cyto-
plasmic receptors that are involved in the detection of intra-
cellular pathogens and endogenous byproducts of tissue
injury [13]. Microecological imbalance can contribute to
the invasion of pathogenic microorganisms and can damage
the mucosal barrier and the immune system. This process
results in increased mucosal permeability, inflammation of
the digestive tract, and thus, activation of TLR and NLR sig-
nals. When the antigen comes into contact with the human

body, immune cells in the blood bind to chemokines and
induce immune cells to adhere to the cell adhesion factor
of endothelial cells by integrin and then migrate through
endothelial cells to the stomach [14]. Finally, the body exerts
immune function through innate immunity and adaptive
immunity [15] and maintains microbial balance through
the immune homeostasis mechanism [16] (shown in
Figure 2).

Immune-related gastric mucosal cells are composed of
gastric mucosal epithelial cells, macrophages, and dendritic
cells. Gastric mucosal epithelial cells are located in the gas-
tric mucosal epithelium, which together with mucous layer
on the surface constitute the first line of defense for gastric
mucosal immunity. Macrophage microaggregates are widely
distributed in the gastric mucosa [17]. Cytokines generated
after macrophage activation stimulate the occurrence of
immune response, play an immunomodulatory role, and pro-
mote the occurrence of adaptive immune response [18, 19].
Dendritic cells exist in the human gastric mucosa. Mature
dendritic cells are activated as antigen-presenting cells (APCs),
which activate effector T and B cells through the TLR signal
and induce an adaptive immune response [14, 20–24].

Gastric mucosal adaptive immunity-related cells are
composed of T cells, B cells, and other immune lympho-
cytes. In gastric mucosal cell immunity, CD4+ T cells and
regulatory cells play an important role [25, 26]. The humoral
immunity of the gastric mucosa mainly involves B cells and
immunoglobulin. B cells exert humoral immune function
with the joint participation of macrophages, helper T cells,
and chemokines [27]. The microbiota can damage host
DNA and activate signal transduction, resulting in chromo-
somal aberrations, microbial translocation, and the activa-
tion of myeloid cells that produce interleukin (IL-23) and
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Figure 2: Schematic diagram of the cause for gastric mucosal immune disorder caused by microorganisms.
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thus promoting tumor growth [28]. Some studies have
shown that a high abundance of Fusobacterium nucleatum
in the gastrointestinal tract can increase plasma proinflam-
matory cytokine levels and reduce the activity of NK cells
[29]. In addition, Fusobacterium nucleatum can suppress
accumulation of tumor infiltrating T cells and promote
tumor growth and metastatic progression [30].

4. Microecological Environment of the Stomach

The fetus is aseptic when it is in the mother’s body. It is in
contact with the outside environment after birth, and many
bacteria enter the body within a few hours. The presence of
bacteria in the stomach may be due to the increasing pH
from the gastric cavity (pH1-2) to the mucosal surface
(pH6-7), while the mucosal surface is covered with mucus
secreted by the gastric glands (shown in Figure 2). This pH
gradient leads to a different environment in the stomach
and allows the growth of microorganisms [31]. Since the
proximal end of the stomach is connected to the esophagus
and mouth and the distal end is connected to the duodenum,
microbes from other parts of the human gastrointestinal
tract can also enter the stomach.

H. pylori can cause a variety of stomach diseases. As an
important pathogenic factor for chronic gastritis and gastric
ulcer, H. pylori has been widely recognized and is closely
related to the occurrence, development, and outcome of gas-
tric cancer. Researchers have performed the first modern
high-throughput sequencing study on stomach bacteria
[32]. They characterized the gastric microbiota using PCR
and 16S rDNA sequence analysis. They found that the
human gastric environment contained rDNA from a wealth
of bacteria, in addition to H. pylori. Of these, some were
derived from uncultivated bacteria, and some had been pre-
viously described in specimens from the human mouth.
Because it was likely that the composition of the gastric com-
munity was not only determined by niche-specific factors
but also by stochastic colonization from upstream compo-
nents of the alimentary tract.

Early studies have found microorganisms related to the
gastric mucosa, such as Enterococcus, Pseudomonas, Staphy-
lococcus, and Stomatococcus [33]. The composition of the
gastric microbiota is highly variable between individuals.
However, recent studies have identified five major phyla in
the stomach, including Firmicutes, Bacteroidetes, Actinomy-
cetes, Clostridium, and Proteobacteria. The main genera in
the stomach include Prevotella, Streptococcus, Roseburia,
and Haemophilus [34–39]. A systematic review of the gastric
microbiota recently published also showed that the results of
the gastric microbiota composition were highly heteroge-
neous. A total of 266 bacterial genera were identified, of
which 57 were mainly found in normal acidic stomach [40].

Fungal flora can also be detected in the gastrointestinal
tract, most of which are aerobes or facultative anaerobes, and
the number of fungi in the human stomach ranges from 0 to
102 cfu/ml [41]. Candida albicans can grow well in a highly
acidic environment [42], and some genotypes can aggravate
the severity of gastric mucosal lesions [43]. A study showed
that 66.7% of patients with gastric diseases had colonization

of Candida andH. pylori in the gastric mucosa [44]. Although
a causal relationship with secondary colonization was never
examined in these studies, the coexistence of Candida albicans
and H. pylori may indicate a synergistic role in the pathogen-
esis of gastric ulcer, and the mycelium formed by Candida
may contribute to ulcer perforation. Although fungi play an
important role in the study of gastric microbiology, their
potential role in the pathogenesis of diseases needs to be fur-
ther studied with more modern techniques. At the same time,
the composition of the gastric microbiota is affected by factors
such as H. pylori, health status, diet habits, drug use, age, sur-
gical intervention, and inflammation [45, 46].

5. Interactions between Microbes in
the Stomach

The gastrointestinal microecosystem is a unity formed by
the interaction and influence of the gastrointestinal flora,
its host, and its external environment. The gastrointestinal
flora maintains the stability and balance of the gastrointesti-
nal microecosystem through a variety of regulatory systems
and pathways. Once the balance is destroyed, there will be
a microecological imbalance, which will lead to the genera-
tion of diseases. At present, many studies have found that
non-H. pylori gastric microorganisms are related to gastric
diseases, and H. pylori, which has been much more studied,
also interacts with other gastric microorganisms.

The colonization of H. pylori in the gastric mucosa
changes the gastric environment by decomposing the muco-
sal layer and alkalizing gastric juice [47]. Some studies have
confirmed that non-H. pylori gastric microorganisms are
related to the development of gastric cancer. In this study,
transgenic Ins-GAS mice with gastrin overexpression were
used. Ins-GAS mice treated with antibiotics developed gas-
tric cancer later than control mice without antibiotic treat-
ment for H. pylori [48], suggesting that gastric
microorganisms may enhance the role of H. pylori in gastric
cancer. Changes in gastric microbial ecology after H. pylori
eradication indicate that H. pylori affects the interaction of
other microorganisms in the stomach, possibly promoting
the development of inflammation and cancer in patients
[49]. Eradication of H. pylori can prevent the progression
of gastric mucosal lesions [50, 51], but some patients con-
tinue to progress to precancerous lesions, including gastric
atrophy (GA) and intestinal metaplasia (IM), after radical
treatment with H. pylori [36]. Less than 3% of patients
infected with H. pylori develop gastric cancer [52], and about
20% of patients with chronic gastritis are negative for H.
pylori, suggesting that other microorganisms may induce
gastritis and even gastric cancer [53]. Although H. pylori ini-
tiates the gastric inflammation process, other gastric micro-
organisms with proinflammatory potential may play an
important role in maintaining the progression of inflamma-
tion and abnormal hyperplasia, which then leads to the
development of gastric cancer.

The effect of Lactobacillus salivarius supplementation
has been demonstrated in mouse models, and its effective-
ness is related to the large amount of lactic acid produced
by the bacteria that interferes with the urease activity of
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the pathogen [54]. Furthermore, in vitro, L. salivarius can
reduce gastric inflammation by regulating local cytokine
secretion, especially IL-8, which is directly related to neutro-
phil recruitment and mucosal inflammation, possibly in
response to inhibiting the secretion of cytotoxin-associated
protein virulence factor (Cag A) [55]. Multiple studies have
found the presence of Epstein-Barr virus (EBV) and H.
pylori in gastric cancer specimens (ranging from 6% to
12%). Meta-analysis has also evaluated the importance of
co-infection of these two pathogens in gastric cancer
[56–59]. Currently, different studies [56, 57, 60] have
explored the possible roles of combined infection by H.
pylori and EBV in the development of gastritis, peptic ulcer,
dyspepsia, and gastro esophageal reflux disease (GERD). In
the coinfection process of H. pylori and EBV, the recruit-
ment of immune cells at the infected site significantly
increase, thus aggravating gastric inflammation and tissue
damage [61]. For example, monochloramine is an oxidant
produced in the stomach during H. pylori infection, which
can induce the transition of EBV from the latent phase to
the cleavage phase [62], and H. pylori induces the secretion
of interferon γ (IFN-γ), which promotes the inflammatory
environment and exacerbates the severity of the disease
[61]. The intestinal microbiota can regulate H. pylori infec-
tion, and vice versa, this bacterium can alter the composition
of the stomach microbiota [63–65]. On the other hand, the
microbiota in several human niches have a direct or indirect
influence on viral infection, such as EBV and human papil-
lomavirus [66].

Daily changes in intestinal flora composition have been
observed after the administration of a drug used to eliminate
H. pylori to rats, and it has been found that the number of
obligate anaerobes is significantly reduced, the number of
short-chain fatty acids (SCFAs) is reduced, and the stool is
slightly abnormal [67]. Clostridium difficile has been
reported to grow particularly well when strong and/or
broad-spectrum antibiotics are used [68]. Administration
of CBM588 probiotics at the same time as eradication of
H. pylori can inhibit the production of Clostridium difficile
toxin A, thus reducing the risk of diarrhea and soft stool in
these patients [67]. The stomach microecology of healthy
people is balanced, and a stable microenvironment is formed
between microorganisms due to long-term symbiosis. The
change in any kind of microorganism may have an impact
on other microorganisms and microecology.

6. The Microecology of the Stomach Is
Involved in the Occurrence of
Gastric Diseases

H. pylori can hydrolyze urea to produce ammonia through
urease, which in turn increases the local pH value and is
conducive to the colonization of other microorganisms. Fur-
thermore, both epigenetic and direct inheritance of H. pylori
can directly lead to gene instability, including double-
stranded DNA breakage [69, 70].

Gastric microorganisms can aggravate the histological
changes caused by H. pylori infection. After H. pylori eradi-

cation, the atrophy score of 20.8% for subjects decreased
[50]. Coinfection of H. pylori and Neisseria subflava has
been reported to be associated with the formation of lym-
phatic follicles in the human stomach [71]. Neisseria sub-
flava can induce IL-8 production by gastric epithelial cells
and promote the progression of hypoacid-induced gastric
function lesions. The occurrence of GA and IM leads to a
reduction in gastric acid-secreting wall cells [72], which
may be conducive to the proliferation of gastric microorgan-
isms or the colonization of oral microorganisms in the stom-
ach [73]. In the absence of H. pylori infection, the presence
of atrophy or IM was associated with an increased abun-
dance of Granulicatella, Actinomyces, Rothia, Peptostrepto-
coccus, Streptococcus, Abiotrophia, and Parvimonas [49]. A
previously published study by Parsons et al. focused on eval-
uating the diversity of stomach microbes in various hydro-
chloric acid states, including H. pylori-induced atrophic
gastritis and autoimmune atrophic gastritis (AIG). This
study showed that the microbial diversity and bacterial
abundance of AIG patients were higher than those of normal
stomachs, and Streptococcus accounted for the largest pro-
portion in the investigated group [74]. Currently, the study
on the gastric microbiota of patients with AIG is still in an
early stage. In subjects with gastric mucosal atrophy after
removal of H. pylori, the number of Faecalibacterium, Kais-
tobacter, and Rahnella decreased [49]. Sjöstedt et al. studied
microbial colonization in the oropharynx, esophagus, and
stomach of 60 patients and found that patients with a history
of gastritis, gastric cancer, and gastrectomy had more gastric
microbes than patients with gastric or duodenal ulcers. Gas-
tric cancer patients have the largest number of different
microbial colonization [75].

Currently, there are many studies on the effects of
viruses on the intestinal nervous system, and it is found that
the effects of viruses on the intestinal nervous system can
lead to gastrointestinal motor disorders. EBV infection is
closely related to gastritis and gastric cancer [20, 57]. EBV
can inhibit the proliferation of T cells and the toxicity of nat-
ural killer cells and maintain the activity of the virus in host
cells, resulting in sustained damage to the gastric mucosa
[76]. EBV can keep the virus at a very low expression level
by targeting the gene expression of the virus and avoid the
attack of the human immune response [76, 77]. Recently,
some authors reviewed the changes of some microorganisms
in gastric diseases [78] (shown in Table 1).

7. Microorganism and the Treatment of
Gastric Disease

The modern history of probiotics begins at the beginning of
the1900s, Nobel Prize winner Elie Metchnikoff found that
when yoghurt or fermented milk containing Lactobacillus
bulgaricus was consumed, the gastrointestinal condition
improved significantly, and hence, the practice of using pro-
biotics has arisen [89, 90].

According to the Food and Agriculture Organization/
World Health Organization [91, 92], probiotics are living
microbial agents that, when given in sufficient quantities,
have a beneficial effect on the host. Many strains of lactic

5BioMed Research International



acid bacteria benefit the host by inhibiting the growth of
pathogens and inhibiting inflammation, tumor, and allergic
modification [93–96]. The beneficial effects of probiotic bac-
teria on host microbial environment may be due to their
potential impact on the digestive tract microbial community
and the intestinal immune system, including their ability to
compete with intestinal pathogens, increase the secretion of
Immunoglobin A (IgA), regulate the expression and secre-
tion of cytokine, stimulate mucin, bacteriocins, and lactic
acid production, and adjust the microbiota growth [97–99].

Some probiotics have not only preventive effects but also
therapeutic effects by promoting epithelial cell growth [100]
and angiogenesis [101] and upregulating the expression of
anti-inflammatory cytokines [102]. Therefore, the addition
of probiotics to patients undergoing radical treatment for
H. pylori can prevent gastritis caused by other microorgan-
isms [49]. Probiotics have a potential role in alleviating gas-
tritis after radical treatment for H. pylori [103, 104].
Lactobacillus given to rats as a single probiotic strain, such
as Lactobacillus gasseri OLL2716 [105, 106], Lactobacillus
acidophilus [100, 107], Lactobacillus rhamnosus GG [108],
or in the form of probiotic mixtures, has been reported to
promote ulcer healing. Lactobacillus rhamnosus GG
improves the ratio of proliferation to apoptosis of host cells
and causes continuous regeneration of epithelial cells, espe-
cially around the edge of ulcers [108, 109]. Saccharomyces
boulardii has a good therapeutic effect on ibuprofen-
induced gastric ulcer in rats [110]. The neuraminidase activ-
ity of the Saccharomyces boulardii can remove surface α (2-
3)-linked sialic acid from apical cells of the gastric epithe-

lium. Thus, by eliminating sialic acid, H. pylori mucin-
mediated adhesion to gastric epithelial cells is pre-
vented [111].

Acetic acid, propionic acid, and butyric acid are all
SCFAs that are important energy sources in the body and
are produced primarily in the colon as a result of the meta-
bolization of indigestible carbohydrates by microorganisms
[112], which can regulate energy balance through the
brain-gut axis. Excess alcohol consumption damages the
gastric mucosal barrier, leading to extensive hemorrhagic
damage, accumulating oxidative stress, and increasing the
inflammatory response through the production of cyto-
kines such as interleukin-1β (IL-1β), interleukin-6 (IL-6),
and tumor necrosis factor-α (TNF-α) [113]. Butyrate pre-
treatment can negatively regulate the proinflammatory
cytokines IL-1β, TNF-α, and IL-6, enhance the function
of gastric wall mucus [114], and has a protective effect
on ethanol-induced gastric ulcer formation. Lactobacilli
and Bifidobacteria, as the main genera of probiotics, have
been shown to produce acetic acid in vitro, but cannot
produce propionic acid and butyric acid as the main
metabolites. However, these common probiotics can stim-
ulate the production of SCFAs by other colonic bacteria,
producing pyruvate and lactic acid from dietary carbohy-
drates [115]. Nagaoka et al. reported that Bifidobacterium
bifidum YIT 4007 improved acute gastric injury induced
by ethanol and acetic acid in rats [116]. In addition, pro-
biotics, prebiotics, and/or synbiotics can regulate the gut
microbiome, thereby inhibiting pathogens and promoting
the growth of SCFA-producing bacteria [117].

Table 1: Changes in Microorganisms in Different Gastric Diseases.

Gastro-Related Diseases Control Group Changes in Gastric Microorganisms Reference

Atrophic Gastritis Healthy Subjects Streptococcus↓, Prevotella↓ Engstrand L, et al. [79]

Gastric Cancer Normal Mucosa
Microorganisms↑, Anaerobic Bacteria

(eg Clostridium and Bacteroides species)↑
Dicksved J, et al. [80]

Chronic Gastritis Normal Control Group
Prevotella↑, Streptococcus↑, Neisseria↑,

Porphyromonas↑, Haemophilus↑
Nardone G, et al. [81]

H. Pylori-Infected Gastritis
H. Pylori-Negative

Individuals
Proteobacteria↓, Firmicutes↑ Li XX, et al. [82]

Atrophic Gastritis Healthy Controls Streptococcus↑, Prevotella↓ Ozbey G, et al. [83]

H. Pylori-Infected Antral
Gastritis

Without H. Pylori
Infection

Proteobacteria↓, Prevotella↓, Firmicutes↑,
Streptococcus↑

Liu J, et al. [84]

H. Pylori-Infected Peptic
Ulcer

/
Streptococcus↑, Neisseria↑, Rothia↑,

Staphylococcus↑
Bilello J, et al. [78]

Invasive Gastric Cancer Without Cancer
Porphyromonas↓, Neisseria↓, Streptococcus
Sinensis↓, Lactobacillus Coleohomonis ↑,

Lachnospiraceae↑, Pseudomonas↑
Zhang S, et al. [85]

Gastric Cancer /
Nitrate-reducing bacterial species

reducing nitrate (including Neisseria, Clostridium,
Staphylococcus, and Clostridium Colicanis)↑

Hsieh YY, et al. [86]

Gastric Cardia
Adenocarcinoma

/
Firmicutes, Bacteroidetes and Proteobacteria at the

phylum level
Shao D, et al. [87]

Gastric Cancer Chronic Gastritis
Achromobacter↑, Citrobacter↑, Phyllobacterium↑,

Clostridium↑, Rhodococcus↑, Lactobacillus↑
Ferreira RM, et al. [88]

Gastric Cancer Non-Tumor Tissues
Prevotella↑, Streptococcus↑, Veillonella↑,

Haemophilus↑, Neisseria↑
Shao D, et al. [87]
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8. Conclusions

In recent years, with changes in diet and increased work
pressure, the incidence of H. pylori infection and gastric
ulcer is very high, and H. pylori infection is considered a pri-
mary risk factor for gastric cancer, and gastric ulcer also has
a certain rate of malignant change, so it is particularly
important to treat H. pylori infection and gastric ulcer. Most
of the previous studies focused on H. pylori and relatively
ignored other microorganisms in the stomach and the over-
all microecology of the stomach. At present, research on the
correlation between gastric microorganisms is mostly lim-
ited to the relationship between H. pylori and non-H. pylori
microorganisms. There is a lack of in-depth understanding
for the improving effect of probiotics on gastric ulcers. We
should consider microecology as a whole when we study
microbes in the stomach in the future. In the treatment of
microbial infection, blind sterilization is not recommended,
leading to ignore the overall relationship between the stom-
ach microbes. We should also consider the variety of factors
that may affect the stomach microbiota, such as drugs, diet,
smoking, and drinking habits. The ecological characteristics
of different areas in the stomach are different, so the biome
may be different. The stomach is not a single ecological envi-
ronment, and different anatomical parts may have different
microbial colonization. In general, these need to be further
studied. At present, there is little direct evidence on the
non-H. pylori microbiome in gastric ulcers, precancerous
lesions, and gastric cancer. Future gastric microbiome
research will include transcriptomics, metabolomics, and
proteomics, which will provide more opportunities for func-
tional studies of gastric microorganisms.
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