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Radiotherapy is one of the main treatment modalities in nonsmall cell lung cancer (NSCLC). However, tumor radiosensitivity is
influenced by intrinsic factors like genetic variations and extrinsic factors like tumor microenvironment. Consequently, we hope
to develop novel biomarkers, so as to improve the response rate of radiotherapy and overcome resistance to radiotherapy in
NSCLC. We investigate the difference genes of primary NSCLC patients before and after radiotherapy in GSE162945 dataset.
Gene Ontology (GO), KEGG, Reactome, and GSEA were employed to represent the essential gene and biological function. It
was found that most pathway genes clustered in extracellular matrix and ECM-receptor signal pathway. Additionally, TMT-
based proteomics was used to survey the differential proteins present in the supernatant of H460 cells before or after
irradiation with 2Gy of γ-rays. And then we take the intersection between the proteomics of H460 cell and ECM-receptor
signal pathway proteins of GSE162945 datasets. The data revealed that fibronectin 1 (FN1) and thrombin reactive protein 1
(THBS1) were upregulated after radiation in both datasets. Subsequently, survival analyses using the GEPIA web server
demonstrated that FN1 and THBS1 had significant prognostic values (Logrank test P value < 0.05) for LUAD and LUSC. Our
observations from this study suggest that FN1 and THBS1 might have potential to serve as novel biomarkers for predicting
NSCLC tumor response to radiotherapy.

1. Introduction

Lung cancer is one of the highest incidence and mortality rates
of human malignancies worldwide [1]. GLOBOCAN reports
that there will be approximately 2.2 million new cases of lung
cancer worldwide in 2020, accounting for 11.4% of all malig-
nancies, and approximately 1.8 million deaths, accounting
for 18.0% of malignancy-related deaths [2]. Despite the great
progress in the treatment of lung cancer, the current prognosis
of lung cancer remains poor. Prognostic data based on 61
countries worldwide show that the 5-year survival rate for lung
cancer is only 10.0% to 20.0% [3].

Traditionally, lung cancer has been divided into two
main histological types: small cell lung cancer (SCLC) and

nonsmall cell lung cancer (NSCLC). SCLC is an aggressive
form of lung cancer that accounts for 15% of all lung cancer
diagnoses, and it is a high-grade neuroendocrine tumor,
appearing under the microscope as small round blue malig-
nant cells [4]. It clinically differentiates itself from the more
prevalent NSCLC by having a rapid doubling time and high
growth rate [5], but highly sensitive to radiotherapy [6].
NSCLC can be mainly divided into three types: adenocarci-
noma (ADC), squamous cell carcinoma (SqCC), and large
cell carcinoma. NSCLC accounts for approximately 85% of
all diagnosed lung cancers, causing a large proportion of
lung cancer-related deaths.

In fact, radiotherapy, as an active and effective therapeu-
tic modality, has played a central part in the whole process
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management of lung cancer [7]. Stereotactic body radiother-
apy (SBRT) can be safely and effectively used in patients
with inoperable early-stage NSCLC, including those with
poor underlying lung function [8]. Despite the excellent
local control rate of SBRT in patients with early-stage
NSCLC (98% at 3 years and 87% at 5 years), many patients
developed distant metastases during follow-up after SBRT;
moreover, the emergence of radiation resistance effects dur-
ing long-term radiotherapy greatly limits patient outcomes
[9, 10]. For patients with inoperable stage III NSCLC, the
results of trials of consolidation chemotherapy combined
with radiotherapy showed no significant improvement in
tumor control or patient survival. Consequently, we need
to develop novel biomarkers, so as to improve the response
rate of radiotherapy and overcome resistance to radiother-
apy in NSCLC.

The GSE162945 dataset includes data on primary
NSCLC before and after radiotherapy and metastatic
NSCLC such as esophageal, cervical, and colon cancers. In
metastatic NSCLC, metastatic tumors usually have novel
mutations in genes compared with the primary tumors,
especially metastases of different origins, and the complexity
and heterogeneity of gene mutations increase the uncertainty
of the data. Therefore, in order to reduce the interference of
metastatic NSCLC genes to the overall data, this study ana-
lyzed the primary NSCLC in dataset GSE162945, hoping to
identify genes and proteins associated with radiotherapy for
NSCLC.

2. Materials and Methods

2.1. Data Matrix. The GEO database (https://www.ncbi.nlm
.nih.gov/geo/) was searched by keywords “non-small cell lung
cancer” and “radiation therapy,” and the dataset GSE162945
was found. GSE162945, a dataset containing NSCLC and its
metastases as well as tissues after 60Gy stereotactic treatment,
was selected for subsequent data analysis.

2.2. Screening of Differentially Expressed Genes. The original
gene expression set obtained from the download was run
through the R package DESeq2.0 (1.32.0) to obtain the dif-
ferential genes, and mRNA with fold change in a compari-
son >2 or <0.5 and adjusted significance level P < 0:05
were considered differentially expressed.

2.3. GO, KEGG, and Reactome Analysis. Significantly differ-
ential genes were enriched by gene ontology (GO) function
and KEGG pathway analysis. To better observe the pathways
enriched for gene changes in lung cancer tissues before and
after radiation treatment, Reactome pathway enrichment
analysis was also used for significantly differential genes,
and these analyses were performed using the g:Profiler data-
base (https://biit.cs.ut.ee/gprofiler/gost). The threshold of
significance was set at P < 0:05 with an enrichment
number≥5.

2.4. GSEA Analysis. To identify signaling pathways that dif-
fered between lung cancer tissues before and after radiation
treatment, we selected an ordered list of genes by the
DESeq2.0 (1.32.0) package and performed gene set enrich-

ment analysis (GSEA) using the easyGSEA website (https://
tau.cmmt.ubc.ca/eVITTA/), with mode of analysis selected
as preranked GSEA. The databases selected were KEGG,
Reactome pathway, WikiPathways, and biological process,
adjusted for P < 0:05, and the results are listed in order of
ES value [11].

2.5. Cell Culture and Irradiation. Human NSCLC cells H460
were purchased from the American Type Culture Collection
(ATCC) cell bank, and all were cultured in 1640 medium
(HyClone) containing 10% fetal bovine serum (HAKATA)
in a constant temperature incubator containing 5% CO2 at
37°C. The cells were passaged when they reached 80% fusion.
Cells in logarithmic growth phase were selected for subsequent
experiments.

The 137 Cs γ-ray irradiation source (Gamma cell-40
137Cs γ-ray irradiation source purchased from Atomic
Energy of Canada Ltd.) was used for irradiation at a dose
rate of 1Gy/min.

2.6. TMT-Based Quantitative Proteomic Analysis. H460 cells
were irradiated for 2Gy to obtain culture supernatants, which
were submitted to Kidio for sequencing by protein extraction,
protein digestion and iTRAQ/TMT labelling, high pH reverse
phase separation, and low pH nano-HPLC-MS/MS analysis.
Protein identifications were accepted if they could achieve an
FDR less than 1.0% by the Scaffold Local FDR algorithm.

Protein quantification was carried out in those proteins
identified in all the samples with unique spectra ≥ 2. Protein
relative quantification was based on the ratios of reporter
ions, which reflect the relative abundance of peptides. Pro-
teins with fold change in a comparison > 1:2 or <0.83 and
unadjusted significance level P < 0:05 were considered dif-
ferentially expressed.

2.7. Survival Analysis. The prognostic impact of relevant
gene expression was performed using the GEPIA database
(http://gepia.cancer-pku.cn/). GEPIA is a newly developed
interactive web server for analyzing the RNA sequencing
expression data of 9,736 tumors and 8,587 normal samples
from the TCGA and the GTEx projects, using a standard
processing pipeline.

3. Results

3.1. Overview of the mRNA Transcriptome of Primary
NSCLC Tissues before and after Radiotherapy Treatment.
The GSE162945 dataset contains transcriptomic data before
and after radiotherapy for patients with NSCLC and metas-
tatic lung cancers such as esophageal and colon cancers. To
investigate the changes in transcriptomic expression profiles
after radiotherapy for primary NSCLC, we performed differ-
ential analysis of NSCLC tissues in the GSE162945 dataset
before and after radiotherapy by DESeq2.0. In the compari-
son, genes with fold changes > 2 or <0.5 and an unadjusted
significance level of P < 0:05 were considered as significantly
differentially expressed genes (DEG). After that, 1418 differ-
entially expressed genes were obtained, including 649 genes
with upregulated expression and 769 genes with downregu-
lated expression (Figure 1(a)). The differentially aggregated
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genes were clustered using hierarchical clustering methods,
and usually the clustered genes have actual relationships in
certain biological processes or in certain metabolic and sig-
naling pathways. In this study, genes with similar accumula-
tion patterns were clustered together, and the top 15
differential genes are shown as a heat map (Figure 1(b)).

3.2. Clustering of Biological Processes and Functional
Pathway Analysis. To understand the function and mecha-
nism of these identified DEGs, we used the g:Profiler data-
base to identify GO functional analysis of the upregulated
or downregulated differential genes. The top five biologically
enriched processes of differentially expressed genes were
found to be extracellular structural organization, extracellular
matrix organization, external wrapping structural organiza-
tion, bioadhesion, and cell adhesion (Figure 2(a)); molecularly
functionally differential proteins were mainly enriched in
extracellular matrix structural components, integrin binding,
collagen binding, and extracellular adhesion (Figure 2(a)). In
terms of biological processes and molecular functions, they
were enriched in extracellular structural components and
functions.

KEGG, a classical pathway enrichment pathway, is a
strong guide to the function of identified DEGs. KEGG path-
way enrichment results showed that differentially expressed
genes were mainly in the ECM-receptor interaction, PI3K-
Akt signaling pathway, focal adhesion, complement and
coagulation cascade, and protein digestion and uptake path-
ways (Figure 2(b)). To further improve the accuracy of the
pathway enrichment, we further analyzed the pathway
enrichment using the pathway manually validated Reactome

database, showing that DEG was enriched in extracellular
matrix organization, ECM proteoglycans, integrin cell sur-
face interactions, assembly of collagen fibrils and other mul-
timeric structures, and collagen degradation pathways
(Figure 2(c)). All of these apparently enriched functions
and pathways above were focused on extracellular compo-
nents and extracellular matrix microenvironment.

GO, KEGG, and Reactome databases are all based on
overrepresentation analysis, which may appear to discard
key genes due to significant differences. In order to observe
the overall functional enrichment of genes in lung cancer tis-
sues and corresponding normal lung tissues more compre-
hensively and to determine the significance of extracellular
environment-related gene changes, we analyzed various bio-
functional genomes by GSEA. As shown in Figure 2(d), the
results showed that the upregulated pathways mainly
included ribosome, proteasome, folate biosynthesis, DNA
replication, and base excision repair, while the downregulated
pathways mainly included AGE-RAGE single conductance
pathway, protein degradation and uptake, renin-angiotensin
system, ECM-receptor interaction, and glycosaminoglycan
biosynthesis. We found that analysis using GSEA would
still be enriched in extracellular ECM-receptor interaction
pathways.

3.3. Identification of FN1 and THBS1 as Promising Predictive
Biomarkers after NSCLC Radiotherapy Based on Proteomics
and Transcriptomics Analysis. Tumor cell secretions use
autocrine and paracrine actions to influence tumor develop-
ment and prognosis and are also components of the extracel-
lular microenvironment. Therefore, the search for cellular
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Figure 1: Overview of the differential gene expression between NSCLC and normal tissue. (a) Volcano plot of all proteins with log2 (fc)
horizontal coordinate and -log10 (padj) vertical coordinate. (b) Heat map of expression of top 15 DEGs.
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secretions that are significantly altered in the tumor microen-
vironment after radiotherapy may serve as an indicator of
tumor radiotherapy prognosis.

Therefore, we collected proteins secreted from NSCLC
H460 cells cultured in vitro before and after irradiation with

2Gy γ-rays and performed TMT proteomics sequencing
analysis. Proteins with fold changes > 1:2 or <0.83 and an
unadjusted significance level of P < 0:05 were considered as
significantly differentially expressed proteins, and 74 pro-
teins with upregulated expression as well as 78 proteins with
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downregulated expression were obtained. In this study, pro-
teins with similar accumulation patterns were clustered
together, and the top 20 differential proteins were shown as a
heat map of differentially accumulated proteins (Figure 3(b)).

Subsequently, we combined the 152 differential proteins
from proteomics with 35 genes from the ECM-receptor
interaction pathway from GSEA analysis and found two
genes, FN1 and THBS1, by intersection (Figure 3(c)).

The relationship between FN1 and THBS1 and the sur-
vival rate of patients with lung squamous carcinoma and
lung adenocarcinoma were also analyzed using the GEPIA
database. It was found that high expression of FN1 and
THBS1 was associated with low survival rates in patients
with lung adenocarcinoma and lung squamous carcinoma
(Figure 4). It showed that these two genes, FN1 and THBS1,
were significantly associated with the prognosis of NSCLC,
especially with the prognosis of radiotherapy and could
potentially be an indicator to assess the efficacy of NSCLC
after radiotherapy.

4. Discussion

Bioinformatics analysis plays a crucial role in disease
research by integrating genome-level data and systematic
bioinformatics approaches to facilitate the understanding
of disease processes. In this study, we analyzed the differen-
tial genes in the GSE162945 database of primary NSCLC tis-
sues before and after radiation treatment and identified a
total of 649 genes with an increasing trend and 769 genes
with a decreasing trend. Using GO, KEGG, and GSEA anal-
ysis, the differential genes were enriched to the ECM-
receptor interaction pathway. And later, the differential pro-
teomics secreted by H460 cells before and after irradiation
were combined and analyzed, and FN1 and THBS1 were

identified as key genes associated with the prognosis of
NSCLC radiation therapy.

FN1 is a glycoprotein that exists as a soluble dimer in
plasma and as a dimer or multimer on the cell surface and
in the extracellular matrix and is involved in cell adhesion
and migration processes, including embryogenesis, wound
healing, coagulation, host defense, and metastasis. FN1
upregulation and enhanced bridging granule interactions
were found to be essential for NSCLC cell aggregation and
resistance to apoptosis upon cell detachment from the nest
[12]. In patients with NSCLC treated with anlotinib, detec-
tion of plasma FN1 levels has potential predictive value for
anlotinib efficacy in both the discovery and validation
cohorts, suggesting that plasma FN1 levels could be used
as a biomarker for anlotinib stratification in NSCLC patients
[13]. It indicates that detection of plasma FN1 levels is a
clinically feasible assay. Studies on FN1 and radioresistance
have focused on patients treated with radiotherapy for head
and neck tumors. And among patients with HNSCC (head
and neck squamous cell carcinoma) in complete remission
and those who failed postoperative radiotherapy, FN1 over-
expression plays an important role in the development,
prognosis, and radioresistance of HNSCC and is a potential
new biomarker for predicting poor prognosis and radioresis-
tance in patients with head and neck squamous cell carci-
noma [14]. This study found that FN1 could be used as a
potential biomarker for the efficacy and prognosis of radio-
therapy in NSCLC. In the present study, only the secretory
proteomic data of H460 cells after irradiation were analyzed,
which is slightly insufficient. However, Yang et al. analyzed
the transcriptome-wide changes in NSCLC A549 cells under
radiation and also showed that FN1 was a significant
radiation-altered gene [15], providing partial support for
our data.
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Thrombin-responsive protein 1 (THBS1) is an adhesion
glycoprotein that mediates cell-cell and cell-matrix interac-
tions. This protein binds to fibrinogen, fibronectin, laminin,
V-type collagen, and integrin α-V/β-1 to regulate autoph-
agy, senescence, stem cell maintenance, extracellular vesicle
function, and metabolic responses to ischemic and genotoxic
stress [16]. THBS1 is likewise a clinically feasible assay, and
upregulation of THBS1 expression in plasma was detected in
osimertinib treatment-resistant NSCLC patients [17]. Our
study showed that THBS1 was significantly upregulated in
both NSCLC patients after radiotherapy and irradiated
H460 cells, and that NSCLC patients with high THBS1
expression generally had a poor survival prognosis, with
the potential to predict radioresistance and prognosis in
NSCLC patients after radiotherapy.

The tumor immune microenvironment plays an integral
role in driving tumor control, tumor progression, and over-
all survival in patients with NSCLC. The tumor immune
microenvironment includes interactions between tumor
and immune cells, as well as interactions between immune
cells within different tumors. These interactions are highly
complex, as almost all types of immune cells can simultaneously
infiltrate lung cancer tissue [18]. Conventional radiation ther-
apy approaches can further increase immunosuppression of
the tumor microenvironment by destroying many immune
cells circulating in the irradiated tumor environment, in addi-
tion to direct cytotoxicity to the tumor. Emerging evidence
suggests that tumor immunosuppression is a “resilient pro-
cess” that can be manipulated and transformed back into an
immunostimulatory environment to improve patient progno-
sis [19]. No significant enrichment of immune-related path-
ways was found in this study, and only a certain number of
immune-related genes were enriched in Reactome enrichment
analysis, but there was no significant difference. The reason for
this may be because the present study focused on the changes
in primary NSCLC tissues before and after radiotherapy.
When primary andmetastatic NSCLC data in the dataset were
analyzed together, the most enriched GO enrichment analysis
was for immune response genes (6 genes, P = 4:67E − 05), and
immune response differential genes included TCRs and
immunoglobulin superfamily, among others [20]. Compared
with primary NSCLC, the tumor immune microenvironment
was more significantly altered in metastatic NSCLC after
radiotherapy.

In summary, our goal was to identify key proteins pro-
duced after radiation therapy for NSCLC through transcrip-
tional and proteomic analysis and to understand the
biological functions and signaling pathways in which they
are involved. The proteins screened in this study provide
new ideas to further explore the impact on the efficacy and
prognosis of radiation-treated NSCLC patients. However,
the feasibility of these differential proteins as prognostic bio-
markers for NSCLC after radiation therapy remains to be
further validated.
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