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The characteristics of the oral microbiota may depend on oral health, age, diet, and geography, but the influence of the geographic
setting on the oral microbiota has received limited attention. The characteristics of oral microbiota have been reported to differ
between urban and rural environments. In order to minimize the influence of genetic background, we recruited 54 volunteers from
the same ethnic group, living in urban and rural areas of Gansu Province, China. We collected dental plaque samples and divided
them into four groups according to the participant’s area of residence and dental caries status. We sequenced the 16S rRNA of
these samples using the Pacific Biosciences sequencing platform and analyzed the correlation between the geographic area and the
characteristics of the oral microbiota. Analysis of the alpha and beta diversity revealed that there were significant differences in
diversity and composition of dental plaque microflora among the four groups. Cluster analysis revealed that geographic area played
an important role in determining the oral microbiota. Network analysis of oral microorganisms showed that geographic differences
had major influence on the composition characteristics and internal structure of oral microorganisms. We found that some
dominant strains which may play a key role in maintaining oral health, such as Streptococcus oralis, Capnocytophaga sputigena,
Porphyromonas catoniae, Corynebacterium matruchotii, Haemophilus parainfluenzae, and Prevotella loescheii, were less affected by
the geographic setting. These results provide a deeper understanding of factors influencing the composition of the oral microbiota
and could contribute to early diagnosis and effective prevention of dental caries in different settings.

1. Introduction

The oral microbiota of the oral cavity is an important part of the
human digestive system [1, 2]. In recent years, technology has
progressed in the field of dental microbiology [3, 4]. The con-
stituent microorganisms in dental plaque and saliva, which
are part of the oral microbiota, have been the focus of attention
in the dental community. Maladjustment in the ecology of the
oral microbiota may be responsible for a variety of oral diseases

[5]. Dysbiosis of the oral microbiota can induce a variety of oral
diseases, including periodontal disease [6], dental caries [7], oral
cancer [8], oral mucosal disease [9], and apical periodontitis
[10]. The oral microbiota has also been shown to be associated
with a variety of systemic diseases [11], including autism [12],
obesity [13], digestive system disease [14], obstetric complica-
tions [15], pulmonary disease [16], and Alzheimer’s disease
[17]; therefore, oral health is fundamental to human physical
health and wellbeing [18]. Given the strong link between health
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and the oral microbiota, it is important to understand the fac-
tors leading to ecological imbalance of the oral microbiota.

Oral microorganisms depend on a variety of factor-
s—age [19], heredity [20], ethnicity [21], geographic factors
[22], and external factors [23], which affect oral microbial
virulence, oral microbiota composition, and flora abun-
dance. Regarding geographic factors, studies have been con-
ducted in some countries on differences in oral
microorganisms among people living in different cultural
settings [24, 25]. These studies have demonstrated the
importance of geographic factors to the oral microbiota.
However, most of these studies have focused on populations
with different ethnicities and cultures, or who live in geogra-
phically distant areas. There are few reports about the rela-
tionship between the diversity of oral microorganisms in
populations of the same ethnicity living in different geo-
graphic locations (such as urban and rural areas). China is
a vast and multiethnic country. Members of small ethnic
groups live secluded lives, without communication with the
outside world. Further, they have relatively closed environ-
ments, and as members of conspicuously insular minority
groups, they live, work, and socialize entirely separately from
indigenous majorities. Thus, they represent an ideal group
for studying the interactions between microorganisms, dis-
ease, and geographic factors. There are differences in the
structure and composition of oral microorganisms among
Chinese ethnic minorities [26], and more notably, there are
significant differences in the prevalence of oral diseases such
as dental caries between Chinese ethnic minorities and the
majority Han population [27]. This has stimulated our inter-
est in exploring the impact of geographic differences on the
composition of the oral microbiota and oral health of the
same ethnic group living in different environments.

Dental caries is one of the most common chronic dis-
eases of the oral cavity [28]. Although advancement of tech-
nology has brought development to dentistry [29], the
prevalence of caries continues to increase in many societies.
Most previous studies have focused on the differences in
microflora between healthy states and caries such as the
prevalence of microorganisms belonging to the Firmicutes,
Bacteroidetes, Prevotella, Neisseria, and Porphyromonas gen-
era [7, 30–32]. The findings do not explain the structural
characteristics of the oral microbiota. Caries microbial struc-
ture and function are far more complex than previously
believed [33, 34]. Geographic factors affect the dental caries
state and the composition of the oral microbiota, and the
types of bacteria present in the oral cavity are highly predic-
tive of an individual’s place of origin [35]. Knowledge of geo-
graphic factors is useful in understanding the influence of
different environments on oral microorganisms in different
regions.

Currently, there are few studies available on the influ-
ence of geographic factors, such as urban-rural differences,
on the health and caries-bearing oral microbiota of people
of the insular ethnic minority living in different geographic
areas. In this study, we collected dental plaque samples from
people of the same ethnicity living in rural and urban areas,
recorded their dental caries status, and assessed the compo-

sition of their oral microbiota using the 16S rRNA third-
generation sequencing (TGS).

2. Material and Methods

2.1. Ethics Statement. This study was approved by the Ethics
Committee of the Tongji University School and Hospital of
Stomatology and conducted in compliance with the relevant
guidelines and regulations. Written informed consent was
obtained of all participants on enrolment.

2.2. Sample Collection and Oral Examination. Participants
were recruited from Gansu Province, China, which is an
important center for the Dongxiang people, a minority eth-
nic group that has distinct religious beliefs, lifestyles, and
eating habits. The participants were divided into four groups
according to the Decayed, Missing, and Filled Teeth
(DMFT) index: urban caries-free (UH), urban caries (UC),
country caries-free (CH), and country caries (CC) groups,
where participants with a DMFT index >3 were classified
as “caries,” and those with a DMFT index <3 were classified
as “caries-free.” Samples from the UH and UC groups were
collected from Bulengou (35°30–36′N, 103°10–44′E), while
those from the CH and CC groups were collected from
Naale Temple (28°2′–28°30′N, 116°20′–11°51′E). Individ-
uals who had used any antibiotics or had an illness in the
past 3 months and women who were pregnant or breast-
feeding were excluded. Dental plaque samples were collected
from each participant using cotton rolls and gentle air dry-
ing. Specifically, a sterile Gracey curette was used to separate
the four quadrants (upper right, upper left, lower right, and
lower left) of the molars. Then, dental plaque was collected
and pooled in a 1.5mL sterile Eppendorf tube filled with
sterile phosphate-buffered saline (PBS). All samples were
immediately placed on ice, transported to the local labora-
tory within 2 h, and stored at −80°C until further analy-
sis [32].

2.3. DNA Extraction and 16S rDNA Amplification. Total
bacterial genomic DNA samples were extracted using con-
ventional cetyl trimethylammonium bromide (CTAB) or
sodium dodecyl sulfate (SDS) methods. The quantity and
quality of extracted DNA were measured using the Nano-
Drop ND-2000 spectrophotometer (Thermo Fisher Scien-
tific, Waltham, MA, USA), Qubit 3.0 Fluorometer (Life
Technologies, CA, USA), and agarose gel electrophoresis,
respectively.

PCR amplification of the bacterial 16S rRNA was per-
formed using the forward primer 27F (5′-AGRGTTYGA-
TYMTGGCTCAG-3′) and reverse primer 1492R (5′-
RGYTACCTTGTTACGACTT-3′). Sample-specific 16-bp
barcodes were attached to the primers for multiplex
sequencing. The PCR mix contained 5μL of KAPA HiFi
Buffer (5X), 0.75μL of KAPA HiFi Hot Start DNA Polymer-
ase (1U/L), 0.75μL of 10mM deoxynucleotide triphosphates
(dNTPs), 0.75μL of 10μM of each of the forward and
reverse primers, 2μL of the DNA template, and 15μL of
double-distilled water (ddH2O). Thermal cycling consisted
of initial denaturation at 95°C for 5 s, followed by 25 cycles
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of denaturation at 95°C for 30 s, annealing at 57°C for 30 s,
and extension at 72°C for 60 s, with a final extension at
72°C for 5min. PCR amplicons were purified with Agen-
court AMPure Beads (Beckman Coulter, Indianapolis, IN,
USA) and quantified using the PicoGreen dsDNA Assay
Kit (Invitrogen, Carlsbad CA, USA). After the individual
quantification step, amplicons were pooled in equal
amounts, and the pooled sample was used to generate a
library using the SMRTbell Template Prep Kit 1.0-SPv3
(Pacific Biosciences, Menlo Park, CA, USA). Sequencing
was performed using the Pacific Biosciences platform with
DNA/Polymerase Binding Kit 2.0 (Pacific Biosciences) at
Wuhan Frasergen Bioinformatics Co., Ltd. (Wuhan, China).

2.4. Data Analysis and Statistical Methods. Sequence data
analysis was performed using Quantitative Insights Into
Microbial Ecology QIIME 2 next-generation microbiota bio-
informatics platform [36] and R v3.2.0 statistical software
package. Operational Taxonomic Unit- (OTU-) level alpha
diversity indices, such as the Chao1 abundance estimator,
Shannon Diversity Index, and Simpson’s Diversity Index,
were calculated using the OTU table in QIIME 2 and were
visualized as box plots. Beta diversity analysis was performed
to investigate the structural variation of microbial communi-
ties between samples using Bray-Curtis metrics and UniFrac
distance metrics, and beta diversity was visualized using
principal coordinate analysis (PCoA). The significance of
differences in microbial community structure between
groups was assessed by analysis of similarities (ANOSIM).
Cluster analyses were conducted in QIIME 2 and visualized
as heatmaps. p values <0.05 were considered statistically
significant.

3. Results

3.1. Overall Structure of the Oral Microbiota. The demo-
graphic and clinical characteristics of all the participants
are shown in Table S1. All sequences (excluding
singletons) were classified into 5697 OTUs at a 97%
similarity level, representing 13 phyla, 112 genera, and 369
species. The VENN analysis (Figure 1) illustrated the
differences in microbial communities; 977 OTUs were
detected in the UH group, 1791 OTUs in the UC group,
1397 OTUs in the CH group, and 1532 OTUs in the CC
group. For alpha diversity, Chao1, Shannon, and Simpson
indices were used to evaluate the differences in microbial
richness and diversity. As shown in Figures 2(a)–2(c), the
richness and diversity of the oral microbiota in the country
groups were significantly lower than those in the urban
groups (p < 0:05), particularly in participants with dental
caries (Figures 2(d)–2(f)).

Moreover, PCoA based on bray-curtis metrics was per-
formed to identify any differences in the organismal struc-
ture of the oral microbiota. Microbial communities
overlapped and differed among the UC, UH, CC, and CH
groups (Figure 3(a)). Notably, divergences in bacterial com-
munities were observed between the urban and country
groups (Figure 3(b)). Specifically, the country samples were
clustered in the upper right quadrant, while the urban sam-

ples clustered in the lower left quadrant. The ANOSIM iden-
tified significant differences in PCoA plots among the groups
(p < 0:001; Tables 1 and 2).These results indicate that
lifestyle-related geographical locations are associated with
alterations in the composition of the oral microbiota.

3.2. Cluster Analysis. We constructed a diversity similarity
tree to identify the similarities and differences in the oral
microbiota among groups at the genus level (Figure 4). Clus-
ter analysis showed that the CC and CH groups clustered
with each other, indicating high similarity between the
groups. Moreover, the correlation coefficient between CC
and CH was 0.986, while the correlation between UC and
UH groups was 0.951, suggesting that the oral microbiota
of the participants living in the same environment is closely
related to each other. The high food diversity in cities will
cause a continuous change in the oral microbial flora, so
the maturity is lower. Combined with the analysis of the
PCoA chart (Figure 3(c)), the results suggest that the local
geographic environment has a strong influence on the com-
position of the oral microbiota.

3.3. Cooccurrence Networks of Oral Microbiota among
Groups. Species with relatively high abundance were used
for the network analysis. A network plot displaying potential
cooccurrence relationships was generated using the Spear-
man’s correlation coefficient of the top 30 OTUs. The CH
and UH groups were closely correlated, while the CC and
UC groups were more dispersed and less correlated with
each other (Figure 5). In the CH and UH groups, 28 signif-
icant OTUs were strongly correlated: 22 OTUs were identi-
cal, while 6 were distinct for each group (Table 3).
Eighteen OTUs were correlated in the CC and UC groups.
Overall, seven OTUs were identical in the four groups
(Table 3). These results suggest that some species, such as
Streptococcus oralis, Capnocytophaga sputigena, Porphyro-
monas catoniae, Corynebacterium matruchotii, Haemophilus
parainfluenzae, and Prevotella loescheii, may play a key role
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Figure 1: VEEN analyses among the four groups.
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Figure 2: Continued.
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Figure 2: A box plots of alpha diversity in CC (blue), CH (red), UC (green), and UH (purple), ethnic groups on the basis of the number of
Chao 1, Simpson, and Shannon index (a, b, and c). There were differences between urban and country groups (d, e, and f).
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in maintaining oral health and may be less affected by the
environment.

3.4. Taxonomy-Based Analysis of Microbial Changes. To
identify the distinguishing taxa of all samples among groups,
at the species level, we screened out the dominant flora
(mean relative abundance >0.1%) for comparison among
the four groups, as listed in Table S2. Similar to the results
of previous studies, there were no typical cariogenic
bacteria between caries and health, supporting the idea that
dental caries is caused by changes in the oral microbial
community structure.

4. Discussion

In the literature based on 16S sequencing, discussion focuses
on differences in oral microorganisms according to differ-
ences in oral conditions [37–39]. However, previous studies
have not considered geographic factors as potential sources
of variability in the oral microbial community structure.
To our knowledge, this is the first study to demonstrate
the importance of geographic factors in determining the bal-
ance of oral microorganisms within the same ethnic group
living in different geographic areas. The result of this
research shows that geographic factors are associated with
differences in the oral microbial community among individ-
uals of the same ethnic group living in different places. It
provides a new landscape for considering the influence of
urban-rural differences on oral microbial health and dental
caries status. Different living environments in urban and
rural areas appeared to have an effect on the diversity and
profile of oral microbial communities. The results suggest
that some bacteria may play an important role in maintain-

ing oral health. These results provide clues for exploring the
microbial etiology of dental caries and developing different
prevention strategies in different environments.

The Dongxiang people are a small ethnic group that is
based in Gansu Province, China. They have a unique diet
structure, living habits, and feudal culture, which are very
different from other ethnic groups in China [40]. Genetic,
ethnic, environmental, and some other acquired factors
may affect microbial flora. Therefore, we minimized the
influence of genetic background, by including people of a
single ethnic group living in different environments at two
different geographic locations. In addition, we used TGS
platforms to sequence the full-length 16S rRNA from all
dental plaque samples in order to improve throughput, accu-
racy, and heterogeneity of the biological information [41,
42].

We described the dental plaque microbiota of human
population in terms of alpha and beta diversity. The urban
and rural groups showed obvious differences in the diversity
of flora and the overall composition characteristics. The
urban groups differed from the rural groups in richness
and diversity, but the correlation of oral microbiota in the
two urban groups was lower than that in the two rural
groups. It has been reported in previous studies describing
lifestyle and eating habits that cereals, fruits, and vegetables
are the main sources of dietary carbohydrates [43–45].The
diet of the urban participants was mainly based on high-
fiber foods, with a rich dietary structure and adequate daily
protein and meat intake, while the diet of the rural partici-
pants was based mainly on low-fiber foods and tended to
contain less meat and protein. Therefore, we speculate that
the differences in the results of the urban and rural partici-
pants were related to differences in their lifestyle and eating
habits. The relatively rich diet structure of the urban partic-
ipants made more flora multiply in the oral cavity [46].
Therefore, the relatively rich dietary structure may have pro-
moted the relatively rich diversity of oral microorganisms in
the urban groups, but the correlation between the flora is
low, that is, the maturity of the flora is relatively low [47].
The diversity of urban population largely determines the dif-
ferences in the distribution of individual microorganisms
between individuals living in the same geographic location.
With the rapid development of the urban economy, oppor-
tunities in rural areas are relatively limited. Ecological
migration [42] may account for the abundant diversity of
oral microbial structure that we observed in the urban par-
ticipants. These results suggest that geographic factors have
a greater influence than dental caries status on the composi-
tion of the oral microbiota. This is consistent with the results
of previous studies [35, 48].

Dental plaque is the best sample type for studying factors
in the oral microbiota associated with caries [49]. Our results
showed that there were no typical cariogenic bacteria in the
UC or the CC groups, and that the flora composition and
structure differed between the two groups (Table S2). Our
data also confirmed that bacteria other than Streptococcus
genus played a role in the occurrence and development of
dental caries [50–52]. We speculate that this may be due to
the differences of host environment, complex and diverse

Table 2: ANOSIM analysis between U group and C group.

Method name ANOSIM

Test statistic name R

Sample size 54

Number of groups 2

Test statistic 0.118265

p value 0.001

Number of permutations 999

Table 1: ANOSIM analysis between the four groups of UH, UC,
CC, and CH.

Method name ANOSIM

Test statistic name R

Sample size 54

Number of groups 4

Test statistic 0.243006

p value 0.001

Number of permutations 999
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dietary changes and differences between urban and rural
areas, which lead to different oral cariogenic bacteria and
different microbial community structures. Some previous
studies from different countries have shown that the
prevalence of dental caries, periodontal diseases, and other
oral diseases differ between people living in urban and
rural areas [53–55]. People living in rural areas may lack
exposure to oral hygiene promotion and may have limited
access to science-based oral care [56]. The morbidity rates
corresponding to the urban and rural participants differed;
hence, we could not treat them alone. Methods for
preventing simple dental caries differ from traditional
methods used to treat pathogenic bacterial infections, and
the treatment mode of dental caries needs to be changed.
Future research should investigate the complex diversity of
cariogenic bacterial structures.

Interactions of organisms mediate microbial function
[57]. In this study, the caries free participants had more
complex microbial interactions (Figure 5). This result is con-
sistent with the results of previous studies which have found
that microorganisms are more variable in individuals with
dental caries than in individuals with healthy teeth [7, 58].
Neisseria mucosa (a species in the family Neisseriaceae in
the class Betaproteobacteria) [59] and Capnocytophaga spu-
tigena (a species of Cytophaga, Fusobacterium, and Bacter-
oides (CFB) group bacteria in the family Flavobacteriaceae)
lead to immune dysfunction and loss of mucosal integrity,

thereby destroying the oral microbial community [60]. They
are oral commensal bacteria that have a tendency to cause
infection in periodontal diseases [61] but appear in healthy
groups and are closely associated with other bacteria. We
hypothesize that when the balance of the oral microbial
community structure is disturbed, this may lead to the devel-
opment of oral diseases [62]. Prevotella, Porphyromonas, and
Leptotrichia are known as pathogens that cause oral disease
[63–65]. In the UH group, Prevotella melaninogenica, Lepto-
trichia wadei, and Porphyromonas pasteri were closely linked
with other flora, which supports our hypothesis.

Dental caries can lead to a reduction in microbial diver-
sity [30, 66]. Microbial interactions were weaker in the UC
and CC groups than in the UH and CH groups. As the pro-
gression of dental caries reaches its peak, the number of
dominant bacteria in the mouth may progressively decrease.
In the caries groups, microbial interactions were weaker,
with Veillonella parvula (family Veillonellaceae) being more
prominent in the CC group. V. parvula is an anaerobic com-
mensal and opportunistic pathogen, and it can adhere to
surfaces or other bacteria and form biofilms, which are all
essential for its inhabitation in complex human microbial
communities, such as the gut and oral microbiota. The genus
Veillonella is a major oral microorganism that promotes the
conversion of nitrate (NO3

−) to nitrite (NO2
−) by lactic acid

and inhibits the growth and metabolism of oral pathogenic
bacteria, such as Streptococcus mutans, and is considered to
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Figure 5: Continued.
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be beneficial for caries prevention [67, 68] However, some
studies have found that this genus is associated with dental
caries [69]. Haemophilus parainfluenzae (family Pasteurella-
ceae) can maintain a stable oral microbial community that

can maintain oral health, suggesting that dental caries is
the result of an imbalance in the resident microbial commu-
nity, similar to that reported in a previous study [70]. This
study utilized species-specific sequencing methods and

(c)

(d)

Figure 5: (a) CH, (b) UH, (c), CC, and (d) UC network diagram of the four groups. The red line is negative correlation and the green line is
positive correlation. Their average relative abundance is minimum 1%. The lines represent positive (green) and negative (red) Spearman
correlations (p < 0:05). Line thickness is proportional to the absolute value of Spearman’s correlation. Node size reflects the average
relative abundance of genes per species/genus.
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minimized variation due to the genetic background of par-
ticipants by restricting participation to a single ethnic group.
However, how the environment affects the colony structure
and the role of the environment in the formation of dental
caries needs to be further investigated using other experi-
mental procedures, such as animal experiments. Addition-
ally, different indices or systems for the assessment of
dental caries should be explored [71].

5. Conclusion

In conclusion, this study provides novel insights into the
importance of geographic factors on the oral microbiota
among people of the same ethnic group living in urban
and rural areas. The results suggest that geographic factors
play a crucial role in health and disease states and may be
influenced by dietary habits or economic conditions. Further
larger studies are needed to confirm these findings.
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Table 3: Differences between four groups of bacteria at the genus and OTU levels.

CH UH CC UC

Prevotella_melaninogenica Prevotella_melaninogenica Prevotella_melaninogenica Prevotella_melaninogenica

Capnocytophaga_leadbetteri Capnocytophaga_leadbetteri Capnocytophaga_leadbetteri Capnocytophaga_leadbetteri

Neisseria_perflava Neisseria_perflava Neisseria_perflava Neisseria_perflava

Selenomonas_infelix Selenomonas_infelix Selenomonas_infelix Selenomonas_infelix

Leptotrichia_hofstadii Leptotrichia_hofstadii Leptotrichia_hofstadii Leptotrichia_hofstadii

Capnocytophaga_ochracea Capnocytophaga_ochracea Capnocytophaga_ochracea Capnocytophaga_ochracea

Campylobacter_gracilis Campylobacter_gracilis Campylobacter_gracilis Campylobacter_gracilis

Capnocytophaga_sputigena Capnocytophaga_sputigena Neisseria_elongata Neisseria_elongata

Streptococcus_oralis Streptococcus_oralis Prevotella_pallens Prevotella_nigrescens

Porphyromonas_catoniae Porphyromonas_catoniae Veillonella_parvula Selenomonas_sputigena

Corynebacterium_matruchotii Corynebacterium_matruchotii Neisseria_mucosa Capnocytophaga_gingivalis

Haemophilus_parainfluenzae Haemophilus_parainfluenzae Porphyromonas_pasteri Fusobacterium_nucleatum

Prevotella_loescheii Prevotella_loescheii Leptotrichia_wadei Leptotrichia_buccalis

Capnocytophaga_gingivalis Capnocytophaga_gingivalis Porphyromonas_catoniae Streptococcus_sanguinis
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