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Ovarian cancer (OC) is among the most malignant tumors of the female reproductive system. The role of autophagy in cancer is
complex, and the functional relationship between autophagy-related genes and OC remains unclear. Here, the prognostic value of
autophagy-related genes in OC and relationships between autophagy and immune function were evaluated. OC data from The
Cancer Genome Atlas and the Human Autophagy Database were obtained to identify autophagy-related genes. Univariate and
multivariate Cox analyses were used to construct a prognostic model based on autophagy-related genes. Relationships between
risk scores and clinical traits were evaluated. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG), and
Cytoscape were used to analyze gene functions and their effects on the immune microenvironment. Relationships between
autophagy genes and long noncoding RNAs (lncRNAs) were evaluated by Pearson’s correlation coefficients, and lncRNAs
corresponding to the autophagy-related genes associated with OC prognosis were used to construct a model. Relationships
between risk scores and survival and prognosis were evaluated. Finally, a gene set enrichment analysis was performed. Seven
autophagy-related genes (CAPN1, CDKN1B, DNAJB1, GNAI3, MTMR14, RHEB, and SIRT2) were identified as independent
predictors of prognosis. Three lncRNAs corresponding to autophagy genes independently influenced prognosis. Autophagy
genes are closely related to immunity. Fifteen immune cell types showed different levels of infiltration between the high- and
low-risk groups. Moreover, immune cell infiltration differed between the high- and low-risk groups based on the model. Our
analysis of genes and lncRNAs related to prognosis clarifies the role of autophagy in OC and provides a theoretical basis for
further research.

1. Introduction

Ovarian cancer (OC) is the fifth most lethal cancer in
women and accounts for more than 150 000 deaths annually
worldwide. The mortality rate of OC has increased over the
past few years [1, 2]. Despite recent improvements in cytor-
eductive surgery and chemotherapy, the 5-year survival rate
of OC remains approximately 30%–40% owing to late diag-
nosis and chemoresistance [3, 4].

Long noncoding RNAs (lncRNAs) are defined as
nonprotein-coding RNA transcripts more than 200 nucleo-
tides in length and are classified into five categories on the
basis of their locations relative to nearby protein-coding

genes: (1) sense lncRNAs, (2) antisense lncRNAs, (3) bidi-
rectional lncRNAs, (4) intronic lncRNAs, and (5) intergenic
lncRNAs [5]. lncRNAs are essential for general cell functions
and play roles in the proliferation, migration, and invasion
of cancers, including OC [6, 7].

Autophagy is a degradation pathway that is highly con-
served during the evolution of eukaryotes. The formation
of a double-layer membrane structure allows the transporta-
tion of damaged organelles, misfolded and aggregated pro-
teins, and other macromolecular substances to the
lysosome for degradation or recycling [8]. Autophagy plays
very complex roles in tumors, including inhibiting or pro-
moting them in different environments and stages of cancer
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development [9, 10]. Autophagy is generally beneficial dur-
ing the normal state of the body and the early stages of
tumors, by eliminating oncogenic protein substrates, mis-
folded proteins, and damaged organelles, maintaining cell
homeostasis, and either preventing tumors from occurring
or inhibiting their progression [11]. However, once tumor
develop to an advanced stage, autophagy—as a dynamic
degradation and recycling system—promotes their survival
and growth by enhancing the living ability of cancer cells
in an environment characterized by nutrient starvation and
hypoxia [12, 13]. Numerous studies have found a close link
between autophagy and ovarian cancer. However, further
research is required to identify the specific autophagy-
related genes which are involved. In this investigation, we
constructed a model to accurately identify the prognostic
risk for ovarian cancer by screening the associated autoph-
agy genes. Through model validation, it was found that this
method could be used as an independent factor for the prog-
nosis of ovarian cancer. Earlier studies found that lncRNAs
also play an important role in the occurrence and develop-
ment of ovarian cancer. We thus also studied the effect of
autophagy gene-related lncRNAs on prognosis and con-
structed a lncRNA model. However, the gene model was
more accurate than the lncRNA model, as it had a higher
prediction accuracy. In addition, we also found that the
autophagy gene model was closely related to immunity. In
this study, we have explained the prognostic relationship
between autophagy and ovarian cancer from the perspective
of biological information, to help aiding in the search for
new ovarian cancer prognostic markers.

2. Materials and Methods

2.1. Data Acquisition and Collation. Microarray data and
corresponding clinical data were obtained from 380 OC
samples from The Cancer Genome Atlas (TCGA). The
Human Autophagy Database (http://autophagy.lu/
clustering/index. html) was used to identify all genes
involved in autophagy. The CytoHubba plug-in of Cytos-
cape was used to produce and generate a graph showing
the correlations between gene expression levels. All mRNA
levels were log2-transformed. Pearson’s correlation coeffi-
cients were calculated for relationships between gene and
lncRNA levels. Values of jR2j > 0:3 and P < 0:05 were con-
sidered significant.

2.2. Model Construction. A univariate Cox analysis of the
autophagy-related genes was carried out using the survival
package in R, and genes with coxPfilter = 0:05 were screened
out. Then, the COXPH command in R was used to conduct
a multivariate Cox analysis of these genes, and the coeffi-
cients (i.e., hazard ratios (HR) values) were obtained. The
data of the obtained genes were used to construct a model.
The risk for each sample was assessed using a risk score.
The higher the risk score, the worse the prognosis for the
patient, and in contrast, the lower the risk score, the better
the prognosis for the patient. The risk score for each sample
was obtained by multiplying the coefficient for each gene in
the model and taking the sum of these products. TCGA sam-

ples were randomly divided into training and test groups,
and the median risk score for each group was set as the
boundary to divide samples into high- and low-risk groups
(see attachment 1 for details). Univariate and multivariate
Cox analyses of lncRNAs were performed following similar
methods to those used for gene-based analyses.

2.3. Receiver Operating Characteristics (ROC). The survival-
ROC package in R was used to analyze the accuracy of the
model. The accuracies of the gene-based model and the
lncRNA-based model were compared.

2.4. Gene Set Enrichment Analysis (GSEA). GSEA was used
to study pathway enrichment in the high- and low-risk
groups. After importing the data for high- and low-risk
groups, the gene set database (c2.cp.kegg.v7.4.symbols.gmt)
was used for gene set permutations, with 1000 permutations
to evaluate significance. Meaningful channels were selected,
and R packages plyr, ggplot2, grid, and gridExtra were used
to combine pathway results.

2.5. Analysis of Immune Infiltration Using CIBERSORT.
CIBERSORT was used to analyze the infiltration of immune
cells [14]. Levels of immune cell infiltration in each sample
were first calculated using CIBERSORT in R. The infiltration
of immune cells was plotted using the limma and ggpubr
packages in R.

3. Results

3.1. Construction of an Autophagy-Related Gene Model for
Ovarian Cancer. Autophagy-related genes were sorted
according to the degree of correlation between expression
and prognosis (Figure 1(a), where darker colors indicate
stronger correlations) (see attachment 3 for details). Sixteen
genes were closely related to prognosis in OC, as determined
by univariate Cox analyses: ATG9A, CAPN1, CDKN1B,
CXCR4, DNAJB1, EGFR, FADD, GNAI3, IL24, MTMR14,
NPC1, PPP1R15A, RB1, RHEB, SAR1A, and SIRT2
(Figure 1(b) , P ≤ 0:05). A multivariate Cox analysis of the
16 genes revealed that CAPN1, CDKN1B, DNAJB1, GNAI3,
MTMR14, RHEB, and SIRT2 were independent factors
affecting prognosis. Using the coefficients from the multivar-
iate analysis, these seven autophagy-related genes were used
to construct a prognostic model. The purpose of the univar-
iate and multivariate Cox analysis was to determine which
autophagy genes were related to ovarian cancer prognosis.
In Figure 1, green indicates that the hazard ratio is <1 (low
risk), indicating that the higher the gene expression value,
the better the prognosis of the patient will be. Red corre-
sponds to a hazard ratio > 1 (high risk), indicating that a
higher gene expression value correlates to a worse prognosis
(Figures 1(b) and 1(c)).

3.2. Verification of the Autophagy Model. Using the newly
established prognostic model, the risk score for each sample
was obtained. There were significant differences between
patients with high and low risk scores in the training and test
groups (Figures 1(d) and 1(e); P < 0:001). The accuracy of
the model was verified by an ROC analysis; the area under
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Figure 1: Continued.
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the curve (AUC) values for both the training and test groups
were greater than 0.5 (0.779 and 0.641, respectively), indicat-
ing that the model was reliable (Figures 1(f) and 1(g)). The
risk scores for each patient in the two groups are shown in
Figures 2(a) and 2(b). Survival was longer in the low-risk
group than in the high-risk group (Figures 2(c) and 2(d)).
Figures 2(e) and 2(f) summarizes gene expression profiles
in the high- and low-risk groups. We studied the expression
of genes in the high-risk group and relationship between
gene expression levels and risk scores. The expression of
levels of CDKN1B, GNAI3, and Sirt2 differed between the
high- and low-risk groups, and CDKN1B and Sirt2 levels
were positively correlated with the risk score. GNAI3 expres-
sion was negatively correlated with the risk score
(Figure 2(g)).

3.3. Relationships between the Autophagy Model and Clinical
Parameters. Because OC is relatively rare, a univariate anal-
ysis including age, grade, and risk score was conducted. Age
and risk score had an effect on prognosis in both groups
(Figures 3(a) and 3(b)). A multivariate Cox analysis showed
that age and risk score in the training group were indepen-
dent factors affecting prognosis (Figure 3(c) , P < 0:05),
whereas age, grade, and risk score in the test group could
not be regarded as independent predictors of prognosis
(Figure 3(d)). We further generated a nomogram for the
prediction of 1-, 2-, and 3-year survival (Figure 3(e)).

3.4. Effect of lncRNAs Associated with Autophagy-Related
Genes on OC. Abnormal lncRNA expression plays a crucial
role in tumor development and progression [8]. Thus, we
identified lncRNAs related to the 16 autophagy-related genes

associated with prognosis in OC (Figure 4) (see attachment 5
for details). By a univariate Cox analysis, we identified 14
lncRNAs (i.e., LINC02088, AC008115.3, AC027309.1,
AC136601.1, AL357153.1, AC022144.1, OSTM1-AS1,
AC008659.1, PKP4-AS1, LINC02574, AL355516.1,
LINC02273, AC010240.3, and AC011445.1) with prognostic
values for OC (Figures 5(a) , P < 0:05). A multivariate Cox
analysis of these lncRNAs revealed that AC136601.1,
LINC02273, and AC011445.1 could independently predict
prognosis (Figure 5(b), Stab. 2). Based on the coefficient
for each lncRNA, a risk model was developed. There were
significant differences in survival between the groups with
high and low risk scores (Figure 5(c), P < 0:05). A Sankey
diagram was generated for an intuitive representation of
the impact of the risk score on prognosis, showing that the
mortality rate was significantly higher in the high-risk group
than in the low-risk group (Figure 5(d)). To compare the
accuracy of the gene-based and lncRNA-based models for
risk assessment in OC, we generated ROC curves and found
that the AUC values for genes were significantly greater than
those for lncRNAs, indicating that the model constructed
based on autophagy-related genes could more accurately
reflect risk in OC (Figure 5(e)).

3.5. Associations between Immunity and Autophagy-Related
Genes. Our results support the prognostic value of the
autophagy-related gene model of OC; accordingly, we per-
formed functional enrichment analyses of genes in the
model. A Gene Ontology (GO) enrichment analysis revealed
that the genes in the model were enriched in the cell cycle
process, cell cycle, and cell growth (Figure 6(a)) (see attach-
ment 6 for details). A Kyoto Encyclopedia of Genes and
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Figure 1: Predictive model for ovarian cancer prognosis based on autophagy-related genes. (a) Relationships between expression levels of
autophagy-related genes. Darker colors indicate a stronger relationship. (b) Prognostic autophagy-related genes were screened by a
univariate Cox analysis. (c) Establishment of an autophagy risk model by a multivariate Cox analysis. (d and e) Spearman’s correlation
analysis of relationships between seven autophagy genes in the training and test sets. (f and g) ROC curves showing the predictive
efficacy of the autophagy risk signature in training and test sets. ROC: receiver operating characteristics.
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Figure 2: Distribution of risk scores in patients with ovarian cancer. (a and b) Distribution of risk scores in the high and low autophagy
groups in training and test sets. The x-axis indicates the patient number, and y-axis indicates the risk score. (c and d) Distribution of
survival in the high and low autophagy groups in training and test sets. Dots represent patient status ranked by the increasing risk score.
The x-axis shows the patient number, and y-axis shows the survival time. (e and f) Heatmap showing expression levels of seven genes
used to construct the autophagy model in the high- and low-risk groups from training and test sets. (g) Expression of seven genes
included in the autophagy model in the high- and low-risk groups; relationships between the expression levels of seven genes and risk scores.
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Genomes (KEGG) enrichment analysis revealed that the
genes were involved in pathways related to prostate cancer,
gastric cancer, bladder cancer, and other tumor types as well
as various immune processes, such as chronic myeloid leu-
kemia, viral protein interaction with cytokine and cytokine
receptors, and leukocyte transtumor (Figure 6(b)). A Cytos-
cape analysis revealed positive regulation of the macrophage
migration inhibitory factor signaling pathway and C-C che-
mokine receptor activity, CXCL12-activated CXCR4 signal-
ing pathway, and other immune-related processes
(Figure 6(c)). A GSEA revealed enrichment for apoptosis,
hypoxia, IL-2-STAT5 signaling, IL-6-JAK-STAT3 signaling,
and other signaling pathways (Figure 6(d)), all of which
are related to immunity.

3.6. Relationship between the Autophagy Model and the
Immune Microenvironment. Our functional enrichment
analyses suggested that there is a close relationship between
the model and immunity; therefore, we studied immune cell
infiltration in low- and high-risk groups (Figure 7(a)). Levels
of infiltration of B cells, CD8+ T cells, dendritic cells (DCs),
interdigitating cells (IDCs), macrophages, mast cells, neutro-
phils, natural killer (NK) cells, plasmacytoid dendritic cells
(PdCs), T helper cells, T follicular helper (Tfh) cells, Th1
cells, Th2 cells, tumor-infiltrating lymphocytes (TILs), and
Tregs differed between groups (Figure 7(b)). There were sig-
nificant differences in antigen presenting cell (APC) costi-
mulation, CCR, checkpoint, cytolytic activity, human
leukocyte antigen (HLA), inflammation promotion, inflam-
mation, T cell costimulation, T cell costimulation, and type
II IFN response in the immune processes (Figure 7(c)).

4. Discussion

Autophagy is a tightly regulated and highly conserved lyso-
somal degradation pathway [15]. The response of autophagy
to homeostasis plays an important role in mammalian devel-
opment and differentiation [16]. The absence or dysregula-
tion of autophagy is associated with a variety of diseases
[17]. We examined the effects of autophagy on OC. We first
screened autophagy-related genes related to OC prognosis
by a Cox regression analysis to build a predictive model.
Some of the genes included in these models are closely
related to the occurrence and development of OC based on
the previous studies. For example, CAPN1 is the target of
adhesion-associated protein hydrolysis [18]. In OC, BRCA1
affects the migration of tumor cells by regulating CAPN1
[19] and plays an important role in double-stranded DNA
damage repair via its interaction with SIRT2 [20]. Li and
Tang found that low levels of CDKN1B are associated with
a poor prognosis in epithelial ovarian carcinoma [21].
GNAI3 is involved in the immune pathway in OC [22].
DNAJB1 and RHEB expressions have also been reported to
be affected in OC [23, 24]. However, the role of MTMR14
in OC has not been reported, and further studies on this
gene are needed.

OC is currently diagnosed by ultrasound combined with
serum tumor marker analysis [25]. However, the specificity
of this method is low, with a 5-year survival rate of only
30%–40% [26]. Therefore, more effective tumor markers
are needed to improve the early detection rate of OC. We
observed a significant difference in survival between the
high- and low-risk groups based on our newly developed
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predictive model. Furthermore, the accuracy was verified by
an ROC curve analysis (AUC > 0:6), supporting its potential
use for the early detection of OC. Combinations of biomark-
ers can improve detection efficiency over those of single
markers [27, 28]. To further study the prognostic value of
the model, we included clinical parameters in regression
analyses and found that the model is an indicator for pre-
dicting prognosis, similar to age; however, in a multivariate
Cox analysis of the test group, age, grade, and model were
not statistically significant. This may be related to the small
sample size. Most patients in the sample were classified as
grade 2 or 3, whereas only a few patients were classified as
grade 1 or 4, making it difficult to accurately evaluate the
impact of grade on prognosis. Based on the model, we drew
a nomogram, providing a tool for the individualized evalua-
tion of prognosis.

lncRNAs play important roles in all stages of gene
expression [29]. A previous study has confirmed that
lncRNAs can be used as prognostic biomarkers for OC
[30]. Therefore, we screened lncRNAs related to
autophagy-related genes and identified lncRNAs related to
OC prognosis by univariate and multivariate analyses. In
addition to AC011445.1, the three lncRNAs used for model-
ing have been associated with OC [31], and the other two
have not yet been reported in OC. Using the model based
on lncRNAs, there were significant differences in prognosis
between the high- and low-risk groups. These results indi-
cate that the lncRNA-based model can be used as a bio-
marker to predict the prognosis in OC. We compared

models constructed based on autophagy-related genes and
lncRNAs and found that the accuracy of the gene-based
model was higher. This comparison is helpful for the selec-
tion of effective tumor markers for the early diagnosis of
OC in the future.

To gain a deeper understanding of the model con-
structed by autophagy-related genes, we performed pathway
enrichment analyses. The P53 and PI3K-Akt-mTOR path-
ways play important roles in the activation and regulation
of autophagy [32, 33]. Other pathways, involving inflamma-
tory cells, IL2-STAT5, and IL-6-JAK-STAT3, are mainly
associated with inflammation and immunity. In fact, OC
cells release cytokines to recruit activated stromal fibroblasts
and immune cells, leading to inflammatory infiltration in the
stroma. This, in turn, impedes the immune response and
promotes the proliferation of tumor cells. Wang et al. found
that several products of OC inhibit the expression of IL-2Rβ,
γ, and JAK3, as well as the phosphorylation of STAT5 tyro-
sine in T cells, thereby inducing immunosuppression in OC
[34]. In our study, we also found obvious differences in the
activation of cytolytic and inflammation-promoting func-
tions between the high- and low-risk groups. A large num-
ber of studies have shown that autophagy is a key regulator
of the natural immunity in tumor cells [35]. For example,
autophagy can affect IL-1-dependent secretory processes
via IL-17, IFN-γ, and IL-22 signaling [36]. Autophagy can
also regulate T and B lymphocytes and plays an important
role in the activation, metabolism, and proliferation of T
cells [32, 37]. This is consistent with our results, indicating
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significant differences in the infiltration of B cells and multi-
ple T cell subsets between the high- and low-risk groups.
Autophagy is also closely related to apoptosis and hypoxia.
The relationship between autophagy and apoptosis is subtle.
During chemotherapy, autophagy can protect tumor cells
from apoptosis and eventually result in drug resistance
[38]. Excessive autophagy can also lead to apoptosis. In the
process of hypoxia, tumor cells use autophagy to undergo
metabolic reprogramming to obtain the energy needed for
survival [38].

5. Conclusions

In our study, we evaluated the effect of autophagy on prog-
nosis in OC and explored the functions of autophagy. These
findings provide direction for the identification of additional
tumor markers, including lncRNAs related to the prognosis,
and for analyses of the mechanisms underlying the effect of
autophagy on OC. A limitation of this study is that the sam-
ple size was small and data were obtained from a single data-
base; therefore, a larger sample size and more data are
needed to verify the prognostic value of our model. In addi-
tion, our results need to be confirmed in large-scale clinical
trials. These follow-up studies are expected in the near
future.
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