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The most common gynecologic cancer, behind cervical and uterine, is ovarian cancer. Ovarian cancer is a severe concern for
women. Abnormal cells form and spread throughout the body. Ovarian cancer microarray data can diagnose and prognosis.
Typically, ovarian cancer microarray data contains tens of thousands of genes. In order to reduce computational complexity,
selecting the most critical genes or attributes in the entire dataset is necessary. Because microarray datasets have limited
samples and many characteristics, classifier detection lags. So, dimensionality reduction measures are essential to protect
disease classification genes. In this research, initially the ANOVA method is used for gene selection and then two clustering-
based and three transform-based feature extraction methods, namely, Fuzzy C Means, Softmax Discriminant Algorithm (SDA),
Hilbert Transform, Fast Fourier Transform (FFT), and Discrete Cosine Transform (DCT), respectively, are used to select
relevant genes further. Six classifiers further classify the features as normal and abnormal. The NLR classifier gives the highest
accuracy for SDA features at 92%, and KNN gives the lowest accuracy of 55% for SDA, Hilbert, and DCT features. With
correlation distance feature selection, the NLR classifier attains the lowest accuracy of 53%, and the highest accuracy of 88% is

obtained by the GMM classifier.

1. Introduction

Cancer is the world’s top public health risk. The causes of
cancer are unknown. Hence, there is no efficient way to diag-
nose it. As a result, early cancer diagnosis improves the
chances of full recovery and survival rate. Therefore, early
cancer diagnosis is critical to increasing the survival rate
[1]. According to Shabir S, Gill PK et al., in 2012, it was diag-
nosed that there were 239,000 cases of ovarian cancer world-
wide, with 600,000 women living within five years of a
diagnosis. By 2035, ovarian cancer is expected to rise to
55% and 67% of fatalities [2]. Ovarian cancer will rise to
pandemic proportions and universally become a problem.
Between 2012 and 2030, the number of new cancer cases is
expected to rise by 70%, from 14 million to over 22 million,
putting an ever-increasing burden on low- and middle-
income countries.

Women’s cancers account for 2.5 percent of all cancers.
Women are getting cancer at a higher rate than ever before,

measured as a percentage of the population. Ovarian cancer
ranks fifth, while breast cancer ranks eleventh among
cancer-related severe cases in women [3]. African American
women have slightly higher mortality rates than Caucasian
women. A pelvic exam, imaging tests such as transvaginal
ultrasound, CT, PET, MRI, microscopic examination of a
tissue sample, CA-125 blood test for tumour markers, blood
test for gene changes, and gene expression analysis are used
to diagnose ovarian cancer [4].

Microarrays are found to be better at detecting and clas-
sifying cancer than other image processing tools. Thus,
microarray data is used in this study. Gene expression anal-
ysis is one example of a large-scale experiment that looks at a
lot of genes at the same time. DNA microarrays are widely
used in biological and medical research to examine gene
expression in cells and diagnose disorders such as cancer.
In functional genomics, enormous amounts of data from
numerous biological investigations are analyzed. Microarray
technology uses hybridization to monitor hundreds of genes
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on a tiny chip. Gene expression microarrays have a lot of
potential to help doctors make decisions about cancer diag-
nosis and treatment [5]. An aberrant tissue is one that has
gene expression alterations because of the fluctuation of gene
expression. Each cell’s protein components determine its
function and response to external stimuli. The genes
expressed by an organism’s cells determine its behaviour
[6]. Gene expression can be quantified using nucleic acid
microarrays that track DNA or RNA quantities in distinct
cells over time. Microarray experiments include systematic
causes of variance that should be addressed before any study
is done. The workflow of an experiment on microarrays
involves, in addition to the measuring technique, an inten-
sive data analysis step. The microarray targets hybridization
with subsequences (probes) of genes in the entire genome on
a microarray blade, with each gene having its own fluores-
cent spot. A microarray image called a probe, combined with
a fluorescent tag, is generally compared to a reference image,
recorded with the second fluorescent tag, in a two-colour
microarray experiment. The intensity of fluorescent light is
used to determine gene expression levels using specific
microarray image processing techniques [7]. The extraction
of point intensity characteristics and data normalization
are for estimating gene expression levels and determining
pixels belonging to the microarray spot or its nearby back-
drop. After normalization, each row in the preprocessed data
indicates a gene expression value at distinct time points or
experimental conditions. Many studies have 4000-8000 gene
rows and 4-80 gene expression values [8].

The primary objective of this research is to devise a
system that can correctly categorize various forms of can-
cer. The data relating to cancer should be organized in
such a way as to make it less difficult for patients to
obtain treatment and to reduce the associated risks. If
the data from the microarray includes genes that are not
relevant or that have a lot of noise, the accuracy of the
classifier will be reduced as a result. Therefore, efficient
methods of gene selection and feature extraction will be
able to guide you in selecting characteristics that are use-
tul. Additionally, in order to acquire a perfect classification
of the data pertaining to cancer, it is necessary to make
use of various procedures and investigate whether or not
they offer improved classification accuracy. The results of
this work provide the best performance in terms of the
accuracy of classification.

This research study uses two clustering-based and three
transform-based feature extraction methods in order to be
able to select an informative gene subset while eliminating/
declining redundant or irrelevant genes and to be able to
improve the performance of microarray high-dimension
data classification. Six classifiers further classify the features
as normal and abnormal.

To exploit the benefits of this technology, researchers are
developing and employing more precise decision support
models. It has been used to predict ovarian cancer. This
research highlights the need for a computer-aided approach
for ovarian cancer classification from microarray gene
expression. This augments medical professionals and clinical
professionals in a speedy diagnostic process.
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2. Review of Ovarian Cancer Literatures

The following section discusses the most significant studies
in the area of ovarian cancer classification. The review of
ovarian cancer literature for the last two decades is discussed
in this section. According to B.C. Lee et al,, for the differen-
tially expressed genes, the microarray analysis in female
ovarian cancer provides information on the disease. [9].
H.S. Chon and J.M. Lancaster talked about gene expression
studies in 2011 that used microarrays to look for biomarkers
for early ovarian cancer [10]. Zhang et al. give an outline of
various types of biomarkers that can be used to diagnose
ovarian cancer in women [11]. Lee [12] developed a hybrid
process of GA, PSO, SVM, and ANOVA to select gene
markers and an integrated method by using Fuzzy, LDA,
FCM, and K Means for gene selection and classification of
ovarian types as ovarian tumours (OVT), five ovarian can-
cers at stage I (OVCAI), and five ovarian cancers at stage
I (OVCAIII). Jeng et al. used intelligent algorithms to
examine microarray data by Support Vector Regression
(SVR) in order to classify stages of ovarian cancer [13].
Tan et al. developed neural networks based on complemen-
tary learning (FALCON-AART) for the diagnosis of ovarian
cancer, obtaining an accuracy of 91.10% and attaining
78.90% accuracy by blood test [14]. Chuang et al. [15] per-
formed a dimension reduction by Support Vector Regres-
sion (SVR) on the ovarian cancer microarray data in order
to reduce it from 9600 genes to about 300 genes. Huang
et al. [16] performed a machine learning-based microarray
analysis of ovarian cancer to identify genetic markers associ-
ated with the stages of ovarian cancer. Zhu and Yu used gene
patterns to classify epithelial ovarian cancer with the attain-
ment of UBE2I. The mean RQ values were 5.76 and 3.85
[17]. Yu and Chen [18] applied a Bayesian neural network
approach to the diagnosis of ovarian cancer using high-
resolution mass spectrometry data in order to identify the
malignancy, and BNN achieved average levels of sensitivity
and specificity of 98.56% and 98.42%, respectively. Vlahou
et al. [19] did research to diagnose ovarian cancer by using
a classification and regression decision tree categorization
of group spectral information to classify the tumour and
obtained an accuracy of 81.5% in the cross-validation analy-
sis and 80% in a blinded set of samples. When Deep Convo-
lutional Neural Networks (DCNN) were used to classify the
various forms of ovarian cancer from cytological pictures by
design, the accuracy of classification models improved from
72.76 to 78.20%, which was done by Wu et al. [20]. Mas et al.
conducted a study in which they examined machine learning
algorithms K-Nearest Neighbors (KNN), Linear Discrimi-
nant (LD), Support Vector Machine (SVM), and Extreme
Learning Machine (ELM) involving the Fourier Transforms
for the categorization of ovarian cancers, giving an accuracy
of 58.29%, 85.56%, 87.70%, and 87.70% [21]. Nuhic et al. did
research on several categorization strategies for the detection
of ovarian cancer, and they did a comparison and found that
logistic model trees had the best accuracy at 96.78% [22]. An
investigation was carried out by Zhang et al. into the use of
ANN in the early diagnosis of ovarian cancer with a sensitiv-
ity of 88.9% [23]. Antal et al. [24] investigated the potential
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and limitations of using Bayesian networks for the diagnosis
of ovarian cancer in a clinical setting and attained 95.2% in
Receiver Operator Characteristics (ROC). Osmanovic et al.
used decision tree (DT) classifiers to diagnose ovarian cancer
in individuals who had previously undergone surgery. They
used historical data to make their determination and gave
the accuracy as 77.2% for both the J48 and the LMT classifier
[25]. Thakur et al. were able to detect ovarian cancer early
because of the use of feed-forward artificial neural networks
with an accuracy of 98% [26]. Kusy [27] applied the SVM to
the categorization of ovarian cancers and published his find-
ings. According to Nabawy et al. [28], the epithelial ovarian
cancer stage subtype classification was achieved through the
use of gene expression analysis and boosting algorithms,
which outperforms the other types of classifiers with an
accuracy of 80%. Park et al. [29] developed an intraoperative
diagnosis assistance tool for ovarian cancer based on micro-
array data, in which they used a multicategory machine
learning algorithm in which the SVM model had the best
accuracy of 97.3%.

Arfiani and Rustam [30] developed a classification sys-
tem for ovarian cancer that included a bagging method with
100% accuracy for 90% of the training data and a random
forest that reached 98.2% accuracy for 90% of the training
data. Acharya et al. [31] developed a novel online paradigm
for ovarian tumour characterization and classification using
ultrasonography with a DT classifier that presented a high
accuracy of 97%. Cohen et al. [32] investigated the use of
3D power Doppler ultrasonography to improve the accuracy
of diagnostics for ovarian cancer. As per Renz et al., ovarian
disease can be grouped by a Multi-Layer Perceptron (MLP)
classifier and attain a 92.9% accuracy. [33]. Assareh and
Moradi [34] have developed a method for extracting the
most effective fuzzy if then rules from mass spectra of blood
samples for the purpose of early detection of ovarian cancer.
The classifiers used for these blood samples are KNN and
LDA with 100% accuracy. When Meng et al. [35] looked at
the features from ovarian cancer proteome mass spectra,
they found that 98% of the time, they were able to detect
the disease. They also found that 95% of the time, they were
able to identify the disease. Kim et al. [36] investigated the
use of Logistic Regression to combine various biomarkers
for the early identification of cancer at an early stage in order
to improve early detection rates. The LDA classifier has a
78.38 percent accuracy rate.

RabiaMusheer Aziz has done the classification for differ-
ent cancer data with ABC and ICA with cuckoo and found
the 93.67% as high accuracy [37]. Yan Ma et al. developed
a method to identify the ovarian cancer by noninvasive sero-
logical diagnostic approach using TAA antigens [38].
According to Rabia Aziz et al., ICA + ABC is used for gene
selection and classification with ANN classifier [39]. Douglas
V. N. P. Oliveira investigated the gene profile using the
biomarkers [40]. RabiaMusheer Aziz et al. have done the
classification Independent Component Analysis (ICA) and
Artificial Bee Colony (ABC) with the maximum accuracy
of 97.12% (20 genes) of ABC and 95.11% (28 genes) of
ICA [41]. Md Shahjaman et al. investigated for ovarian can-
cer to identify the improved core biomarkers [42]. Rabia-

Musheer Aziz investigated on nature-inspired algorithm
and developed cuckoo search algorithm [43]. Deng, Xiongshi
et al. developed the hybrid gene selection approach using
XGBoost and multiobjective genetic algorithm for cancer
classification [44]. Alhenawi, Esra’A. et al. have done a review
on feature selection and classification of microarray gene
data for cancer [45]. Prabhakar, S. K. and Lee, S. W. have
done the investigation on optimization algorithms for gene
data extraction and classification [46].

There are various algorithms for gene selection and can-
cer classification that make use of a microarray that can be
found in the research literature. Many computer methods
have been developed for gene selection, although most focus
on data samples while ignoring gene correlation. The corre-
lation distance is calculated after the gene selection. Finally,
the classification algorithms Gaussian Mixture Modelling,
Detrended Fluctuation Analysis, Nonlinear Regression,
Bayesian Linear Discriminant, Logistic Regression, and K-
Nearest Neighbor (KNN) were able to improve the perfor-
mance of microarray high-dimension data classification.
The performance matrix of six classifiers gives the better
analysis of accuracy.

In Section 3, materials and the method are discussed.
Feature extraction by clustering- and transform-based tech-
niques for further gene selection is presented in Section 4.
Classification techniques are analyzed in Section 5. Results
and discussions are given in Section 6.

3. Materials and Methods

3.1. Methodology. Microarray datasets include a wealth of
genomic information that, if correctly evaluated, could revo-
lutionize science and healthcare. Microarray tests have been
performed in order to better understand the genetic causes
of cancer and to categorize cancerous and noncancerous
cells in order to better treat cancer patients. Over the last
decade, machine learning algorithms for microarray data
analysis have been actively investigated. Various methods
have been investigated to (i) discriminate among malignant
and noncancerous samples and (ii) classify cancers into
groups.

Prominent genes are selected by the ANOVA method
for microarray gene data. The features are extracted from
the selected genes by two clustering-based feature extrac-
tions, Fuzzy C Means and Softmax Discriminant algorithm,
and three transform-based feature extraction techniques,
Hilbert, Discrete Cosine Transform, and Fast Fourier Trans-
form. By finding the correlation distance, feature selection is
possible. Based on the extracted features, the genes are clas-
sified with and without feature selection. To get better accu-
racy and to solve nonlinearity problems, linear algorithms
are used in this work for the classification of microarray gene
data. The performance metrics from the classifiers are ana-
lyzed. Figure 1 depicts a schematic representation of the
classification methodology for ovarian and normal tissues
based on microarray gene data.

The proposed method in this research, MATLAB 2017b,
is used in experiments on preprocessing the datasets. This
tool is used to find features and classify them. A desktop
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FI1GURE 1: Schematic representation of the methodology of the classification for ovarian and normal tissues from microarray gene data.

computer with 64-bit Windows 10 and an Intel (R) Core
(TM) i5-Intel(R) Core(TM) i3-3220 CPU @ 3.30 GHz and
8 GB of RAM was used for the tests.

3.2. Database of Ovarian Cancer. A few genomic datasets are
freely accessible from the National Center for Biotechnology
Information (NCBI), Stanford University, and the European
Bioinformatics Institute (EBI). For the purposes of this
investigation, a microarray ovarian cancer dataset was used.
The microarray ovarian cancer database is accessible in
ovarian cancer sample microarray gene data E-GEOD-
69207, which was collected by the European Bioinformatics
Institute (EMBL-EBI) and is openly accessible [47, 48]. This
is an International Governmental Organization (IGO) which
gives the entire molecular database freely. Array express was
used to analyze frozen archival epithelial ovarian cancer
data. A total of 100 samples, of which 50 samples are normal
and 50 samples are ovarian cancer, were obtained, and the
genomic data was analyzed using microarrays. To make sure

that each sample has the same amount of RNA, the samples
are hybridized with materials from an Affymetrix kit.

3.3. Gene Selection. Prominent genes are selected by volcano
plots for the microarray gene data [49]. These plots help to
visualize the outcomes of RNA sequence and additional
omics investigations. This volcano plot is a form of scatter
plot that illustrates the relationship between P value and fold
change. P value represents statistical significance, and fold
change represents the magnitude of the change [49].

Figure 2 shows the volcano plot of ovarian and normal
microarray gene data. On the left, genes that are most likely
to be downregulated are found. On the right, genes that are
more likely to be upregulated are found, and on top of the
figure are the most statistically significant genes. After the
ANOVA method, out of 33,000 genes, 16,000 genes per sam-
ple for normal and ovarian prominent genes were selected.

The next section discusses feature extraction for micro-
array cancer data. Prior knowledge can be used with feature
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FIGURE 2: Volcano plot for ovarian and normal microarray gene
data.

extraction or feature selection methods to improve the accu-
racy and complexity of algorithms in cancer data.

4. Clustering- and Transform-Based
Feature Extraction

Gene expression datasets that are not linearly separated can
be solved by choosing the right linear algorithms for better
classification. By employing extraction of features, which is
a dimensionality reduction technique, it is able to represent
key parts of the preprocessed data in the compact form of
feature vectors.

The two clustering-based and three transform-based fea-
ture extraction methods, namely, Fuzzy C Means, Softmax
Discriminant Algorithm (SDA), Hilbert Transform, Fast
Fourier Transform (FFT), and Discrete Cosine Transform
(DCT), are separately used to select relevant genes further
to get the reduced features. The microarray gene data inhibit
ambiguity, imprecision, and noise. As a result, using cluster-
ing techniques is an important first step in data analysis to
reveal natural structures and patterns using Fuzzy C Means
and Softmax Discriminant Algorithm (SDA) [50-52].

Dimensionality reduction is promising since it extracts
significant data features and reduces processing complexity.
For microarray data, the Hilbert Transform, Fast Fourier
Transform (FFT), and Discrete Cosine Transform (DCT)
are used extensively in voice and image processing for dec-
orrelation, ordering, and dimensionality reduction. Even
though the DCT, FFT, and Hilbert Transform algorithms
are well-known, their use in identifying microarray ovarian
data is innovative. The performance of the above transform
methods was analyzed in this research.

4.1. Clustering-Based Feature Extraction. Clustering was
employed in this work to overcome the redundancy of
selected genes. Clustering is the process of grouping entities
of low interclass resemblance. A cluster attribute is used to
group the attributes so that they are similar in comparison to
those of other clusters before applying ranking approaches
directly to the attributes of datasets (genes). Although diverse
criteria provide varied results in clustering, they all try to
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Fi1GURE 3: FCM feature histogram for normal and ovarian cancer
microarray gene data.

group genes based on similarities. Similarity-based clustering
is achievable by K Means, Fuzzy C Means, C Means, and Pos-
sibilistic C Means.

4.1.1. Fuzzy C Means. This FCM algorithm correlates each
variable with each cluster by means of a member feature
describing the varying strength of the relationship between
the various variables and the clusters. As a result, instead
of just exclusive partitions, sets of nonexclusive clusters are
formed, allowing genes to belong to multiple clusters. It
operates by allocating a collection of genes to a given num-
ber of clusters, with each gene having the possibility of
belonging to more than one cluster, with varying degrees
of membership. During this procedure, the algorithm
strives to reduce the goal function to its smallest possible
value [53]. The goal is to reduce the objective function
specified as follows:

P
Zkz (K = 14,)% (1)

n=1

where x,,, is the degree to which an observation k,, belongs
to a cluster F,, y, is cluster center, and y is fuzzifier.

By the FCM method, 16,000 microarray gene data per
sample is reduced to 660 per sample for normal and ovarian
for further classification. When FCM clustering is used, the
results are significantly improved.

Figure 3 depicts the histogram plot for normal and ovar-
ian cancer data of the FCM feature. From this figure, discon-
tinuity of data is visible. This nonlinearity plot created the
necessity to identify the nonlinear classifier to classify the
normal and ovarian cancer.

Figure 4 depicts the scatter plot for the FCM feature out-
put of the normal and ovarian cancer data. A scatter plot is
to check the clustered nature of data. From this figure, non-
linearity and overlapping of data are depicted. Hence, it is
necessary to identify the nonlinear classifier for the classifi-
cation of normal and cancer data.
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4.1.2. Softmax Discriminant Algorithm (SDA). SDA is the
most feasible and effective classifier. The SDA goal is to
identify a subset to which a specific test must be applied
[54], which is accomplished through classification. Specifi-
cally, it is accomplished by comparing and evaluating the
distance between the training sample and the test sample.
The assignment of the label information is done with the
help of a nonlinear transformation of the distance.
Consider the dataset from s distinct classes is given by

Y=[Y,Y,, Yy oo Y, e K. (2)
From S class, the b, samples are represented by
Y, = [Y;, YS, Y5, ---.,Y;} €K, (3)

where

Now SDA is defined as

h(y) = arg maxd), (5)
]

where
d),h(y) denotes the distance between the testing sample

and j™ class, the identification of y, respectively.

b; ‘
(H(y)) =arg rr;ax log ;exp<—%Hy—y{’

) ®

The objective of SDA is achieved by increasing the non-
linear transformation value of the distance between the test-
ing sample and the s-class samples. By the SDA method, the
microarray gene data of 16,000 is reduced to 3,300 gene data
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for further classification. Figure 5 is the normal probability
plot to identify the normal distribution of SDA feature data
for ovarian cancer. From Figure 5, the data is left skewed and
outliers are identified. So, it is important to make sure the
data is the best it can be to get the best classification
accuracy.

4.2. Transform-Based Feature Extraction. Transform-based
approaches are a significant subset of feature extraction
techniques that should not be overlooked. In the classifica-
tion stage, these methods enable the extraction of effective
features by removing irrelevant characteristics (transform
coefficients). This allows the generalization performance to
stay the same while the computational cost goes down
[55]. It is possible to separate transform-based methods for
feature extraction into linear, nonlinear, supervised, and
unsupervised, as well as signal-dependent and independent
methods. In this work, Hilbert, Discrete Cosine Transform,
and Fast Fourier Transform methods are used for transform-
based feature extraction.

4.2.1. Hilbert Transform. The Hilbert Transform (HT) is
used as a standard procedure in signal processing. The HT
is used to get the analytical representation of the signal and
to get the spectrum of the signal without change in the
domain. The Hilbert Transform of any signal is not an
equivalent representation of the signal; rather, it is an
entirely different signal [56]. It is a linear operator that uses
the convolution function 1/t to get the real value signal.
The Hilbert transform is a +900 phase shifter for all moving
components of the signals without changing their amplitude.

Ha(t)] = a(t) * — (7)

a(t) is a signal, then Hilbert Transform of a(¢) is repre-
sented as a H a(t) and it is a convolution of a(t) with the sig-
nal 1/mt.

) ot—T ®)
Hla(t)] = %Jio @ dr.

This definition says that the transform changes the sign
only and does not change our basic results. Also, it finds
the imaginary value of a function to have a real value and
vice versa. Using the Hilbert method, 16,000 microarray
gene data was reduced to 3,300 per sample for further
classification.

4.2.2. Discrete Cosine Transform. The DCT method is an
approximation of the Kernighan-Lin method to reduce the
dimensions. It removes the most significant features of the
input and enables a reduction in the complexity of further
analysis. This method helps to orthogonalize and minimizes
the complexity of a given vector and its components. With
the help of the DCT method, the features are extracted by
selection of coefficients. It is the most critical and significant



BioMed Research International

Normal probability plot
for SDC feature extracted ovarian cancer data

Probability

01 02 03 04

05 06 07 08 09 1

Ovarian cancer data for SDC outout

FiGure 5: Normal probability plot for ovarian cancer of SDA feature output.

step, and it has a significant impact on computation effi-
ciency [57, 58]. DCT is expressed as,for

K(x) = oc(x) ioa(u) cos [W} , 9)

Using the DCT method, 16,000 microarray gene data
was reduced to 3,300 per sample for further classification.

4.2.3. Fast Fourier Transform. The best and most popular
method for calculating the DFT is the FFT, which can be used
in a variety of applications. Time series data can be transformed
into the frequency domain by FFT. This approach is useful on
many occasions, but utilizing the formula explicitly is ineffi-
cient. So this transform evaluates DFT quickly. It divides the
DFT matrices into zero factors. As an outcome, it simplifies
the discrete Fourier Transform. It is substantially more precise
than the discrete Fourier Transform [59]. The FFT equation is

(§) {x(i) + (—1)“x(i+ g)} Y¥, (10)

i=0
where

Y4 = 2K, (11)
K= FFT points.
The Fourier Transform of the X(f), time-domain signal
x(t), is given by

X(f) = F{x(t)} = JOO x(t)e P dt. (12)

—00

The FFT method reduces the 16,000 microarray gene
data to 3,300 per sample for further classification.

4.3. Statistical Parameters from Feature Extraction. Dimen-
sionality reduction through feature extraction is a type of
dimensionality reduction that is used in a specific applica-
tion. In feature extraction, the primary goal is to extract rel-

evant or significant information from real-world data and
present that information in a lower-dimensional space than
the original data.

The most accurate and advanced method to predict the
cancer for the extracted features is to calculate the statistical
parameters. The list of statistical parameters of the cluster-
ing- and transform-based feature extraction methods
involved is mean, standard deviation, variance skewness,
kurtosis, Pearson’s coeflicient, ¢-test, and sample entropy.

The statistical parameters of cancer data after clustering-
and transform-based feature extraction are shown in Table 1.
The standard deviation is the gap between categories that are
positive and those that are negative. From Table 1, it is
observed that the Pearson coefficient is 1 for FFT and DCT
in both cases. It shows that they are highly correlated within
the classes. It is observed that the nonlinearity comes from
the skewness and kurtosis. Sample entropy is a measure of
the amount of uncertainty in data. The presence of non-
Gaussian is observed from the sample entropy in Table 1.
The FFT and DCT give high values of skewness and kurtosis.

5. Feature Selection by Correlation Distance

Feature selection reduces the number of input variables in a
predictive model. Adding extraneous characteristics reduces
the model’s accuracy rate, complexity, generalization ability,
and generalization capability, and makes the model biased.
Choosing features is thus an important stage in developing
a machine learning model. Its aim is to find the optimal fea-
tures for a machine learning model [60].

In this paper, feature selection is done by correlation dis-
tance. To determine the distance between the two random
variables having limited variances, such as 1, the correlation
distance metric is popularly used. This metric is given as d
=1 —a, while the correlation between the two variables is
a. A correlation distance is used to find the linear and non-
linear relationships between the random variables. This cor-
relation distance is measured as

dcov (X,Y)
[d var (X)d var (Y)]’

deor(X,Y) = (13)

where X and Y are the random variables.
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TaBLE 1: Statistical parameters of clustering- and transform-based feature extraction for ovarian and normal data.

Statistical parameters . FCM . SDA . Hilbert . FET . ber

Ovarian Normal Ovarian Normal Ovarian Normal Ovarian Normal Ovarian Normal
Mean 0.60958 0.61855 12.09748 0.21740 0.49855 0.49357 0.00810 0.00734 0.00731 0.00663
Std dev 0.0722  0.06839 7.56472 0.15279 0.09348 0.08900 0.01736 0.01736 0.01741 0.01740
Variance 0.0052 0.00470 1.14519 0.02336 0.00875 0.00794 0.00030 0.00030 0.00030 0.00030
Skewness 1.8415 1.98612 75.87783 1.69340 1.39834 1.62165 56.62020 56.73028 56.23927 56.42410
Kurtosis 44688 5.03687 122.1244 292235 2.89985 3.65340 3236.49200 3244.93585 3207.17014 3221.32183
Pearson 0.9653 0.94569 46.05714 0.91892 0.94541 0.91843 0.99891 0.99861 0.99807 0.99757
T-test 0.0214 0.01497 1.0306 0.00714 0.00389 0.00184 0.00341 0.00005 0.01034 0.00226
Sample entropy 9.3663 9.36632 582.756 11.638 11.688 11.68825 10.68857 10.68849 11.68772 11.68772

By correlation distance, only 45 prominent genes per
sample are selected for classification in all feature extraction
methods.

6. Classifiers with and without
Feature Selection

The classification challenge entails the development of a
classifier that accepts as an input vector of gene expression
and produces as an output a vector indicating the class label
of the input sample vector. The six different classifiers are
used for the classification of ovarian cancer data with and
without feature selection.

6.1. Fitness Function. The proposed method’s fitness func-
tion depends on the classifier’s accuracy. If the current fit-
ness value is greater than the previous one, it advances to
the next solution. Otherwise, the prior one is retained.
Finally, the best predicted gene set is assigned the fitness
solution with the highest value. The fitness function (fit) is
defined as follows:

Fitness(f) = Accuracy(f) (14)

where Accuracy (fit) is testing data (f) classifier accuracy.

The main objective of this research is to select relevant
attribute and improved classification accuracy. Henceforth,
the target selection is used for better classification accuracy.
The ovarian data is divided into two categories: normal
and cancer. This information can be used to determine the
target values.

The target T'- is selected with care, with higher values in
the range of 0 to 1 being preferred. The following are the cri-
teria that were used in the selection of T'.:

1 k
EZyysTc. (15)

All of the characteristics of overall (k) ovarian cancer
data are normalized, and the mean of the normalized data
is given by the symbol y_ in the function, which may be used
to categorize the data.

When applying the condition to normal ovarian cases,
the target Ty is chosen with lower values in the range of 0
to 1 when using the target T

1 m
aZ//tysTN. (16)

The features of the total (m) ovarian normal data are
normalized, and the equation that can be used for classifica-
tion says that y, is the mean of the data, which can be used
for classification.

The value of T, should be bigger than the values of 4,
and y, that were thought of T; and Ty must be checked
to make sure that the difference between the two is either 0
or more than 0.5.

ITc— Tyl >0.5. (17)

In this case, the T and T values are set to be 0.9 and 0.1.

The fitness value (mean accuracy) required for classifier
is computed by training with training data and tested by
10-fold cross-validations. Cross-validation k times are used
for this study. The dataset with the features is first divided
into “k” points of the same size. Performance in each step
is then assessed using k1 groups. Validations are repeated
k times, with k=10 in this case. As a consequence, 90 percent
of the data was used for training and 10 percent for testing.
Averaging occurs when all performance measures are calcu-
lated at the end of the 10-fold process.

6.2. Gaussian Mixture Model. The probabilistic model that
uses the expectation maximization algorithm is the GMM,
and it is the best model that can be used for classification
and prediction. It is a set of several Gaussians used to repre-
sent the clusters of data. In general, Gaussian density is
defined as the following in a dimensional space:

Q
p(X,0) = Z“kN(x;Mq,Zq)‘ (18)
gq=1

A GMM is a type of probabilistic model that states that all
generated data samples are derived from a mixture of finite
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TABLE 2: Performance metrics of the classifiers.

Performance metrics Description of metrics

Derived from confusion matrix

Accurac Average of no of samples identified as positive to no. of samples Ac= (TN +TP)
Y identified as negative (TN + FN + TP + FP)
TP
Precision From all correct predictions, accurately predicted. PR= (TP+ FP)
1 "2
MSE Average of the squared error MSE = NZ (yi -y )
i=1
isi ificati 2% TP
F1 score Mean of precision and recall to get classification accuracy Fl=

for a specific class

Mathews correlation
coefficient

Pearson correlation between true and attained output MccC

(2 TP+ FP+FN)
(TP + TN — FP % FN)
/((TP+FP) + (IN + FP) = (IN + FN))

Fowlkes mallows Measure of similarity between clustering FM = 7TP ,7TP
index TP+ FP TP+ FN
Based on the number of observations, the sum of _ (FP+FN)
Error rate . . ErR=
all inaccurate predictions. (TP+ FN + TN + FP)
Jaccard metric The predicted real positives outnumbered the actual positives, Jac=

Classification success
index

whether they happened to be real or predicted.

Averaging the class-specific symmetric measure of overall class

(TP + FP+ FN)

CSI =PPV + SEN - 100

Gaussian densities, which is a category of probabilistic models.
As a result, the GMM models the allotment of a dataset by
employing a number of Gaussian density estimates [61].

6.3. Detrended Fluctuation Analysis. The DFA has been used
for a wide range of problems in a wide range of domains in
biomedical engineering, including DNA sequences, heart
rate variations, and human gait analysis, among others
[62]. DFA is used to calculate a long range of power laws
or scaling analysis for noisy time series data. DFA is a popular
fractal methodology for detecting lengthy correlations in noisy
nonstationary time series. Long-term correlations in noisy
nonstationary time series are often detected using DFA.
Long-range correlation is the slow decay of statistical reliance.

For the time series data or signal, s(i) forI=1,2,3,4, ---p.

where p is the maximum length of the data. To find the
profile of the signal

q
m(q) = 2[5(1’) - ) (19)

After that, divide the signal profile m (q) into boxes of
equal length. Afterwards, for each box, compute the trend
of the signal in that box by fitting a polynomial of order
“1” to the data (q). Detrend the signal is achieved by sub-
tracting the trend from each of the signal boxes. When the
detrended signal from the profile is integrated as G (p), the
root mean square of the fluctuation is obtained.

G(p) = | 5 [m(@) - m, (@) (20)

g=1

6.4. Nonlinear Regression. When it comes to smoothing and
classification, NR is a statistical method that can be used
with both linear and nonlinear inputs. As an example of this,
Nonlinear Regression is used to depict system functionality
by using nonlinear variables as inputs to the model. As a
result, the data collected will be fitted with a curve and catego-
rized according to its classification. A Nonlinear Regression
can be mathematically modelled as the classifier reaction is
calculated by the values of the model equation [63].
It is expressed as,

Fn=x(c,,0)+S,,, (21)

where the expectation function is denoted as x, and c,
denotes the vector if associated independent variable or
regressor variables for the n'' case. One of the derivatives
of the expectation function should depend on at least one
of the parameters in nonlinear models. In order to distin-
guish between linear and nonlinear models, expectation
function in a nonlinear model, is used as a parameter.

6.5. Bayesian Linear Discriminant Classifier. BLDC, which is
a systematized and simple extension of Fisher’s Linear Dis-
criminant Classifier, aims to reduce the risk involved with
the categorization choice as much as possible. It is capable
of dealing with information with a high degree of complexity
and noise. Since it depends on the Bayes decision rule, the
error probability is reduced [64]. The major assumption in
Bayesian regression is that the target x has a linear relation
to the vector k with an additive white Gaussian noise n, it
is expressed as,

x=q"k+n, (22)
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for the weight denoted as g. The likelihood function given as

) e (i) o

where x represents a vector containing the regression targets,
K denotes the matrix obtained from the horizontal stacking
of the training feature vectors, D represents the pair {K, x},
B is the inverse variance of the noise, and N is the number of
samples in the training set.

6.6. Linear Regression. Statistical methods such as linear
regression have been around for a long time. As shown in
this example, the output of the classifiers is defined by the
following combination of the parameters used as inputs. It
represents the most basic type of linear regression. A linear
regression expressed as

Z=p+qY. (24)

Y represents the input and Z represents the output. In
this equation, the slope of the line is g, and the intercept
(the value of z when y=0) is a. Increased accuracy of classifi-
cation can be achieved by employing a technique to determine
the slope variable p [65]. An easy way to arrive at a slope vector
matrix is to apply the minimum mean square error condition.

6.7. K-Nearest Neighbor. The K-Nearest Neighbor technique
is a relatively basic procedure for classifying samples based
on the majority voting among their neighbours and is per-
formed as follows. Each sample is taken one at a time from
the test set. Secondly, an estimate of the Euclidean distance
between the test sample and all of the training set is made.
And then, the class labels of the KNN training samples of
the test labels are determined, where K is always an odd inte-
ger. Finally, each sample is given to a class that has the great-
est number of training samples in the K-Nearest Neighbors
clustering algorithm [66].

Given two different input vectors x, and x,,, their dis-
tance is given by

(25)

X, and X,, are two separate input vectors and d is
Euclidean distance.

7. Results and Discussions

For each sample used as input to the classifiers, 660 data
points from FCM and 3300 data points from SDA, Hilbert,
DCT, and FFT feature extraction techniques were used.
Classifiers are designed to precisely divide a dataset into can-
cer cells and normal datasets, which is the primary objective
of this algorithm. In order to assess the classification perfor-
mance of classifiers, it is quite usual to employ the confusion
matrix. The confusion matrix is a very simple idea; it is a
square matrix that includes all the different classes, both
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TaBLE 3: Average MSE and confusion matrix for normal and
ovarian data without feature selection.

Feature extraction  Classifiers TP TN FP FN MSE

GMM 44 26 24 1.82e-04

Detrend FA 48 26 24 2 2.00e-04

FCM NLR 47 26 24 2.10e-04
BDLC 39 27 23 11 1.06e-04

LR 40 27 23 10 3.03e-05

KNN 34 26 24 16 1.82e-04

GMM 42 43 7 4.62E-06

Detrend FA 46 40 10 6.98E-06

SDA NLR 48 44 6 2 2.38E-06
BDLC 35 26 24 15 2.06E-04

LR 36 26 24 14 2.34E-04

KNN 28 27 23 22 1.75E-04

GMM 30 27 23 20 1.85E-04

Detrend FA 47 26 24 2.01E-04

Hilbert Transform NLR 4826 210E-04
BDLC 37 40 10 13 1.80E-05

LR 33 42 8 17 2.67E-05

KNN 28 27 23 22 1.68E-04

GMM 33 42 8 17 2.77E-05

Detrend FA 45 28 22 5 7.31E-05

NLR 45 29 21 5 4.33E-05

FET BDLC 34 34 16 16 3.97E-05
LR 29 29 21 21 7.87E-05

KNN 26 41 9 24 1.34E-04

GMM 36 41 9 14 1.73E-05

Detrend FA 45 37 13 1.19E-05

DCT NLR 46 29 21 4 3.59E-05
BDLC 37 36 14 13 2.68E-05

LR 31 29 21 19 6.92E-05

KNN 29 26 24 21 2.21E-04

horizontally and vertically. Mention the classes as the results
obtained on the top of a table with the targets on the right.

Confusion matrix is derived from the four elements True
Positive (TP), True Negative (TN), False Positive (FP), and
False Negative (FN).

7.1. Classification without Feature Selection. After applying
majority voting to the ensemble of classifiers, the output of
the ensemble of classifiers is the computed class labels for the
test samples. In order to compare the computed and targeted
outputs, a confusion matrix was produced, and the resulting
representation is displayed in Table 2. In order to assess how
well the classifier performs based on these values, the accuracy,
precision, and error rate have all been measured and reported
for both normal and ovarian microarray gene data. The mean
square error (MSE) of the classifiers is determined.

Table 3 shows the average values of MSE for FCM, SDA,
Hilbert, FFT, and DCT features for GMM, DFA, NLR,
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TABLE 4: Performance measures of classifiers for normal and ovarian data without feature selection.
Feature extraction Classifiers Performance measures
Accuracy  Precision = F1Score = MCC FM Error rate  Jaccard metric CSI
GMM 70 64.706 74.576 0.429 0.755 30 59.459 52.706
Detrend FA 74 66.667 78.689 0.535 0.800 26 64.865 62.667
FCM NLR 73 66.197 77.686 0.507 0.789 27 63.514 60.197
BDLC 66 62.903 69.643 0.330 0.700 34 53.425 40.903
LR 67 63.492 70.796 0.352 0.713 33 54.795 43.492
KNN 60 58.621 62.963 0.203 0.631 40 45.946 26.621
GMM 85 85.714 84.848 0.700 0.849 15 73.684 69.714
Detrend FA 86 82.143 86.792 0.725 0.869 14 76.667 74.143
NLR 92 88.889 92.308 0.843 0.924 8 85.714 84.889
SDA BDLC 61 59.322 64.220 0.224 0.644 39 47.297 29.322
LR 62 60.000 65.455 0.245 0.657 38 48.649 32.000
KNN 55 54.902 55.446 0.100 0.554 45 38.356 10.902
GMM 57 56.604 58.252 0.140 0.583 43 41.096 16.604
Detrend FA 73 66.197 77.686 0.507 0.789 27 63.514 60.197
Hilbert Transform NLR 74 66.667 78.689 0.535 0.800 26 64.865 62.667
BDLC 77 78.723 76.289 0.541 0.763 23 61.667 52.723
LR 75 80.488 72.527 0.508 0.729 25 56.897 46.488
KNN 55 54.902 55.446 0.100 0.554 45 38.356 10.902
GMM 75 80.488 72.527 0.508 0.729 25 56.897 46.488
Detrend FA 73 67.164 76.923 0.489 0.777 27 62.500 57.164
NLR 74 68.182 77.586 0.507 0.783 26 63.380 58.182
FET BDLC 68 68.000 68.000 0.360 0.680 32 51.515 36.000
LR 58 58.000 58.000 0.160 0.580 42 40.845 16.000
KNN 67 74.286 61.176 0.356 0.622 33 44.068 26.286
GMM 77 80.000 75.789 0.543 0.759 23 61.017 52.000
Detrend FA 82 77.586 83.333 0.648 0.836 18 71.429 67.586
DCT NLR 75 68.657 78.632 0.532 0.795 25 64.789 60.657
BDLC 73 72.549 73.267 0.460 0.733 27 57.813 46.549
LR 60 59.615 60.784 0.200 0.608 40 43.662 21.615
KNN 55 54.717 56.311 0.100 0.563 45 39.189 12.717
BDLC, LR, and KNN classifiers. The table also gives the TP, 100 - Accuracy analysis without feature selection
TN, FP, and FN values for extracted features for GMM, 90 4
DFA, NLR, BDLC, LR, and KNN classifiers. In the FCM fea- S 80-
ture, the LR classifier obtains the minimum MSE of 3.03e-05 o 8 704
and the NLR classifier attains the maximum MSE of 2.10e- g g 60-
04. In the SDA feature, the NLR classifier obtains the mini- g 3 50
mum MSE of 2.38E-06 and the LR classifier attains the max- % § 40 -
imum MSE of 2.34E-04. For the Hilbert transformed feature, = £ 304
the BDLC classifier obtains the minimum MSE of 1.80E-05 g 20-
and the NLR classifier attains the maximum MSE of 2.10E- 104
04. For the FFT feature, the GMM classifier obtains a mini- 0- BDLC Detrend GMM _ KNN LR NLR

mum MSE of 2.77E-05 and the KNN classifier attains a max-
imum MSE of 1.34E-04. For the DCT feature, the LR
classifier obtains a minimum MSE of 1.19E-05 and the
KNN classifier attains a maximum MSE of 2.21E-04.

The features are extracted from the microarray gene data
using FCM, SDA, Hilbert, DCT, and FCT methods for both
normal and ovarian gene data. The extracted features are

Accuracy analysis for six classifiers without feature selection

B DCT B HT
B FCM SDC
FFT

FIGURE 6: Accuracy analyses without feature selection by
correlation distance of classifiers.
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TaBLE 5: Average MSE and confusion matrix for normal and ovarian data with correlation distance feature selection.

Feature extraction Classifiers TP TN FP FN MSE
GMM 30 36 14 20 4.58E-05
Detrend FA 28 41 9 22 5.41E-05
FCM NLR 30 33 17 20 5.54E-05
BDLC 36 29 21 14 4.82E-05
LR 44 33 17 6 2.36E-05
KNN 29 27 23 21 0.000125
GMM 42 34 16 2.45E-05
Detrend FA 41 27 23 9.06E-05
SDA NLR 26 27 23 24 0.000262
BDLC 43 29 21 7 4.18E-05
LR 34 29 21 16 5.55E-05
KNN 28 27 23 22 0.000142
GMM 29 34 16 21 5.53E-05
Detrend FA 49 27 23 0.000105
Hilbert Transform NLR 44 35 15 1.71E-05
BDLC 45 37 13 5 1.3E-05
LR 44 26 24 0.000192
KNN 33 37 13 17 3.43E-05
GMM 29 42 8 21 4.53E-05
Detrend FA 45 41 9 5 6.42E-06
NLR 35 27 23 15 9.02E-05
FET BDLC 29 27 23 21 0.000163
LR 35 26 24 15 0.000187
KNN 27 31 19 23 0.000115
GMM 46 42 8 4.64E-06
Detrend FA 46 27 23 8.89E-05
DCT NLR 45 28 22 5 7.92E-05
BDLC 37 36 14 13 2.28E-05
LR 34 42 8 16 2.42E-05
KNN 28 33 17 22 6.8E-05

provided to the six classification models to analyze the per-
formance. The performance measures of six classifiers are
shown in Table 4. DFA classifiers attain the highest accuracy
for FCM features among the other classifiers at 74%, with a
high precision of 66.667%, a high F1 score of 78.689%, with
an MCC of 0.535%, with high Jaccard metrics of 64.865%,
and a CSI value of 62.667%. For FCM features among the
other classifiers, DFA has a lower error rate of 26%. KNN
provides lower parametric values, such as accuracy of 60%,
MCQC of 0.203, and CSI of 26.621%.

In SDA feature, compared with the other classifiers,
NLR classifiers outperformed with the highest accuracy
of 92%, with high precision of 88.889%, a high F1 score
of 92.308%, with MCC of 0.843%, with high Jaccard met-
rics of 85.714%, and a CSI value of 84.889%. For SDA fea-
tures, among the other classifiers, NLR has the lowest
error rate at 8%. The NLR classifier error rate value is
drastically reduced. KNN gives the lowest parametric
values like accuracy of 55%, MCC of 0.100, and 10.902%

as CSI. BDLC classifiers have the best accuracy of 77%,
with precision of 78.723%, an F1 score of 76.289%, MCC
of 0.541%, high Jaccard metrics of 61.667%, and a CSI
value of 52.723% for Hilbert features. The other classifiers
have lower accuracy. For Hilbert features, among the other
classifiers, KNN has a low accuracy of 55% and a high
error rate of 45%.

The error rate of the KNN classifier in SDA, Hilbert, and
DCT features reaches as high as 45%. Among the other clas-
sifiers, GMM classifiers achieve the highest accuracy for FFT
features at 75%, with precision of 80.448%, an F1 score of
72.527%, MCC of 0.508%, Jaccard metrics of 56.897%, and
a CSI value of 46.448%. For FFT features, among the other
classifiers, GMM has a low error rate of 25%. The LR classi-
fier for FFT features has an accuracy rate of 58% and an
error rate of 42%. DFA classifiers attain the highest accuracy
for DCT features among the other classifiers at 82%, an F1
score of 83.333%, with MCC of 0.836%, with high Jaccard
metrics of 71.429%, and a CSI value of 67.657%. For DCT
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TABLE 6: Performance measures of classifiers for ovarian data with feature selection.
Feature extraction Classifiers Performance measures
Accuracy  Precision  F1score = MCC FM Error rate  Jaccard metric CSI
GMM 66 68.182 63.830 0.322 0.640 34 46.875 28.182
Detrend FA 69 75.676 64.368 0.394 0.651 31 47.458 31.676
FCM NLR 63 63.830 61.856 0.260 0.619 37 44.776 23.830
BDLC 65 63.158 67.290 0.303 0.674 35 50.704 35.158
LR 77 72.131 79.279 0.554 0.797 23 65.672 60.131
KNN 56 55.769 56.863 0.120 0.569 44 39.726 13.769
GMM 76 72414 77.778 0.527 0.780 24 63.636 56.414
Detrend FA 68 64.063 71.930 0.375 0.725 32 56.164 46.063
NLR 53 53.061 52.525 0.060 0.525 47 35.616 5.061
SDA BDLC 72 67.188 75.439 0.458 0.760 28 60.563 53.188
LR 63 61.818 64.762 0.261 0.648 37 47.887 29.818
KNN 55 54.902 55.446 0.100 0.554 45 38.356 10.902
GMM 63 64.444 61.053 0.261 0.611 37 43.939 22.444
Detrend FA 76 68.056 80.328 0.579 0.817 24 67.123 66.056
Hilbert Transform NLR 79 74.576 80.734 0.590 0.810 21 67.692 62.576
BDLC 82 77.586 83.333 0.648 0.836 18 71.429 67.586
LR 70 64.706 74.576 0.429 0.755 30 59.459 52.706
KNN 70 71.739 68.750 0.401 0.688 30 52.381 37.739
GMM 71 78.378 66.667 0.435 0.674 29 50.000 36.378
Detrend FA 86 83.333 86.538 0.722 0.866 14 76.271 73.333
NLR 62 60.345 64.815 0.243 0.650 38 47.945 30.345
FET BDLC 56 55.769 56.863 0.120 0.569 44 39.726 13.769
LR 61 59.322 64.220 0.224 0.644 39 47.297 29.322
KNN 58 58.696 56.250 0.161 0.563 42 39.130 12.696
GMM 88 85.185 88.462 0.762 0.885 12 79.310 77.185
Detrend FA 73 66.667 77.311 0.497 0.783 27 63.014 58.667
DCT NLR 73 67.164 76.923 0.489 0.777 27 62.500 57.164
BDLC 73 72.549 73.267 0.460 0.733 27 57.813 46.549
LR 76 80.952 73913 0.527 0.742 24 58.621 48.952
KNN 61 62.222 58.947 0.221 0.590 39 41.791 18.222

features among the other classifiers, KNN has a low error
rate of 45% and 55% accuracy.

The comparison graph of the accuracy for the six classi-
fiers is shown in Figure 6. Without selecting the features, the
NLR classifiers give the best accuracy and outperform other
classifiers. For all the features, the accuracy, precision, and
Jaccard metrics are high and the error rate is lower.

7.2. Classification with Feature Selection. The extracted fea-
tures are given to the six classifiers to analyze the perfor-
mance after the feature selection. The average MSE and
confusion matrix for normal and ovarian data with correla-
tion distance feature selection is shown in Table 5. The per-
formance measures with feature selection of six classifiers
are shown in Table 6. For all the features, the accuracy, pre-
cision, and Jaccard metrics are high and the error rate is
lower. The comparison graph of the accuracy for the six clas-
sifiers is shown in Figure 7. Without selecting the features,

Accuracy analysis with
feature selection by correlation distance
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FIGURE 7: Accuracy analyses with feature selection by correlation
distance of classifiers.
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the NLR classifiers give the best accuracy and outperform
other classifiers.

Table 6 shows the average values of MSE for FCM, SDA,
Hilbert, FFT, and DCT features for GMM, DFA, NLR,
BDLC, LR, and KNN classifiers with feature selection. The
table also gives the TP, TN, FP, and FN values for extracted
features for GMM, DFA, NLR, BDLC, LR, and KNN classi-
fiers with feature selection.

In the FCM feature, the LR classifier obtains a mini-
mum MSE of 2.36E-05 and the KNN classifier attains a
maximum MSE of 0.000125. In the SDA feature, the
GMM classifier obtains a minimum MSE of 2.45E-05 and
the NLR classifier attains a maximum MSE of 0.000262.
For the Hilbert transformed feature, the BDLC classifier
obtains a minimum MSE of 1.3E-05 while the LR classifier
attains a maximum MSE of 0.000192. For the FFT feature,
the DFA classifier obtains a minimum MSE of 6.42E-06
and the LR classifier attains a maximum MSE of 0.000187.
For the DCT feature, the GMM classifier obtains a mini-
mum MSE of 4.64E-06 and the DFA classifier attains a
maximum MSE of 8.89E-05.

While the NLR classifier obtains 92% accuracy for SDA
features when no features are selected, the KNN classifier
only achieves 55% accuracy for SDA, Hilbert, and DCT
features when no features are selected. The NLR classifier
outperforms the other five classifiers in this situation. For
FCM features, the LR classifier has the highest classifica-
tion accuracy of 77% compared with other classifiers and
also has the highest F1 score of 79.279, with a low error
rate of 23. KNN classifiers have a low accuracy of 56%
for FCM features with a high error rate of 44%. For SDA
features, the GMM classifier has the highest classification
accuracy of 76% compared with other classifiers and also
has a high F1 score of 77.778, with a low error rate of
24. NLR classifiers have a low accuracy of 53% for SDA
features with a high error rate of 47%. For Hilbert features,
the BDLC classifier has a high classification accuracy of
82% compared with other classifiers and also has a high
F1 score of 83.333, with a low error rate of 18. GMM clas-
sifiers have a low accuracy of 63% for Hilbert features with
a high error rate of 37%. For FFT features, the DFA clas-
sifier has the highest classification accuracy of 86% com-
pared with other classifiers and also has a high F1 score
of 86.538, with a low error rate of 14. BDLC classifiers
have a low accuracy of 56% for FFT features with a high
error rate of 44%.

GMM outperforms among the other classifiers with the
highest accuracy of 88%, with a high precision of 85.185%,
an F1 score of 88.462%, with a high MCC of 0.762, with
the lowest error rate of 12, and a CSI value of 77.185 for
DCT features; NLR achieves the lowest accuracy of 53%
for SDA features when the feature selection is done. The
lowest accuracy of all of the classifiers tested.

Compared to other classification algorithms tested in
this study, the result reveals that NLR delivers the best and
highest classification accuracy for all of the data. As a result,
the algorithm is more general than earlier classification algo-
rithms. KNN, on the other hand, has the lowest accuracy of
all the algorithms.
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8. Conclusion

Ovarian cancer is the most common female malignancy.
Computer-aided diagnosis is required to perform the proper
diagnosis. Microarray technology allows for the simulta-
neous monitoring of thousands of genes under certain con-
ditions. Microarray technology allows the study of gene
expression and generates a lot of data. As a result of the
curse of dimensionality and the tiny model space, further
processing is difficult. In this research work, the 33000
microarray gene data for 100 samples are used, and with
the help of ANOVA method, 16000 prominent genes
were selected. The features are extracted using FCM,
SDA, Hilbert, DCT, and FFT techniques, and the statisti-
cal parameters are analyzed. By correlation distance, the
45 genes are selected for classification. With and without
feature selection by correlation distance for the extracted
features, the datasets are classified by classifiers to get
the best accuracy rate. The best results obtained by NLR
classifiers were 92% accuracy for SDA features without
feature selection. Mathematical-based feature selection
has less accuracy compared to without feature selection.
The future work will be the proposed feature selection
techniques by various heuristic algorithms and to enhance
the classification accuracy for the microarray gene data.

Data Availability
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