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Objective. Artificial intelligence-powered screening systems of coronavirus disease 2019 (COVID-19) are urgently demanding
since the ongoing outbreak of SARS-CoV-2 worldwide. Chest CT or X-ray is not sufficient to support the large-scale screening
of COVID-19 because mildly-infected patients do not have imaging features on these images. Therefore, it is imperative to
exploit supplementary medical imaging strategies. Traditional Chinese medicine has played an essential role in the fight against
COVID-19. Methods. In this paper, we conduct two kinds of verification experiments based on a newly-collected multi-
modality dataset, which consists of three types of modalities: tongue images, chest CT scans, and X-ray images. First, we study
a binary classification experiment on tongue images to verify the discriminative ability between COVID-19 and non-COVID-
19. Second, we design extensive multimodality experiments to validate whether introducing tongue image can improve the
screening accuracy of COVID-19 based on chest CT or X-ray images. Results. Tongue image screening of COVID-19 showed
that the accuracy (ACC), sensitivity (SEN), specificity (SPEC), and Matthew correlation coefficient (MCC) of the improved
AlexNet and Googlenet both reached 98.39%, 98.97%, 96.67%, and 99.11%. The fusion of chest CT and tongue images used a
tandem multimodal classifier fusion strategy to achieve optimal classification, and the results and screening accuracy of
COVID-19 reached 98.98%, resulting in a significant improvement of 4.75% the highest accuracy in 375 years compared with
the single-modality model. The fusion of chest x-rays and tongue images also had good classification accuracy. Conclusions.
Both experimental results demonstrate that tongue image not only has an excellent discriminative ability for screening
COVID-19 but also can improve the screening accuracy based on chest CT or X-rays. To the best of our knowledge, it is the
first work that verifies the effectiveness of tongue image on screening COVID-19. This paper provides a new perspective and a
novel solution that contributes to large-scale screening toward fast stopping the pandemic of COVID-19.

1. Introduction

With the pandemic of coronavirus disease 2019 (COVID-
19) worldwide, the automated system is significantly urgent
and necessary to realize large-scale screening. COVID-19 is
a respiratory infectious disease caused by the novel virus
named severe acute respiratory syndrome coronavirus 2
(SARS-CoV-2). SARS-CoV-2 has so high human-to-

human transmission ability that it seriously threatens the
health of people around the world. According to the World
Health Organization (WHO), until April 29, 2022, more
than 511,234,994 people have suffered from COVID-19
worldwide to date. Among them, more than 6,255,880 peo-
ple have died. With the rapid increase of COVID-19 cases
every day, fast and large-scale screenings are imperative to
cut off the source of infection. Although nucleic acid
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detection is the gold standard in clinical, the availability, sta-
bility, and reproducibility of nucleic acid detection kits are
problematic [1, 2]. Nowadays, medical imaging examina-
tions, such as chest computed tomography (CT) and X-
ray, play an essential role in the screening process of
COVID-19. However, medical imaging-based screening of
COVID-19 is under problem with enormous pressure in
clinical, i.e., the rapidly growing amount of COVID-19 cases
makes global medical resources unbearable [3, 4]. Auto-
mated screening systems of COVID-19 can correspondingly
assist the clinical practice in accelerating the large-scale
screening and alleviating the global shortage of medical sup-
plies. Therefore, it is significantly urgent and necessary to
study on automated screening systems.

In practice, a new supplementary examination approach
is demanding to improve the screening accuracy and reduce
the radiation dose. While a few recent studies on automated
COVID-19 screening have made great progress, they only
focus on designing either chest CT-based approaches or X-
ray-based techniques [1, 2, 4–21]. Both chest CT and X-ray
are common medical imaging methods in clinical but have
three-fold limitations in the task of automated screening of
COVID-19. First, they cannot present imaging features for
mild infected cases, such that it is impossible to screen mild
COVID-19 patient [22, 23]. Second, existing studies have
indicated that the accuracy rates of existing methods are
not too satisfied, and the single-modality data alone is not
sufficient to support real-world clinical applications [3].
Finally, the CT and X-ray examinations are not easily acces-
sible, and their radiation doses are very high.

In the global fight against COVID-19, tongue image
analysis contributes to the diagnosis and treatment in clini-
cal. Tongue image plays a vital role because it has many
advantages, such as light, quick, and availability. Analyzing
tongue images is an efficient strategy and the foundation of
traditional Chinese medicine (TCM) in the COVID-19 diag-
nosis clinically. Tongue images carry special features of
COVID-19 and thus can provide relevant references for
TCM, which has successfully accelerated the recovery of
COVID-19 patients and reduced the use of antibiotics in
China [24, 25]. According to the clinical analysis of TCM,
the main manifested characteristics of COVID-19 in tongue
images are the tongue color, the thickness of tongue coating,
the degree of greasy coating, and the cracks of the tongue
body. Interestingly, the tongue color changes of mild
COVID-19 patients are noticeable, making up the lack of
CT and X-ray. Thus, tongue images provide another diag-
nostic approach for people who do not have visible radio-
graphic features with mild or asymptomatic infection. On
the other hand, the imaging devices of tongue images are
easily accessible, light, and quick. In case of emergency,
COVID-19 patients can use the mobile phone or digital
camera to take the tongue image and send it to remote doc-
tors without touch, preventing the spread of the virus.

In this paper, we investigate to answer a widely concern-
ing question: can tongue image assist the automated screen-
ing of COVID-19? To examine the role of tongue image, we
collected a real-world multimodality dataset from clinical.
This dataset consists of three types of modalities: tongue

images, chest CT scans, and X-ray images. Based on this
dataset, we conduct extensive verification experiments in
terms of two aspects. First, we design a binary classification
experiment on tongue images to verify whether tongue
images can discriminate COVID-19 and non-COVID-19.
Second, we develop comprehensive multimodality analyses
to validate whether combining tongue images with chest
CT or X-rays can improve the screening accuracy of
COVID-19. Theoretically, introducing the information of
tongue images will be more helpful in identifying COVID-
19. Therefore, we adopt dual-stream feature fusion networks
to verify further whether adding tongue image features can
help improve the screening accuracy of COVID-19. Both
the two aspects’ experimental results demonstrate that ton-
gue image not only has an excellent discriminative ability
for screening COVID-19 but also enhances the screening
accuracy. To the best of our knowledge, it is the first work
that verifies the effectiveness of tongue image on screening
COVID-19. This paper provides a new perspective and a
novel solution toward fast stopping the widespread of
COVID-19. From another point of view, this paper demon-
strates the importance of integrating Chinese and western
medicine to diagnose COVID-19 in clinical.

The significant contributions of this paper include as
follows:

(i) In this study, we verify the role of tongue image in
the emerging task of COVID-19 screening. Our
results have demonstrated the discriminative ability
of tongue image

(ii) In this study, we achieve multimodality image-
based screening of COVID-19, which paves a reli-
able way for future studies in the medical image
analysis community

(iii) In this study, we demonstrate the feasibility and
effectiveness of information fusion between tongue
image and other medical images and provide a
novel screening solution for the COVID-19 in
clinical

2. Related Work

This section presents related works in terms of automated
screening of COVID-19, multimodality methods, and ton-
gue image-based methods in the medical image analysis
community.

2.1. Automated Screening of COVID-19. To join in the global
fight against COVID-19, lots of emerging works devoted to
designing automated technologies for improving the clinical
diagnostic efficiency, including automated screening [1, 2,
5–11], patient severity assessment [26], infection quantifica-
tion [27], and infection area segmentation [8, 28]. While
existing screening works of COVID-19 have achieved prom-
ising performance, to the best of our knowledge, no work
has achieved automated analysis of COVID-19 based on
tongue images. Among them, automated screening of
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COVID-19 received the most attention, involving chest CT-
or X-ray-based works.

2.1.1. CT-Based Screening of COVID-19. Since chest CT is
the most-widely used imaging examination in clinical, a
large part of studies focus on CT-based screening of
COVID-19, including lesion patch-based methods [1, 2, 5,
6], 2D slice-based methods [7–10], and 3D scan-based
methods [3, 11]. First, lesion patch-based approaches either
need lesion annotations or are prone to errors from interme-
diate steps. For example, Wang et al. [1] firstly used a thresh-
old approach to extract ROI (region of interest) patches and
then trained a modified inception network to screen
COVID-19 from typical 105 viral pneumonia. They col-
lected chest CT scans from 79 cases of COVID-19 and 180
cases of typical viral pneumonia with 79.3% accuracy. Based
on a large-scale dataset, Shi et al. [5] firstly trained a VB-Net
to segment ROIs and then extracted manually-designed fea-
tures to fit a random forest on classifying COVID-19 and
common pneumonia. Second, the slice-based methods need
the manual selection of slices to train the classifier, and they
neglect the spatial correlation in CT scans, which is the key
for the screening of COVID-19. For instance, Gozes et al.
[8] used a 2D CNN to perform slice-level classification on
270 slices comprised of 120 COVID-19 and 150 normal
slices. Finally, 3D scan-based methods can achieve optimal
minima by leveraging end-to-end optimization, which often
obtains better performance than multistage methods. For
instance, Zhongyi et al. [3] formulated the 3D CT screening
task as the problem of multiple instance learning and pro-
posed a novel approach of attention-based deep 3D multiple
instance learning, which achieves accurate and interpretable
screening of COVID-19.

2.1.2. X-Ray-Based Screening of COVID-19. Since regular X-
ray machines are easily accessed in most primary hospitals
where CT scanners are insufficient, X-ray based method is
urgently needed. Based on public chest X-ray data, Li et al.
[4] proposed a discriminative cost-sensitive learning
approach to address the new problem of automated screen-
ing of COVID-19. Hassanien et al. [29] used a multilevel
threshold segmentation algorithm to crop lung areas and
adopted SVM to classify COVID-19 and normal cases based
on 40 chest X-rays. Ozturk et al. [30] ensembled several fea-
ture extraction algorithms and used a stacked autoencoder
with principal component analysis to make decisions. They
showed that handcrafted feature-based classifiers perform
better than deep models on small data. Several studies
applied popular deep learning techniques for the screening
of COVID-19. Hemdan et al. [31] validated the effectiveness
of multiple popular deep models based on X-ray datasets.

2.2. Multimodality Fusion.Multimodality data can introduce
comprehensive useful information and provide more dis-
tinct views. Generalized multimodality learning methods
always extract and fuse information from multiple heteroge-
neous sources simultaneously. Prominent theoretical
advance and effective algorithm have been achieved in the
medical image analysis community. To achieve the accurate

classification of chest diseases, Wang et al. [32] proposed the
Text-Image Embedding Network that conducts the fusion of
two heterogeneous sources comprised of medical records
and medical images. This method gains a significant
improvement compared to single-modality data. Zhou
et al. [33] and Zhou et al. [34] made maximum use of four
types of heterogeneous data (image, gene, etc.) to diagnose
Alzheimer’s disease (AD). Their experimental results show
that AD diagnosis’s accuracy can be significantly improved
when using these multimodality data simultaneously.

On the other hand, narrow multimodality data is always
one type of specific medical image generated by different
imaging principles. The narrow multimodality data can
present the same anatomical structure from different views.
For example, Liu et al. [35] proposed a fusion network to
combine magnetic resonance imaging (MRI) images and
positron emission tomography (PET) images. This work
achieved satisfactory classification performance in the task
of AD analysis. Li et al. [36] proposed the HyperDenseNet
that combines CT and MRI images to perform the segmen-
tation of lung tumors. The comparison between related
works of AI-based COVID-19 analysis is shown in Table 1.
This work also made a significant improvement. In this
paper, our objective is to fuse tongue images and radiology
images to validate the role of tongue images for finding a
new solution and realize the accurate screening of COVID-19.

2.3. Tongue Image Analysis. Tongue diagnosis is an impor-
tant and dominant part of TCM computer-aided diagnosis
and treatment [37]. With the advancement of the tongue
meter, the tongue image can be a high-quality record of ton-
gue color, water, grease, depressions, fissures, and much
other valuable information of concern to Chinese medicine
[38]. Accurate segmentation and appropriate feature
extraction are the heart of automated tongue diagnosis.
Zhou et al. [39] proposed a TongueNet for the tongue
image segmentation. TongueNet derives from U-Net and
adds a morphological layer at the top of the network
structure, which achieved the highest segmentation result
with a pixel-level accuracy of 98.45%. Zeng et al. [40] pro-
posed the Boundary Guidance Hierarchical Network
(BGHNet) and achieved an end-to-end optimization for
mixed losses. Srividhya and Muthukumaravel [41] com-
bined the extracted features and texture analysis results
to train support vector machines (SVM) for the classifica-
tion of tongue images. Yousif and Saud [42] used Gabor
filters to extract representative features and obtained
promising results on tongue image analysis.

The most representative work is achieved by Wu et al.
[43], who presented a conformal mapping method for ton-
gue image alignment. This method has a strong ability to
resist tongue deformation. At the same time, this work real-
ized automated analyses of 10 types of diseases, including
but not limited to diabetes, fatty liver, lung cancer, and
breast cancer. While prominent works have achieved prom-
ising progress, no work has achieved the automated analysis
of COVID-19 based on tongue images. In this paper, we val-
idate the effectiveness of tongue images on the screening task
of COVID-19.
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3. Materials and Methods

In this section, we introduce the newly-collected multimoda-
lity dataset comprised of tongue images, chest CT, and X-
rays. Then, we describe how the collected dataset is proc-
essed in the experiments. Finally, we give the full details of
the methodology employed in this study, including a
single-modality model and a multimodality information
fusion model.

3.1. Dataset. In this study, we collected a multimodality
dataset from COVID-19 designated treatment hospitals in
Shandong Province. This dataset consists of three types of
modalities, and the randomly-selected samples are illus-
trated in Figure 1. This dataset includes 488 patients com-
prised of 188 COVID-19 patients and 300 non-COVID-19
patients. This study and all research were approved and con-
ducted following relevant guidelines/regulations. Moreover,
the degree of severity is divided into mild, ordinary, severe,
and critical according to clinical standard. Without loss of
generality, the non-COVID-19 patients are healthy or have
other diseases, such as common viral pneumonia and bacte-
rial pneumonia. Every COVID-19 patient was confirmed
with nucleic acid detection kits of reverse transcription-
polymerase chain reaction (RT-PCR).

Since each patient has been tested several times, the data
from the same patient have at least two days gap to ensure
diversity. The splitting of the data is according to the patient
level, i.e., no data from the same patient exists in training
and testing sets, simultaneously. Figures 2 and 3 present the
patient number and image number of the training set, valida-
tion set, and test set among the three modalities, respectively.
In the test set, the severity degrees of COVID-19 patients are
shown in Figure 4.We can see that the ordinary degree among
the 17 COVID-19 patients accounts for the majority. Note the
time interval between the acquisition of the X-rays/CT image
and the tongue image not exceeding 24 hours.

When training, data augmentation strategies include
radiation transformation and color dithering. Specifically,

the radiation transformation includes random rotation
(0 ± 30) and horizontal flips. The color dithering includes
accidental adjustment of brightness (0% ± 50%) and contrast
(0% ± 30%). Besides, we normalized all images to reduce the
impact of different imaging devices on the data distribution.

3.2. Single-Modality Model. We use the common AlexNet as
the backbone for the screening of COVID-19 based on
single-modality data. The original AlexNet has eight layers,
which include five convolutional layers and three pooling
layers. The convolutional layers used a 11 × 11 filter, a 5 ×
5 filter, and three 3 × 3 filters. Three max-pooling layers with
2 × 2 kernel are deployed after the first, second, and fifth
convolutional layers. We set the output shape of the last con-
volutional layer’s features to be 6 × 6 × 512 and flatten them.
The original fully connected layers of AlexNet are removed
and replaced by two trainable fully-connected layers. The
channel numbers of the two fully-connected layers are 64
and 2, respectively. The network structure of the modified
AlexNet is shown in Table 2. Since the collected dataset is
too small to obtain promising results through training the
AlexNet from scratch, we use a transfer learning strategy.
The parameters of the convolutional layers are initialized
from the pretrained model based on ImageNet.

3.3. Multimodality Feature Fusion Model. The single modal-
ity of chest CT or X-ray is not sufficient to support the large-
scale screening of COVID-19. The reason is that the patients
with mild type do not have imaging features on chest CT or
X-ray, resulting in a high misdiagnosis rate. To combine the
imaging features from tongue images, we design a

Table 1: The comparison between related works of AI-based
COVID-19 analysis.

Method Type Data Task

[1] Lesion patch CT COVID-19 screening

[2] Lesion patch CT COVID-19 screening

[5] Lesion patch CT COVID-19 screening

[6] Lesion patch CT COVID-19 screening

[7] 2D slice CT COVID-19 screening

[8] 2D slice CT COVID-19 screening

[9] 2D slice CT COVID-19 screening

[4] 2D slice X-ray COVID-19 screening

[29] Lesion patch X-ray COVID-19 screening

[31] 2D slice X-ray COVID-19 screening

[26] 3D scan CT Patient severity assessment

[27] 3D scan CT Infection area segmentation

[28] 3D scan CT Infection area segmentation

Ordinary

Critical

Severe

Mild

Figure 1: Samples of different types of modalities: tongue image,
chest CT, and chest X-rays.
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multimodality feature fusion model for extracting and fusing
the semantic elements from different modalities.

As shown in Figure 5, the multimodality feature fusion
model has three subtle modules. First, a feature extraction
module is designed to generate deep heterogeneous features.
This module has dual paths that extract features from two
different modalities. Among them, each path has the same
structure as the single-modality model. Each path will gener-
ate a 64-D feature vector. During the training phase, the two
paths will be jointly optimized. Second, a fusion layer is pro-
posed for integrating the deep heterogeneous features.
Finally, a classifier module is deployed on the fused features
for performing the final prediction. The classifier module is
comprised of two fully connected layers. In the following
content, we introduce the fusion layer comprehensively.

The fusion layer is the essence of the multimodality fea-
ture fusion model. To better check the feasibility of tongue
images, we design three types of fusion strategies. The first
fusion strategy is concatenation, which connects two feature
vectors [44]. Assume the dimensions of two feature vectors
are P and Q, respectively. The size of the fused feature vector
is P +Q. The concatenation fusion strategy can keep the raw
representative information of specific modality data, which
could efficiently test the semantic ability of the extracted fea-
ture from tongue images. The second fusion strategy is the
addition operation, which adds two feature vectors point-
to-point. The addition fusion strategy requires that the input
feature vectors have the same dimension [45]. Assume the
dimensions of two feature vectors are P and Q, where P =
Q. The dimension of the fused feature is P. The advantage
of the addition fusion strategy is that the different features
can be thoroughly fused to eliminate unilateral effects.

The final fusion strategy is the attention gate (AG) mod-
ule proposed by Schlemper et al. [46]. The schematic of the
AG module is shown in Figure 6. After adding the feature
vectors generated by the two backbone networks, a 1 × 1
convolution layer with Softmax function is adopted. Then,
the spatial region is selected by analyzing the activated con-
text information. The trilinear interpolation method is
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Mild
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Critical

3, 17%

10, 59%

1, 6%

3, 18%

Figure 4: The distribution of severity degrees of the 17 COVID-19
cases in the test set. We can see that ordinary patients account for
the majority.

Table 2: The architecture of single-modality classifier.

Stages Layer
Filter/stride/
padding

Feature
extraction

Con2d 3, 64ð Þ + ReLU 11 × 11/4/2

MaxPool2d 3 × 3/2
Con2d 64,128ð Þ + ReLU 5 × 5/1/2

MaxPool2d 3 × 3/2
Con2d 128,256ð Þ + ReLU 3 × 3/1/1
Con2d 256,128ð Þ + ReLU 3 × 3/1/1

Propressive
classifier

AdaptiveMaxPool2d (6,6)

FC 128 × 6 × 6,128ð Þ + ReLU
Dropout (P = 0:7)
FC 128,64ð Þ + ReLU
Classifier (64,2)
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adopted to resample the attention coefficient. The resampled
coefficients are multiplied on the raw feature vector. Finally,
we flatten the multiplied feature vector to obtain the fused
feature vector. The AG module can generate a semantic
and useful representation for multimodality data and usually
achieve better performance. These three information fusion
strategies can analyze the impact of the introduction of ton-
gue images from different perspectives. The feasibility of
tongue images can be fully demonstrated.

4. Results and Discussion

We verify tongue images on the newly-collected multimoda-
lity dataset using state-of-the-art algorithms. The code and
dataset will be publicly available. In this section, we intro-
duce the set-up of experiments, then present the binary clas-
sification results of the tongue images and the multimodality
classification results of COVID-19 to demonstrate the feasi-
bility of tongue images on the screening task of COVID-19.
We finally give in-depth analyses in terms of noisy robust-
ness and t-test.

4.1. Set-Up

4.1.1. Tasks. We conduct two screening tasks for better ver-
ifying the tongue images in the problem of COVID-19
screening. The first task is the screening of COVID-19 based
on tongue images. The positive class is COVID-19, and the
negative class is non-COVID-19. From the practical point

NormalA

A COVID-19
In

pu
t

In
pu

t

Conv + ReLU
Max-pool
Flatten

Figure 5: Structure of dual-stream convolutional neural network with different fusion strategy.
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Figure 6: Schematic of the attention gate (AG).

Table 3: The screening results of COVID-19 based on tongue
image using several convolutional neural networks.

Methods ACC. SEN. SPEC. MCC

AlexNet 0.9839 0.9897 0.9667 0.9911

Vgg16 0.9516 0.9688 0.9333 0.9732

GoogLeNet 0.9839 0.9897 0.9667 0.9911

DenseNet121 0.9678 0.9375 0.9333 0.9468

ResNet18 0.9677 0.9688 0.9667 0.9732

ResNet50 0.9839 0.9688 0.9667 0.9732

21 1

1 29

COVID-19 Other

C
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ID
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Figure 7: Confusion matrix of COVID-19 screening based on
tongue images. We can see that both the classes of COVID-19
and non-COVID-19 have one bade cases.
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of view, the non-COVID-19 CT scans involve both common
pneumonia and no pneumonia. The second task is the
screening of COVID-19 based on three types of modalities
data: tongue images, chest X-rays, and chest CT. Among
the second task, we first combine tongue images and chest
X-rays to screen COVID-19 for verifying whether or not
using tongue images can improve the screening accuracy
based on chest X-rays alone. We then combine tongue
images, and chest CT for ascertaining whether or not using
tongue images can enhance the screening accuracy based
on chest CT alone. The split of data is according to the
patient level.

4.1.2. Configurations. In order to verify the effectiveness of
tongue images, we compare various state-of-the-art
methods: VGG19 [47], GoogLeNet [48], ResNet18 [49],
ResNet50 [50], DenseNet [51], and the modified AlexNet
for the first task. We compare three types of feature fusion
approaches: concatenate, add, and attention gate for the sec-
ond task. We also report the screening results of COVID-19
based on chest CT or X-rays, respectively. We implement
our algorithm in Pytorch. Adam optimizer is used with an
initial learning rate of 1e − 4 and other default parameters,
following a training strategy that reduces the learning rate
by 0.1 times every ten epochs. The input shape is 256 ×
256. We set the training epoch T to 40 and the batch size
to 32. All classifiers are deployed in the large server that
includes an Nvidia GPU Tesla V100 GPU with cuDNN
v9.0 and an Intel CPU Xeon(R) Gold 6246@3.30GHz. All
the compared models are implemented according to their
open-source codes.

4.1.3. Evaluation Metrics. The evaluation metrics include
accuracy (ACC.), sensitivity (SEN.), specificity (SPEC.),
Matthew correlation coefficient (MCC), the area under
curves (AUC), and confusion matrix. Sensitivity measures
the proportion of correctly identified positive data (i.e.,
COVID-19), and specificity measures the percentage of cor-
rectly identified negative data. The AUC value is an index
that measures the entire two-dimensional area underneath
the entire receiver operating characteristic (ROC) curve.
The confusion matrix is a table with two rows and two col-
umns that reports the number of false positives, false nega-
tives, true positives, and true negatives. We also report the
ROC curves for better analyzing the screening performance
of tongue images.

4.2. Screening Result of COVID-19 Based on Tongue Images.
To verify the ability of tongue image in the automated
screening of COVID-19, we carried out a large number of
experiments based on tongue images using three types of
deep learning classification models. Table 3 reports the
results on the screening of COVID-19 based on tongue
images. All the implemented algorithms are achieving prom-
ising performance. For example, both the modified AlexNet
and GoogLeNet obtain the same state-of-the-art perfor-
mance with a classification accuracy of 98.39%, a sensitivity
of 98.97%, a specificity of 96.67%, and Matthew correlation
coefficient of 99.11%. Saygl proposed a method based on
image processing and machine learning to automatically
detect viruses through segmented CT images with optimal
accuracy values of 98.5% in dataset 1, 86.3% in dataset 2,
and 94.5% in mixed dataset [18]. The screening results of
other algorithms also remarkably outperform 90% on all
the metrics. These rigorous results demonstrate that ton-
gue images have the discriminative ability to screen
COVID-19, which positively answers the question that
tongue image can assist in the automated screening of
COVID-19. Note that the modified AlexNet has fewer
parameters and faster convergence. Therefore, the modi-
fied AlexNet is capable of the basic model of the multimo-
dality networks. As shown in Figure 1, even the features of
mild COVID-19 patients are unobvious, and the indis-
cernible infection areas lead to unusual difficulties; using
tongue images still obtains accurate performance, which
demonstrates the generalization and robustness under
challenging environments.

Figure 7 shows the confusion matrix of the COVID-19
screening based on tongue images using the modified Alex-
Net. Our algorithm obtains a balance performance. From
another view, these results demonstrate that the characteris-
tic features of COVID-19 on tongue images are different
from non-COVID-19. Therefore, they are easy to be distin-
guished by deep models. After revisiting the bad cases, we
found that the misclassified images are belonging to ordi-
nary COVID-19 patients. The reason is that the misclassified
tongue images are ruddy, white, and unobvious greasy due
to the light. This analysis indicates that although the collec-
tion of tongue images is convenient, the imaging conditions
are strict, and the development of collection standards is
urgently required.

4.3. Screening Result of COVID-19 Based on Multimodality
Data. This section aims to verify whether or not introducing
tongues images can improve the screening accuracy of
COVID-19. As a baseline, we first implemented a single-
modality model for the screening of COVID-19 based on
single-modality data: chest CT or X-rays. We then use the
newly-designed dual-stream neural networks with different
fusion strategies to achieve two multimodality experiments:
combine tongue image and chest CT, and combine tongue
and chest X-rays. Fortunately, extensive repeated experi-
mental results demonstrate the additionally using tongue
images can improve the screening accuracy based on chest
CT or X-rays. The results of the two multimodality experi-
ments are reported as follows, respectively.

Table 4: Classification results in single-modality CT and
multimodality data (tongue image and CT).

Modality Classifier ACC. SEN. SPEC. MCC

Chest CT
AlexNet 0.9423 0.9091 0.8967 0.9232

ResNet50 0.9231 0.9234 0.8667 0.9350

Multimodality

Concat 0.9898 0.9545 1.0 0.9611

Add 0.9615 0.9545 0.9667 0.9212

AG 0.9615 0.9545 0.9667 0.9212
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4.3.1. The Fusion of Chest CT and Tongue Images. Table 4
reports the results on the screening of COVID-19-based
single-modality CT data and the multimodality data (tongue
image and chest CT). Figure 8 shows the examples of incor-
rectly and correctly classified CT images. In summary, the
multimodality model remarkably outperforms the single-
modality model, which proves the feasibility of combining
tongue images additionally. Specificity, for the chest CT clas-
sification task, we select out the modified AlexNet and
ResNet50 to provide baselines. According to the results in
Table 4, ResNet achieved a classification accuracy of
92.31%, and its sensitivity reached 92.34%. We also adopt
different multimodality feature fusion strategies, including
concatenation, add, and gated attention modules, to fuse
tongue image features and CT features. As can be seen from
Table 3, the multimodality classifier using the concatenation
fusion strategy achieves the best classification results, and
the accuracy of screening for COVID-19 reaches to

98.98%, which produces a significant improvement of
4.75% compared with the highest accuracy achieved by the
single-modality model. At the same time, the classification
accuracies of the other two fusion strategies significantly
outperform the single-modality models.

When the tongue image is additionally used, the greatest
change among the three evaluation metrics is specificity, but
the accuracy and sensitivity also do change much. We ana-
lyzed that the sensitivity of COVID-19 to true negative cat-
egories increased when the tongue features were integrated
into CT images, which helped reduce the additional exami-
nation to reduce the screening burden of suspected person-
nel and hospitals. From the perspective of three different
fusion strategies, the concatenation strategy achieves the
most considerable improvement. The reason is that tongue
image and chest X-ray images belong to heterogeneous data.
For heterogeneous data, the concatenation is the most suit-
able fusion strategy.

We dissect the strengths of the multimodality models.
Figure 9 presents the ROC curves of the screening of
COVID-19 with and without using tongue images, which
characterizes the robustness and stability of multimodality
models. Specificity, compared to the single-modality CT-
based model, the multimodality significantly increases the
AUC value by 1.21%. The confidence level of the classifier
has also been improved. Figure 10 reports the confusion
matrixes of four types of models. The improvement can also
be clearly found. Combining tongue image and chest CT
reduces two bad cases, which once verifies the importance
of tongue images. Since CT images are the most widely-
used radiological images in the current clinical screening of
COVID-19, combining tongue images and chest CT can be
widely promoted for achieving the accurate and large-scale
screening of COVID-19 in clinical.

4.3.2. The Fusion of Chest X-Rays and Tongue Images.
Table 5 reports the results on the screening of COVID-19-
based single-modality X-ray data and the multimodality data
(tongue image and chest X-ray). We can see that the

(a) (b)

Figure 8: Examples of incorrectly and correctly classified CT images. (a) represents incorrectly classified image. (b) represents correctly
classified image.
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Figure 9: ROC curves of CT and X-rays with and without using
tongue image.
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multimodality model also remarkably outperforms the
single-modality model, which once demonstrates that using
tongue images can improve the screening accuracy of
COVID-19. This result verifies that tongue image can be
used in clinical as a critical indicator for the screening of
COVID-19. Specificity, in the single-modality results based
on chest X-rays, AlexNet achieved the best results compared

to ResNet50. Similarly, among different fusion strategies, the
concatenation produces the best performance. The
attention-gating fusion strategy performs similarly to con-
catenation, indicating that different fusion strategies have
less impact on the multimodality screening of COVID-19.
According to the ROC curves, as shown in Figure 4, and
the confusion matrixes, as demonstrated in Figure 10, the
single-modality models obtain pool performance compared
to multimodality models. We also find that the classification
probabilities of COVID-19 based on chest X-rays are
improved after the tongue image feature is embedded. In
clinical COVID-19 screening, due to chest X-rays’ imaging
characteristics, the application range of X-rays is not as
extensive as CT. However, chest X-rays can reflect the lesion
from the whole to a certain extent, and the operation is sim-
ple and easy to access in primary hospitals. Therefore, the
fusion of chest X-rays and tongue images is an effective solu-
tion for screening COVID-19 in areas where medical condi-
tions are scarce.

4.4. Analysis

4.4.1. Noisy Robustness. While previous extensive results
have verified the discriminative ability of tongue images on
distinguishing COVID-19 and non-COVID-19, we provide
a broader spectrum for more in-depth analysis by introduc-
ing noisy labels. Following the protocol in the pioneering
work [45], we create corrupted counterparts on the above
single-modality data of tongue images as follows. We make
the label corruption to test the discriminative ability of
tongue images under noisy environments. Label corruption
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Figure 10: Confusion matrixes of CT-based and X-ray-based single-modality and multimodality classification.

Table 5: Classification results in single-modality X-rays and
multimodality data (tongue image and X-rays).

Modality Classifier ACC. SEN. SPEC. MCC.

Chest X-ray
AlexNet 0.9231 0.9545 0.9333 0.8832

ResNet50 0.7692 0.8636 0.7000 0.8860

Multimodality

Concat 0.9808 0.9545 1.0 0.9611

Add 0.9808 0.9545 0.9667 0.9212

AG 0.9808 0.9545 1.0 0.9611

Table 6: The screening results of COVID-19 based on noisy tongue
images using several convolutional neural networks.

Methods ACC. SEN. SPEC. MCC

Vgg16 0.871 0.781 0.9667 0.7361

GoogLeNet 0.9032 0.9688 0.8333 0.8142

DenseNet121 0.9355 0.9688 0.9 0.8720

ResNet18 0.9677 0.9375 1.0 0.9342

ResNet50 0.9514 0.9688 0.9333 0.9021

AlexNet 0.9839 0.9897 0.9667 0.9672
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uniformly changes the label of each image into another
class with a probability of 10%. Table 6 reports the screen-
ing results of COVID-19 based on noisy tongue images
using several convolutional neural networks. We can see
that the performance of the modified AlexNet does not
decrease. The other deep neural networks have a small
decrease in performance. These results demonstrate that
the discriminative ability of tongue images has strong
robustness and generalization. Therefore, tongue images
can be used for the automated screening of COVID-19
in practice.

4.4.2. T-test. We further perform statistical analysis to
ensure that the experimental results have statistical signifi-
cance. A paired t-test between the multimodality model
(concatenation) and the single-modality model (AlexNet)
based on chest x-rays is at a 5% significance level with a P
value of 0.015. This analysis result clearly shows that the
improvement from the multimodality model is noticeable.
The P values between the multimodality model (concatena-
tion) and the single-modality model (AlexNet) based on
chest CT images are also at a 5% significance level, proving
that tongue images can assist the automated screening of
COVID-19. These analyses verify that our insight that intro-
ducing tongue images as a critical indicator for the clinical
screening of COVID-19 is correct.

5. Conclusion

In this paper, we studied the widely concerning question:
can tongue image assist the automated screening of
COVID-19? Our answer is yes. To the best of our knowl-
edge, this study is the first work to investigate the feasibility
of tongue images on screening COVID-19, which is urgently
demanding to stop the pandemic. Specificity, to verify the
discriminative ability of tongue images, we designed several
automated COVID-19 screening experiments based on ton-
gue images. To confirm whether or not the tongue image can
assist the COVID-19 screening based on radiographic
images, we used three types of feature fusion strategies to
construct multistream methods for the fusion of different
features. Extensive experiments have verified the effective-
ness of automated screening of COVID-19 based on tongue
images, which is an underexplored but more realistic solu-
tion. In-depth analyses have revealed the effectiveness and
potential of tongue image as a clinical tool to relieve radiol-
ogists from laborious workloads, contributing to the large-
scale screening of COVID-19. Our studies provide a new
perspective and a unique solution to the widespread auto-
mated detection of COVID-19. Our studies suggest that clin-
ical experts should pay more attention to the comprehensive
analysis of tongue images, especially Chinese medicine doc-
tors. However, tongue screening also has some limitations.
Tongue screening for COVID-19 is one-sided and nucleic
acid monitoring has higher sensitivity and specificity. Ton-
gue image is only a way to provide auxiliary diagnosis in a
specific environment and cannot be used as a direct
reference.
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